1
|
Çelik S, Yıldırım E, Güntekin B. Reduced resting and task-related alpha activity in mine workers: Implications for occupational health and neurodegenerative risk. Int J Psychophysiol 2025; 207:112466. [PMID: 39577570 DOI: 10.1016/j.ijpsycho.2024.112466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Underground mine workers face many risk factors at work sites that are known to affect the neural system. Observational studies report that these risk factors precede neuromuscular and neurodegenerative disorders, especially in old-age miners. Neurodegenerative disorders have electrophysiological, anatomical, and functional changes long before symptoms are seen in older adults. Therefore, this study investigated whether risks faced by miners at young ages were reflected in electrophysiological signals. Twenty-one underground miners and twenty-two above-ground workers matched with them in terms of age, education, and working duration were included in this study. Participants were recorded with a 20-channel EEG during the resting-state (eyes open and closed; EO-EC) and the perception of the International Affective Picture System Paradigm (IAPS). Time-frequency analyses were performed for alpha frequency. Rs-EEG results showed a statistically significant difference in alpha power between the EO and EC states in the control group. However, there was no statistical difference in alpha power between these two conditions in the miners. Additionally, we noted a more pronounced decrease in alpha responses in the posterior region during EC in the miners. The group's main effects were statistically significant in event-related alpha responses during emotional responses. Accordingly, event-related alpha responses of the miner group were lower than the control group in terms of both power spectrum and phase-locking. Underground mine workers are cognitively and emotionally affected by risks in the work environment. Electrophysiological changes seen in young underground workers may be a harbinger of neurodegenerative disorders in miners' old age. Our research findings may lead to the development of occupational neuroscience, social policies, and worker health, which are necessary to improve working conditions for mineworkers.
Collapse
Affiliation(s)
- Samet Çelik
- Department of Psychology, Bartin University, Bartin, Turkey.
| | - Ebru Yıldırım
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Istanbul Gedik University, Istanbul, Turkey.
| | - Bahar Güntekin
- Neuroscience Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey; Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.
| |
Collapse
|
2
|
Rizzo M, Petrini L, Del Percio C, Arendt-Nielsen L, Babiloni C. Neurophysiological Oscillatory Mechanisms Underlying the Effect of Mirror Visual Feedback-Induced Illusion of Hand Movements on Nociception and Cortical Activation. Brain Sci 2024; 14:696. [PMID: 39061436 PMCID: PMC11274372 DOI: 10.3390/brainsci14070696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Mirror Visual Feedback (MVF)-induced illusion of hand movements produces beneficial effects in patients with chronic pain. However, neurophysiological mechanisms underlying these effects are poorly known. In this preliminary study, we test the novel hypothesis that such an MVF-induced movement illusion may exert its effects by changing the activity in midline cortical areas associated with pain processing. Electrical stimuli with individually fixed intensity were applied to the left hand of healthy adults to produce painful and non-painful sensations during unilateral right-hand movements with such an MVF illusion and right and bilateral hand movements without MVF. During these events, electroencephalographic (EEG) activity was recorded from 64 scalp electrodes. Event-related desynchronization (ERD) of EEG alpha rhythms (8-12 Hz) indexed the neurophysiological oscillatory mechanisms inducing cortical activation. Compared to the painful sensations, the non-painful sensations were specifically characterized by (1) lower alpha ERD estimated in the cortical midline, angular gyrus, and lateral parietal regions during the experimental condition with MVF and (2) higher alpha ERD estimated in the lateral prefrontal and parietal regions during the control conditions without MVF. These preliminary results suggest that the MVF-induced movement illusion may affect nociception and neurophysiological oscillatory mechanisms, reducing the activation in cortical limbic and default mode regions.
Collapse
Affiliation(s)
- Marco Rizzo
- Center for Neuroplasticity and Pain (CNAP), SMI®, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (M.R.); (L.P.); (L.A.-N.)
| | - Laura Petrini
- Center for Neuroplasticity and Pain (CNAP), SMI®, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (M.R.); (L.P.); (L.A.-N.)
| | - Claudio Del Percio
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain (CNAP), SMI®, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (M.R.); (L.P.); (L.A.-N.)
