1
|
Benítez-Camacho J, Ballesteros A, Beltrán-Camacho L, Rojas-Torres M, Rosal-Vela A, Jimenez-Palomares M, Sanchez-Gomar I, Durán-Ruiz MC. Endothelial progenitor cells as biomarkers of diabetes-related cardiovascular complications. Stem Cell Res Ther 2023; 14:324. [PMID: 37950274 PMCID: PMC10636846 DOI: 10.1186/s13287-023-03537-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
Diabetes mellitus (DM) constitutes a chronic metabolic disease characterized by elevated levels of blood glucose which can also lead to the so-called diabetic vascular complications (DVCs), responsible for most of the morbidity, hospitalizations and death registered in these patients. Currently, different approaches to prevent or reduce DM and its DVCs have focused on reducing blood sugar levels, cholesterol management or even changes in lifestyle habits. However, even the strictest glycaemic control strategies are not always sufficient to prevent the development of DVCs, which reflects the need to identify reliable biomarkers capable of predicting further vascular complications in diabetic patients. Endothelial progenitor cells (EPCs), widely known for their potential applications in cell therapy due to their regenerative properties, may be used as differential markers in DVCs, considering that the number and functionality of these cells are affected under the pathological environments related to DM. Besides, drugs commonly used with DM patients may influence the level or behaviour of EPCs as a pleiotropic effect that could finally be decisive in the prognosis of the disease. In the current review, we have analysed the relationship between diabetes and DVCs, focusing on the potential use of EPCs as biomarkers of diabetes progression towards the development of major vascular complications. Moreover, the effects of different drugs on the number and function of EPCs have been also addressed.
Collapse
Affiliation(s)
- Josefa Benítez-Camacho
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Antonio Ballesteros
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain
| | - Lucía Beltrán-Camacho
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain
- Cell Biology, Physiology and Immunology Department, Córdoba University, Córdoba, Spain
| | - Marta Rojas-Torres
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Antonio Rosal-Vela
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Margarita Jimenez-Palomares
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Ismael Sanchez-Gomar
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Mª Carmen Durán-Ruiz
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain.
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain.
| |
Collapse
|
2
|
Recent Overview of Resveratrol's Beneficial Effects and Its Nano-Delivery Systems. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165154. [PMID: 36014390 PMCID: PMC9414442 DOI: 10.3390/molecules27165154] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022]
Abstract
Highlights Abstract Natural polyphenols have a wide variety of biological activities and are taken into account as healthcare materials. Resveratrol is one such natural polyphenol, belonging to a group known as stilbenoids (STBs). Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is mainly found in grapes, wine, nuts, and berries. A wide range of biological activities has been demonstrated by resveratrol, including antimicrobial, antioxidant, antiviral, antifungal, and antiaging effects, and many more are still under research. However, as with many other plant-based polyphenol products, resveratrol suffers from low bioavailability once administered in vivo due to its susceptibility to rapid enzyme degradation by the body’s innate immune system before it can exercise its therapeutic influence. Therefore, it is of the utmost importance to ensure the best use of resveratrol by creating a proper resveratrol delivery system. Nanomedicine and nanodelivery systems utilize nanoscale materials as diagnostic tools or to deliver therapeutic agents in a controlled manner to specifically targeted locations. After a brief introduction about polyphenols, this review overviews the physicochemical characteristics of resveratrol, its beneficial effects, and recent advances on novel nanotechnological approaches for its delivery according to the type of nanocarrier utilized. Furthermore, the article summarizes the different potential applications of resveratrol as, for example, a therapeutic and disease-preventing anticancer and antiviral agent.
