1
|
Yu H, Xing Z, Jia K, Li S, Xu Y, Zhao P, Zhu X. Inquiry lipaseoring the mechanism of pancreatic lipase inhibition by isovitexin based on multispectral method and enzyme inhibition assay. LUMINESCENCE 2024; 39:e4765. [PMID: 38769927 DOI: 10.1002/bio.4765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 05/22/2024]
Abstract
Isovitexin is a main natural flavonoid component in various plants. Currently, the inhibitory effect of isovitexin on pancreatic lipase (PL) and its mechanism have not been elucidated yet. In the present study, we investigated the inhibitory effect of isovitexin on PL, as well as its interaction mechanism, using enzyme inhibition methods, spectroscopic analysis, and molecular simulations. Results showed that isovitexin possessed significant PL inhibitory activity, with IC50 values of 0.26 ± 0.02 mM. The interaction between isovitexin and PL was dominated by static quenching, and mainly through hydrogen bonding and hydrophobic interaction forces. Analysis of fluorescence spectroscopy confirmed that isovitexin binding altered the conformation of the PL. Circular dichroism (CD) spectrum indicated that isovitexin altered the secondary structure of PL by decreasing the α-helix content and increasing the β-fold content. Molecular simulations further characterize the conformational changes produced by the interaction between isovitexin with PL. The performed study may provide a new insight into the inhibitory mechanism of isovitexin as a novel PL inhibitor.
Collapse
Affiliation(s)
- Hui Yu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhongfu Xing
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kaijie Jia
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sai Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yankun Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pan Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaojing Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Qian J, Zhu H, Zhang J, Zhao C, Li X, Guo H. Separation and Purification of Bamboo Leaf Flavones by Polyvinylpolypyrrolidone Adsorption. J Chromatogr Sci 2023; 61:885-891. [PMID: 37009711 DOI: 10.1093/chromsci/bmad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2023] [Indexed: 04/04/2023]
Abstract
In view of the adsorption performance of polyvinylpolypyrrolidone (PVPP) to flavones, the adsorption and purification of bamboo leaf flavones (BLFs) by PVPP were studied. The flavones solution was adsorbed by PVPP column chromatography, and then establish a relatively effective method for elution and purification of flavones from bamboo leaf. The optimal separation conditions of column chromatography were determined as the following: the feed concentration of 10 mg/mL, the ratio of diameter to height of 1:1.9, eluents of deionized water (21 mL) and 70% ethanol (800 mL) with a flow rate of 0.33 mL/min. The purity of flavones obtained from ethanol eluents (80-480 mL) was 96.2%. This showed that the PVPP had an ideal adsorption and purification effect on BLFs.
Collapse
Affiliation(s)
- Junqing Qian
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hanxiao Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiangliu Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Changyan Zhao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xinchen Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hui Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
3
|
Evaluation of Antidiabetic and Antihyperlipidemic Activity of 80% Methanolic Extract of the Root of Solanum incanum Linnaeus (Solanaceae) in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4454881. [PMID: 35774744 PMCID: PMC9239786 DOI: 10.1155/2022/4454881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/19/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022]
Abstract
Background Conventional antidiabetic drugs are linked with a number of contraindications and untoward effects. The root decoction of Solanum incanum L. has traditionally been used to treat diabetes. However, its safety and efficacy have not been scientifically authenticated yet. Hence, the study was conducted in mice to corroborate its antidiabetic potential and safety profile. Methods Using normoglycemic, oral glucose-loaded, and streptozotocin-induced diabetic mice models, the hypoglycemic and antihyperglycemic activities of 80% methanolic root extract were investigated. On streptozotocin-induced diabetic mice, the effect of the test extract on diabetic lipid profile and body weight was also investigated. Further, the in vitro α-amylase inhibition activity was assessed. Results The test extract was safe at a limit test dose of 2 g/kg. Dose-dependent α-amylase inhibition activity was seen with peak percentage inhibition of 75.95% at 700 μg/mL. In normoglycemic mice, the plant extract showed statistically significant hypoglycemic activity at 200 and 400 mg/kg (P < 0.001) at 6 h and 4 and 6 h of treatment, respectively; in oral glucose-loaded mice, at both the test doses, the glucose level was also significantly dropped at 120 (P < 0.01) and 60 and 120 min (P < 0.001), respectively; whereas, in the third model, the test extract showed significant antihyperglycemic activity at 100 mg/kg (P < 0.05) on the 14th day and at 200 (P < 0.01) and 400 mg/kg (P < 0.001) on the 7th and 14th day of treatment. Similarly, following repeated administration of the test extract at 200 and 400 mg/kg, the body weight was significantly improved on the 14th day (P < 0.05) and on the 7th and 14th day (P < 0.01), respectively, while diabetic dyslipidemia after 14 days (P < 0.05). Conclusion The study revealed that the test extract showed promising antihyperglycemic and antihyperlipidemic activity. Thus, the findings back up its use in Ethiopian remedies for diabetes.
Collapse
|
4
|
Biogenic Phytochemicals Modulating Obesity: From Molecular Mechanism to Preventive and Therapeutic Approaches. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6852276. [PMID: 35388304 PMCID: PMC8977300 DOI: 10.1155/2022/6852276] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/05/2022] [Indexed: 02/06/2023]
Abstract
The incidence of obesity and over bodyweight is emerging as a major health concern. Obesity is a complex metabolic disease with multiple pathophysiological clinical conditions as comorbidities are associated with obesity such as diabetes, hypertension, cardiovascular disorders, sleep apnea, osteoarthritis, some cancers, and inflammation-based clinical conditions. In obese individuals, adipocyte cells increased the expression of leptin, angiotensin, adipocytokines, plasminogen activators, and C-reactive protein. Currently, options for treatment and lifestyle behaviors interventions are limited, and keeping a healthy lifestyle is challenging. Various types of phytochemicals have been investigated for antiobesity potential. Here, we discuss pathophysiology and signaling pathways in obesity, epigenetic regulations, regulatory mechanism, functional ingredients in natural antiobesity products, and therapeutic application of phytochemicals in obesity.