- Department of Medical Gastroenterology, Mech-Sense, Aalborg University Hospital, 9220 Aalborg, Denmark
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
- Hospital San Raffaele Cassino, 03043 Cassino, Italy
| |
Collapse
|
3
|
Villar Ortega E, Buetler KA, Aksöz EA, Marchal-Crespo L. Enhancing touch sensibility with sensory electrical stimulation and sensory retraining. J Neuroeng Rehabil 2024; 21:79. [PMID: 38750521 PMCID: PMC11096118 DOI: 10.1186/s12984-024-01371-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/08/2024] [Indexed: 05/18/2024] Open
Abstract
A large proportion of stroke survivors suffer from sensory loss, negatively impacting their independence, quality of life, and neurorehabilitation prognosis. Despite the high prevalence of somatosensory impairments, our understanding of somatosensory interventions such as sensory electrical stimulation (SES) in neurorehabilitation is limited. We aimed to study the effectiveness of SES combined with a sensory discrimination task in a well-controlled virtual environment in healthy participants, setting a foundation for its potential application in stroke rehabilitation. We employed electroencephalography (EEG) to gain a better understanding of the underlying neural mechanisms and dynamics associated with sensory training and SES. We conducted a single-session experiment with 26 healthy participants who explored a set of three visually identical virtual textures-haptically rendered by a robotic device and that differed in their spatial period-while physically guided by the robot to identify the odd texture. The experiment consisted of three phases: pre-intervention, intervention, and post-intervention. Half the participants received subthreshold whole-hand SES during the intervention, while the other half received sham stimulation. We evaluated changes in task performance-assessed by the probability of correct responses-before and after intervention and between groups. We also evaluated differences in the exploration behavior, e.g., scanning speed. EEG was employed to examine the effects of the intervention on brain activity, particularly in the alpha frequency band (8-13 Hz) associated with sensory processing. We found that participants in the SES group improved their task performance after intervention and their scanning speed during and after intervention, while the sham group did not improve their task performance. However, the differences in task performance improvements between groups only approached significance. Furthermore, we found that alpha power was sensitive to the effects of SES; participants in the stimulation group exhibited enhanced brain signals associated with improved touch sensitivity likely due to the effects of SES on the central nervous system, while the increase in alpha power for the sham group was less pronounced. Our findings suggest that SES enhances texture discrimination after training and has a positive effect on sensory-related brain areas. Further research involving brain-injured patients is needed to confirm the potential benefit of our solution in neurorehabilitation.
Collapse
Affiliation(s)
- Eduardo Villar Ortega
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Karin A Buetler
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Efe Anil Aksöz
- rehaLab-The Laboratory for Rehabilitation Engineering, Institute for Human Centred Engineering HuCE, Division of Mechatronics and Systems Engineering, Department of Engineering and Information Technology, Bern University of Applied Sciences, Biel, Switzerland
| | - Laura Marchal-Crespo
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland.
- Department of Cognitive Robotics, Delft University of Technology, Delft, The Netherlands.
- Department of Rehabilitation Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Zhi Y, Zhang Y, Zhang Y, Zhang M, Kong Y. Age-associated changes in multimodal pain perception. Age Ageing 2024; 53:afae107. [PMID: 38776215 PMCID: PMC11110914 DOI: 10.1093/ageing/afae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Pain sensitivity varies across multimodal somatosensory stimuli that can rely on different conductive fibres, which, when damaged, will lead to neuropathies. However, there is limited research examining the characteristics of perceived pain, particularly as affected by the ageing process, as induced by various somatosensory stimuli that may rely on small or large fibres. METHODS Using heat and pressure stimuli on small and large fibres separately on both younger and older adults, this study examined age-associated changes in pain perception by measuring self-reported pain sensitivity, pain threshold and pain discriminability. RESULTS Heat pain threshold was significantly positively correlated with age, but not pressure pain threshold. Pain threshold increased and pain discriminability decreased in response to heat stimuli in the older participants compared with the younger ones. CONCLUSION An age-associated decline in heat pain perception was observed, suggesting an earlier degradation of heat perception. These findings provide new insight into understanding and assessing somatosensory disorders, which can help ageing populations better maintain healthy sensory functioning.