Collapse
|
3
|
Han X, Zhou L, Tu Y, Wei J, Zhang J, Jiang G, Shi Q, Ying H. Circulating exo-miR-154-5p regulates vascular dementia through endothelial progenitor cell-mediated angiogenesis. Front Cell Neurosci 2022; 16:881175. [PMID: 35966195 PMCID: PMC9372489 DOI: 10.3389/fncel.2022.881175] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background Vascular dementia (VaD) mainly results from cerebral vascular lesions and tissue changes, which contribute to neurodegenerative processes. Effective therapeutic approaches to targeting angiogenesis may reduce mortality of VaD. Endothelial progenitor cells (EPCs) play a key role in postnatal angiogenesis. Many exosomal microRNAs (exo-miRNAs) have been reported to involve in the development of dementia. The present study was designed to investigate whether the expression profile of the exo-miRNAs is significantly altered in patients with VaD and to reveal the function of differentially expressed miRNAs and the relevant mechanisms in EPC-mediated angiogenesis in VaD rat model. Results Exosomes isolated from serum of patients with VaD (n = 7) and age-matched control subjects (n = 7), and miRNA sequencing and bioinformatics analysis found that circulating exosome miRNA-155-5p, miRNA-154-5p, miR-132-5p, and miR-1294 were upregulated in patients with VaD. The expression of miRNA-154-5p was further verified to be upregulated in clinical samples (n = 23) and 2-vessel occlusion-induced VaD rat model by reverse transcription quantitative PCR (RT-qPCR). Notably, miRNA-154-5p inhibition in bone marrow-EPCs (BM-EPCs) from VaD rats improved EPC functions, including tube formation, migration, and adhesion, and elevated concentrations of vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1α (SDF-1α). The mRNA levels of ICAM-1, VCAM-1, and MCP-1 were reduced in miRNA-154-5p-inhibited EPCs. In addition, miRNA-154-5p inhibition increased the level of superoxide dismutase (SOD), and decreased reactive oxygen species (ROS) in EPCs. PRKAA2 was chosen as a promising target gene of miR-154-5p, and miRNA-154-5p inhibition upregulated the protein expression of AMPKα2. Furthermore, upregulation of miR-154-5p markedly diminished EPC functions and inhibited angiogenesis following EPC transplantation in VaD rats. Conclusion Circulating exo-miR-154-5p was upregulated in patients with VaD, and miR-154-5p upregulation was associated with impaired EPC functions and angiogenesis in VaD rat model. Therefore, miR-154-5p is a promising biomarker and therapeutic strategy for VaD.
Collapse
Affiliation(s)
- Xue Han
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou, China
| | - Li Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Tu
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou, China
| | - Jiajia Wei
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou, China
| | - Jiajia Zhang
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou, China
| | - Guojun Jiang
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Qiaojuan Shi
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou, China
- Qiaojuan Shi,
| | - Huazhong Ying
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Huazhong Ying,
| |
Collapse
|
4
|
Chen Q, Yang J, Yin H, Li Y, Qiu H, Gu Y, Yang H, Xiaoxi D, Xiafei S, Che B, Li H. Optimization of photo-biomodulation therapy for wound healing of diabetic foot ulcers in vitro and in vivo. BIOMEDICAL OPTICS EXPRESS 2022; 13:2450-2466. [PMID: 35519257 PMCID: PMC9045913 DOI: 10.1364/boe.451135] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 05/08/2023]
Abstract
Unclear optical parameters make photo-biomodulation (PBM) difficult to implement in diabetic foot ulcer (DFU) clinically. Here, 12 wavelengths (400-900 nm) were used to conduct PBM to heal DFU wounds in vitro and in vivo. PBM at 10 mW/cm2 and 0.5-4 J/cm2 with all 12 wavelengths promoted proliferation of diabetic wound cells. In a mimic DFU (mDFU) rat model, PBM (425, 630, 730, and 850 nm, and a combination light strategy) promoted mDFU healing. The positive cell proliferation, re-epithelialization, angiogenesis, collagen synthesis, and inflammation were possible mechanisms. The combination strategy had the best effect, which can be applied clinically.