Collapse
|
5
|
Zhang H, Chen G, Zhang Y, Yang M, Chen J, Guo M. Potential hypoglycemic, hypolipidemic, and anti-inflammatory bioactive components in Nelumbo nucifera leaves explored by bioaffinity ultrafiltration with multiple targets. Food Chem 2021; 375:131856. [PMID: 34942503 DOI: 10.1016/j.foodchem.2021.131856] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/08/2023]
Abstract
Leaf of Nelumbo nucifera Gaertn. (N. nucifera) has been widely used as the main ingredient in lipid-lowering herbal teas and some prescriptions in China due to their excellent hypoglycemic and hypolipidemic effects. However, the active components responsible for these beneficial properties and their mechanisms remain unexplored. In this work, the N. nucifera leaf extracts significantly promoted the glucose consumption of HepG2 cells, and also exhibited remarkable inhibitory activities against α-glucosidase, pancreatic lipase, and COX-2. Furthermore, the top four potential active compounds (N-nornuciferine, Nuciferine, 2-Hydroxy-1-methoxyaporphine, and Isorhamnetin 3-O-glucoside) targeting the above three enzymes were screened out by bioaffinity ultrafiltration with multiple targets coupled with HPLC-MS/MS. The enzyme inhibitory activities of candidate compounds were verified by enzyme inhibition assay and molecular docking. In addition, molecular docking revealed the binding information between the candidate molecules and enzymes. The current study provided valuable information in discovering functional active ingredients from complex medicinal plant extracts.
Collapse
Affiliation(s)
- Hui Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China; Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Guilin Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China; Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Yongli Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China; Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Mei Yang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jinming Chen
- University of Chinese Academy of Sciences, Beijing, China; CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Mingquan Guo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China; Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
6
|
Guo S, Zhao H, Ma Z, Zhang S, Li M, Zheng Z, Ren X, Ho CT, Bai N. Anti-Obesity and Gut Microbiota Modulation Effect of Secoiridoid-Enriched Extract from Fraxinus mandshurica Seeds on High-Fat Diet-Fed Mice. Molecules 2020; 25:E4001. [PMID: 32887336 PMCID: PMC7504722 DOI: 10.3390/molecules25174001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Previously we conducted a phytochemical study on the seeds of Fraxinus excelsior and isolated nine secoiridoid compounds with adipocyte differentiation inhibitory activity and peroxisome proliferator activated receptor alpha (PPARα) activation effects. However, the bioactive constituents and functions of Fraxinus mandshurica seeds have not been studied. In the present study, we investigated the secoiridoid compounds in F. mandshurica seed extract (FM) using column chromatography, 1H-NMR, 13C-NMR and HPLC-DAD methods. The pancreatic lipase inhibitory activities of isolated compounds were evaluated in vitro. Additionally, the anti-obesity and gut microbiota modulation effect of FM on high-fat diet-induced obesity in C57BL/6 mice were also studied in vivo. The results showed that 19 secoiridoids were isolated from FM and identified. The total content of secoiridoids in FM reached 181.35 mg/g and the highest content was nuzhenide (88.21 mg/g). All these secoiridoid compounds exhibited good pancreatic lipase inhibitory activity with inhibition rate ranged from 33.77% to 70.25% at the concentration of 100 μM. After obese mice were administrated with FM at 400 mg/kg.bw for 8 weeks, body weight was decreased by 15.81%. Moreover, FM could attenuate the lipid accumulation in serum and liver, relieve the damage in liver and kidney, and extenuate oxidative stress injury and inflammation caused by obesity in mice. FM could also modulate the structural alteration of gut microbiota in obese mice, increasing the proportion of anti-obesity gut microbiota (Bacteroidetes, Bacteroidia, S24-7 and Allobaculum), and reducing the proportion of obesogenic gut microbiota (Firmicutes and Dorea). This study suggests that F. mandshurica seeds or their secoiridoids may have potential for use as a dietary supplement for obesity management.
Collapse
Affiliation(s)
- Sen Guo
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China; (S.G.); (H.Z.); (M.L.); (Z.Z.); (X.R.)
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi’an 710069, China;
| | - Haoan Zhao
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China; (S.G.); (H.Z.); (M.L.); (Z.Z.); (X.R.)
- College of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi’an 710069, China;
| | - Zhongxiao Ma
- College of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi’an 710069, China;
| | - Shanshan Zhang
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi’an 710069, China;
| | - Mingrou Li
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China; (S.G.); (H.Z.); (M.L.); (Z.Z.); (X.R.)
| | - Zhaojing Zheng
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China; (S.G.); (H.Z.); (M.L.); (Z.Z.); (X.R.)
| | - Xiameng Ren
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China; (S.G.); (H.Z.); (M.L.); (Z.Z.); (X.R.)
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Naisheng Bai
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China; (S.G.); (H.Z.); (M.L.); (Z.Z.); (X.R.)
| |
Collapse
|
7
|
In vitro and in vivo inhibitory activity of taxifolin on three digestive enzymes. Int J Biol Macromol 2020; 150:31-37. [DOI: 10.1016/j.ijbiomac.2020.02.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/22/2022]
|