Collapse
Affiliation(s)
- Yongkang Zhi
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- Department of Applied Psychology, School of Humanities and Social Sciences, Beijing Forestry University, Beijing 100083, China
| | - Yu Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yazhuo Kong
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
5
|
Saricaoglu M, Hanoglu L, Guntekin B, Ozkara C. The effects of cognitive, physical, and somatosensory rehabilitation after right temporo-parietal tumor resection on cognitive, motor, somatosensory, and electrophysiological parameters: A case report. Physiother Theory Pract 2023; 39:2241-2250. [PMID: 35436161 DOI: 10.1080/09593985.2022.2064787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION This report examines the effects of a multimodal rehabilitation program which includes cognitive, physical, and somatosensory rehabilitation after right temporo-parietal tumor resection on cognitive, motor, somatosensory, and electrophysiological parameters. CASE DESCRIPTION A 22-year-old patient presented with sensory loss in the dominant left hand and reduced writing ability after right temporo-parietal lobe resection. Cognitive, motor, and sensory evaluations were carried out pre and post-treatment. The patient's spontaneous electroencephalo-gram (EEG) and an EEG during application of transcutaneous electrical nerve stimulation (TENS) (TENS EEG) were recorded. As a reference for the patient's electrophysiological values, EEGs of 4 healthy individuals were also taken. Over a period of 1 year, the patient received multimodal rehabilitation which includes cognitive, physical, and somato-sensory rehabilitation on 2 days each week. OUTCOMES An improvement of the patient's cognitive capacities, motor strength, superficial, deep and cortical sensations was achieved. After rehabilitation, an increase in parietal and occipital alpha activity as well as in frontal and parietal beta activity was seen both in spontaneous EEG and in TENS EEG. With increasing TENS intensity, alpha and beta power increased as well. CONCLUSION Our findings suggest that a multimodal rehabilitation program may improve cognitive, sensory, and motor effects after resection due to tumor surgery.
Collapse
Affiliation(s)
- Mevhibe Saricaoglu
- Department of Neuroscience, Institute of Medical Science, Istanbul Medipol University, Beykoz, Istanbul, Turkey
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Cibali, Istanbul, Turkey
| | - Lutfu Hanoglu
- Department of Neurology, Istanbul Medipol University, Istanbul, Turkey
| | - Bahar Guntekin
- Department of Biophysics, Faculty of Medicine, Istanbul Medipol University, Beykoz, Istanbul, Turkey
| | - Cigdem Ozkara
- Department of Neurology, Istanbul-Cerrahpasa University, Fatih, Istanbul, Turkey
| |
Collapse
|
6
|
Ramalingam V, Cheong SK, Lee PF. Study of EEG alpha wave response on the effects of video-guided deep breathing on pain rehabilitation. Technol Health Care 2023; 31:37-46. [PMID: 35723127 DOI: 10.3233/thc-213531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Athletes with chronic ankle pain (CAP) are more inclined to suffer from physical and psychological pain depending on the severity of the injuries, which might trigger the powerless feeling on future sports participation. Therefore, an efficient and simple method is useful to integrate into conventional physiotherapy (CP) for maintaining mental wellness. OBJECTIVE This research aimed to verify the effects and progress of video-guided deep breathing (DB) integrated into CP through study on the changes of alpha waves and pain scale. METHODS Alpha waves were recorded using an electroencephalogram (EEG) and a visual analogue scale (VAS) to assess pain intensity before and after the intervention (6 weeks). Thirty CAP participants were recruited and randomly assigned to two groups: group A for video-guided DB integration into their CP and group B for CP. The effects of pre and post intervention were analyzed using a paired t-test with statistical significance set at p< 0.05. RESULTS Profound results from the research have shown that the participants who received both the DB+CP revealed a significant increase in alpha wave (p< 0.05) at occipital region. CONCLUSION The significant result reveals an increase in alpha waves in the occipital region after 6 weeks and indicates that the video-guided DB with a smartphone application is able to produce a change in CAP participants. This supports the DB integration to the CP for altering the pain perception.