Collapse
Affiliation(s)
- Qianqian Chen
- Laboratory of Laser Medicine, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, China
- National Research Center for Rehabilitation Technical Aids, Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, Beijing 100176, China
- Equal contributors
| | - Jichun Yang
- Laboratory of Laser Medicine, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, China
- Equal contributors
| | - Huijuan Yin
- Laboratory of Laser Medicine, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, China
| | - Yingxin Li
- Laboratory of Laser Medicine, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, China
| | - Haixia Qiu
- Department of Laser Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Ying Gu
- Department of Laser Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Hua Yang
- Semiconductor Lighting Technology Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Dong Xiaoxi
- Laboratory of Laser Medicine, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, China
| | - Shi Xiafei
- Laboratory of Laser Medicine, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, China
| | - Bochen Che
- Laboratory of Laser Medicine, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, China
| | - Hongxiao Li
- Laboratory of Laser Medicine, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
5
|
Pignet AL, Schellnegger M, Hecker A, Kohlhauser M, Kotzbeck P, Kamolz LP. Resveratrol-Induced Signal Transduction in Wound Healing. Int J Mol Sci 2021; 22:12614. [PMID: 34884419 PMCID: PMC8657598 DOI: 10.3390/ijms222312614] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022] Open
Abstract
Resveratrol is a well-known polyphenol that harbors various health benefits. Besides its well-known anti-oxidative potential, resveratrol exerts anti-inflammatory, pro-angiogenic, and cell-protective effects. It seems to be a promising adjuvant for various medical indications, such as cancer, vascular, and neurodegenerative diseases. Additionally, resveratrol was shown to display beneficial effects on the human skin. The polyphenol is discussed to be a feasible treatment approach to accelerate wound healing and prevent the development of chronic wounds without the drawback of systemic side effects. Despite resveratrol's increasing popularity, its molecular mechanisms of action are still poorly understood. To take full advantage of resveratrol's therapeutic potential, a profound knowledge of its interactions with its targets is needed. Therefore, this review highlights the resveratrol-induced molecular pathways with particular focus on the most relevant variables in wound healing, namely inflammation, oxidative stress, autophagy, collagen proliferation and angiogenesis.
Collapse
Affiliation(s)
- Anna-Lisa Pignet
- COREMED—Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria; (M.S.); (A.H.); (M.K.); (P.K.); (L.-P.K.)
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Marlies Schellnegger
- COREMED—Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria; (M.S.); (A.H.); (M.K.); (P.K.); (L.-P.K.)
| | - Andrzej Hecker
- COREMED—Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria; (M.S.); (A.H.); (M.K.); (P.K.); (L.-P.K.)
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Michael Kohlhauser
- COREMED—Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria; (M.S.); (A.H.); (M.K.); (P.K.); (L.-P.K.)
| | - Petra Kotzbeck
- COREMED—Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria; (M.S.); (A.H.); (M.K.); (P.K.); (L.-P.K.)
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Lars-Peter Kamolz
- COREMED—Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria; (M.S.); (A.H.); (M.K.); (P.K.); (L.-P.K.)
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| |
Collapse
|
6
|
Li J, Quan X, Lei S, Huang Z, Wang Q, Xu P. PFOS Inhibited Normal Functional Development of Placenta Cells via PPARγ Signaling. Biomedicines 2021; 9:biomedicines9060677. [PMID: 34203907 PMCID: PMC8232579 DOI: 10.3390/biomedicines9060677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 01/13/2023] Open
Abstract
Perfluorooctane sulfonic acid (PFOS), a persistent environmental pollutant, has adverse effects on gestation pregnancy. Peroxisome proliferator-activated receptor γ (PPARγ) is involved in angiogenesis, metabolic processes, anti-inflammatory, and reproductive development. However, the function of PPARγ in PFOS evoked disadvantageous effects on the placenta remain uncertain. Here, we explored the role of PPARγ in PFOS-induced placental toxicity. Cell viability, cell migration, angiogenesis, and mRNA expression were monitored by CCK-8 assay, wound healing assay, tube formation assay, and real-time PCR, respectively. Activation and overexpression of PPARγ were conducted by rosiglitazone or pcDNA-PPARγ, and inhibition and knockdown of PPARγ were performed by GW9662 or si-PPARγ. Results revealed that PFOS decreased cell growth, migration, angiogenesis, and increased inflammation in human HTR-8/SVneo and JEG-3 cells. Placenta diameter and fetal weight decreased in mice treated with PFOS (12.5 mg/kg). In addition, rosiglitazone or pcDNA-PPARγ rescued cell proliferation, migration, angiogenesis, and decreased inflammation induced by PFOS in HTR8/SVneo and JEG-3 cells. Furthermore, GW9662 or si-PPARγ exacerbated the inhibition of cell viability, migration, angiogenesis, and aggravated inflammation induced by PFOS in HTR-8/SVneo and JEG-3 cells. Meanwhile, the results of mRNA expression level were consistent with the cell representation. In conclusion, our findings revealed that PFOS induced placenta cell toxicity and functional damage through PPARγ pathway.