Collapse
Affiliation(s)
| | - Soon Keng Cheong
- Faculty of Medicine and Health Sciences, University Tunku Abdul Rahman, Bandar Sungai Long, Kajang, Selangor, Malaysia
| | - Poh Foong Lee
- Lee Kong Chian Faculty of Engineering and Science, University Tunku Abdul Rahman, Bandar Sungai Long, Kajang, Selangor, Malaysia
| |
Collapse
|
7
|
Liu Y, Xi P, Li B, Zhang M, Liu H, Tang R, Xin S, Huang Q, He J, Liu Z, Yuan Z, Lang Y. Effect of neuromorphic transcutaneous electrical nerve stimulation (nTENS) of cortical functional networks on tactile perceptions: An event-related electroencephalogram study. J Neural Eng 2022; 19. [PMID: 35263714 DOI: 10.1088/1741-2552/ac5bf6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 03/09/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Transcutaneous electrical nerve stimulation (TENS) is generally applied for tactile feedback in the field of prosthetics. The distinct mechanisms of evoked tactile perception between stimulus patterns in conventional TENS (cTENS) and neuromorphic TENS (nTENS) are relatively unknown. This is the first study to investigate the neurobiological effect of nTENS for cortical functional mechanism in evoked tactile perception. METHODS Twenty-one healthy participants were recruited in this study. Electroencephalogram (EEG) was recorded while the participants underwent a tactile discrimination task. One cTENS pattern (square pattern) and two nTENS patterns (electromyography and single motor unit patterns) were applied to evoke tactile perception in four fingers, including the right and left index and little fingers. EEG was preprocessed and somatosensory-evoked potentials (SEPs) were determined. Then, source-level functional networks based on graph theory were evaluated, including clustering coefficient, path length, global efficiency, and local efficiency in six frequency bands. RESULTS Behavioral results suggested that the single motor units (SMU) pattern of nTENS was the most natural tactile perception. SEPs results revealed that SMU pattern exhibited significant shorter latency in P1 and N1 components than the other patterns, while nTENS patterns have significantly longer latency in P3 component than cTENS pattern. Cortical functional networks showed that the SMU pattern had the lowest short path and highest efficiency in beta and gamma bands. CONCLUSION This study highlighted that distinct TENS patterns could affect brain activities. The new characteristics in tactile manifestation of nTENS would provide insights for the application of tactile perception restoration.
Collapse
Affiliation(s)
- Yafei Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, No.5 South Zhongguancun street, Haidian District, Beijing, 100081, CHINA
| | - Pengcheng Xi
- School of Mechatronical Engineering, Beijing Institute of Technology, No.5 South Zhongguancun street, Haidian District, Beijing, Beijing, 100081, CHINA
| | - Bo Li
- School of Mechatronical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, Bei Jing, Bei Jing, 100081, CHINA
| | - Minjian Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, No.5 South Zhongguancun street, Haidian District, Beijing, Beijing, 100081, CHINA
| | - Honghao Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, No.5 South Zhongguancun street, Haidian District, Beijing, Beijing, 100081, CHINA
| | - Rongyu Tang
- School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, No.1 Zhanlanguan Road, Xicheng District, Beijing, Beijing, 100044, CHINA
| | - Shan Xin
- School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, NO.1, Zhanlanguan Road, Xicheng District, Beijing, Beijing, 100044, CHINA
| | - Qiang Huang
- Beijing Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, No.5 South Zhongguancun street, Haidian District, Beijing, Beijing, 100081, CHINA
| | - Jiping He
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, No.5 South Zhongguancun street, Haidian District, Beijing, Beijing, 100081, CHINA
| | - Zhiqiang Liu
- Beijing institute of basic medical sciences, 27 Taiping Road, HaidianDistrict, Beijing, Beijing, 100850, CHINA
| | - Zengqiang Yuan
- Beijing institute of basic medical sciences, 27 Taiping Road, HaidianDistrict, Beijing, 100850, CHINA
| | - Yiran Lang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Haidian Dist. Zhongguancun South Street No. 5, Beijing, 100081, CHINA
| |
Collapse
|
8
|
Ramalingam V, Cheong SK, Lee PF. Preliminary study on changes of brainwaves for musculoskeletal pain among collegiate athletes. Technol Health Care 2022; 30:993-1003. [PMID: 35275584 DOI: 10.3233/thc-213633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Brainwaves studies on pain are gaining more attention in recent years. However, the target group in a similar study on collegiate athletes with musculoskeletal pain is still under explore. OBJECTIVE The objective is to investigate the differences of the brainwaves response and its association with pain interference of the collegiate athletes with and without musculoskeletal pain. METHODS Collegiate athletes (n= 49) were recruited and categorized into pain group (PG) (n= 25) and no-pain group (NPG) (n= 24). Brainwaves were recorded for 2 minutes with eyes closed in a resting state using EEG. Pain intensity and pain interference were documented using visual analogue scale and brief pain inventory, respectively. Independent t-test was used to compare brainwaves of PG and NPG, and Spearman's correlation was used to find the association between brain waves and pain interference. RESULTS Findings showed a significant decrease (p< 0.05) in brain waves in PG on left temporal regions as compared to NPG. Frontal beta, theta, and gamma waves were found to be negatively correlated with participants' pain interference. CONCLUSION This outcome potentially contributes EEG as an alternative non-invasive tool for an objective pain assessment method in health care technology to aid in the rehabilitation process.
Collapse
Affiliation(s)
| | - Soon Keng Cheong
- Faculty of Medicine and Health Sciences, University Tunku Abdul Rahman, Bandar Sungai Long, Kajang, Selangor, Malaysia
| | - Poh Foong Lee
- Lee Kong Chian Faculty of Engineering and Science, University Tunku Abdul Rahman, Bandar Sungai Long, Kajang, Selangor, Malaysia
| |
Collapse
|
9
|
Sherman DA, Lehmann T, Baumeister J, Grooms DR, Norte GE. Somatosensory perturbations influence cortical activity associated with single-limb balance performance. Exp Brain Res 2022; 240:407-420. [PMID: 34767059 DOI: 10.1007/s00221-021-06260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/28/2021] [Indexed: 11/25/2022]
Abstract
To determine the association between cortical activity and postural control performance changes with differing somatosensory perturbations. Healthy individuals (n = 15) performed a single-limb balance task under four conditions: baseline, unstable surface (foam), transcutaneous electrical nerve stimulation (TENS) applied to the stance-limb knee, and combined foam + TENS. Cortical activity was recorded with electroencephalography (EEG) and postural sway via triaxial force plate. EEG signals were decomposed, localized, and clustered to generate power spectral density in theta (4-7 Hz) and alpha-2 (10-12 Hz) frequency bands in anatomical clusters. Postural sway signals were analyzed with center of pressure (COP) sway metrics (e.g., area, distance, velocity). Foam increased theta power in the frontal and central clusters (d = 0.77 to 1.16), decreased alpha-2 power in bilateral motor, right parietal, and occipital clusters (d = - 0.89 to - 2.35) and increased sway area, distance, and velocity (d = 1.09-2.57) relative to baseline. Conversely, TENS decreased central theta power (d = - 0.60), but increased bilateral motor, left parietal, and occipital alpha-2 power (d = 0.51-1.40), with similar to baseline balance performance. In combination, foam + TENS attenuated sway velocity detriments and cortical activity caused by the foam condition alone. There were weak and moderate associations between percent increased central theta and occipital activity and increased sway velocity. Somatosensory perturbations changed patterns of cortical activity during a single-limb balance task in a manner suggestive of sensory re-weighting to pertinent sensory feedback. Across conditions decreased cortical activity in pre-motor and visual regions were associated with reduced sway velocity.