Collapse
Affiliation(s)
- Jing Li
- School of Public Health, Xuzhou Medical University, Xuzhou 221002, China; (J.L.); (X.Q.); (Z.H.); (Q.W.)
| | - Xiaojie Quan
- School of Public Health, Xuzhou Medical University, Xuzhou 221002, China; (J.L.); (X.Q.); (Z.H.); (Q.W.)
| | - Saifei Lei
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Zhenyao Huang
- School of Public Health, Xuzhou Medical University, Xuzhou 221002, China; (J.L.); (X.Q.); (Z.H.); (Q.W.)
| | - Qi Wang
- School of Public Health, Xuzhou Medical University, Xuzhou 221002, China; (J.L.); (X.Q.); (Z.H.); (Q.W.)
| | - Pengfei Xu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Correspondence: ; Tel.: +1-412-708-4694
| |
Collapse
|
7
|
Shen C, Lu Y, Zhang J, Li Y, Zhang Y, Fan D. c-Casitas b-Lineage Lymphoma Downregulation Improves the Ability of Long-term Cultured Mesenchymal Stem Cells for Promoting Angiogenesis and Diabetic Wound Healing. Cell Transplant 2021; 30:963689721989605. [PMID: 33588607 PMCID: PMC7894690 DOI: 10.1177/0963689721989605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The chronic wound induced by diabetes has poor efficacy and could lead to amputation. The repair function of mesenchymal stem cells (MSCs) impaired after long-term culture in vitro. Studies have shown that the proto-oncogene c-Casitas b-lineage lymphoma (c-Cbl) can regulate receptor- and non-receptor tyrosine kinase, which was also involved in the angiogenesis process. This study aimed to explore the regulative effect of c-Cbl on the proangiogenic functions of long-term cultured MSCs and evaluate its pro-healing effect on diabetic wounds. In this study, the c-Cbl level was downregulated by locked nucleic acid–modified antisense oligonucleotide gapmers (LNA Gapmers). We detected the effect of c-Cbl downregulation on long-term cultured MSCs in terms of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signal, cellular proliferation, senescence, migration, and angiogenic factors paracrine activity in vitro. In vivo, we observed the pro-healing effect of long-term cultured MSCs, with or without c-Cbl downregulation, on the diabetic wound. We found that the phosphorylation level of c-Cbl increased and that of Akt decreased in passage 10 (P10) MSCs compared with passage 3 (P3) MSCs (P < 0.05). Additionally, the proliferation, paracrine, and migration capacity of P10 MSCs decreased significantly, accompanied by the increase of cellular senescence (P < 0.05). However, these functions, including PI3K/Akt activity of P10 MSCs, have been improved by c-Cbl downregulation (P < 0.05). Compared with P10 MSCs treatment, treatment with c-Cbl downregulated P10 MSCs accelerated diabetic wound healing, as defined by a more rapid wound closure (P < 0.05), more neovascularization (P < 0.05), and higher scores of wound histological assessment (P < 0.05) in a diabetic rat model. Our findings suggested that c-Cbl downregulation could attenuate the impairment of proangiogenic functions in MSCs induced by long-term culture in vitro and improve the effect of long-term cultured MSCs in promoting diabetic wound healing.
Collapse
Affiliation(s)
- Chengcheng Shen
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuangang Lu
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jianghe Zhang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yujie Li
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yiming Zhang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Dongli Fan
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
8
|
Tan S, Zang G, Wang Y, Sun Z, Li Y, Lu C, Wang Z. Differences of Angiogenesis Factors in Tumor and Diabetes Mellitus. Diabetes Metab Syndr Obes 2021; 14:3375-3388. [PMID: 34335038 PMCID: PMC8318726 DOI: 10.2147/dmso.s315362] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/04/2021] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis, as a process occurring under the regulation of a variety of factors, is one of the important ways of vascular development. It coexists in a variety of pathological and physiological processes. Now a large number of studies have proved that tumor growth, metastasis, and various vascular complications of diabetes are closely related to angiogenesis, and an increasing number of studies have shown that there are many common factors between the two. But angiogenesis is the opposite of the two: it is enhanced in tumors and suppressed in diabetes. Therefore, this review discusses the causes of the phenomenon from the expression of various factors affecting angiogenesis in these two diseases and their effects on angiogenesis in the relevant microenvironment, as well as the application status of these factors or cells as therapeutic targets in the treatment of these two diseases.
Collapse
Affiliation(s)
- Shidong Tan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Guangyao Zang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Ying Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Yalan Li
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Cheng Lu
- General Office, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
- Correspondence: Cheng Lu General Office, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, People's Republic of China, +86 511 88986902 Email
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
- Zhongqun Wang Department of Cardiology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, People’s Republic of ChinaTel +86 511 85030586 Email
| |
Collapse
|