Collapse
Affiliation(s)
- David A Sherman
- School of Exercise and Rehabilitation Sciences, College of Health and Human Services, University of Toledo, 2801 W. Bancroft St., HH 2505E, Mail Stop 119, Toledo, OH, 43606, USA.
| | - Tim Lehmann
- Exercise Science and Neuroscience Unit, Department of Exercise and Health, Faculty of Science, Paderborn University, Paderborn, Germany
| | - Jochen Baumeister
- Exercise Science and Neuroscience Unit, Department of Exercise and Health, Faculty of Science, Paderborn University, Paderborn, Germany
| | - Dustin R Grooms
- Division of Physical Therapy, Division of Athletic Training, Ohio Musculoskeletal and Neurological Institute, College of Health Sciences and Professions, Ohio University, Athens, OH, 45701, USA
| | - Grant E Norte
- School of Exercise and Rehabilitation Sciences, College of Health and Human Services, University of Toledo, 2801 W. Bancroft St., HH 2505E, Mail Stop 119, Toledo, OH, 43606, USA
| |
Collapse
|
10
|
Tayeb Z, Dragomir A, Lee JH, Abbasi NI, Dean E, Bandla A, Bose R, Sundar R, Bezerianos A, Thakor NV, Cheng G. Distinct spatio-temporal and spectral brain patterns for different thermal stimuli perception. Sci Rep 2022; 12:919. [PMID: 35042875 PMCID: PMC8766611 DOI: 10.1038/s41598-022-04831-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding the human brain's perception of different thermal sensations has sparked the interest of many neuroscientists. The identification of distinct brain patterns when processing thermal stimuli has several clinical applications, such as phantom-limb pain prediction, as well as increasing the sense of embodiment when interacting with neurorehabilitation devices. Notwithstanding the remarkable number of studies that have touched upon this research topic, understanding how the human brain processes different thermal stimuli has remained elusive. More importantly, very intense thermal stimuli perception dynamics, their related cortical activations, as well as their decoding using effective features are still not fully understood. In this study, using electroencephalography (EEG) recorded from three healthy human subjects, we identified spatial, temporal, and spectral patterns of brain responses to different thermal stimulations ranging from extremely cold and hot stimuli (very intense), moderately cold and hot stimuli (intense), to a warm stimulus (innocuous). Our results show that very intense thermal stimuli elicit a decrease in alpha power compared to intense and innocuous stimulations. Spatio-temporal analysis reveals that in the first 400 ms post-stimulus, brain activity increases in the prefrontal and central brain areas for very intense stimulations, whereas for intense stimulation, high activity of the parietal area was observed post-500 ms. Based on these identified EEG patterns, we successfully classified the different thermal stimulations with an average test accuracy of 84% across all subjects. En route to understanding the underlying cortical activity, we source localized the EEG signal for each of the five thermal stimuli conditions. Our findings reveal that very intense stimuli were anticipated and induced early activation (before 400 ms) of the anterior cingulate cortex (ACC). Moreover, activation of the pre-frontal cortex, somatosensory, central, and parietal areas, was observed in the first 400 ms post-stimulation for very intense conditions and starting 500 ms post-stimuli for intense conditions. Overall, despite the small sample size, this work presents novel findings and a first comprehensive approach to explore, analyze, and classify EEG-brain activity changes evoked by five different thermal stimuli, which could lead to a better understanding of thermal stimuli processing in the brain and could, therefore, pave the way for developing a real-time withdrawal reaction system when interacting with prosthetic limbs. We underpin this last point by benchmarking our EEG results with a demonstration of a real-time withdrawal reaction of a robotic prosthesis using a human-like artificial skin.
Collapse
Affiliation(s)
- Zied Tayeb
- Institute for Cognitive Systems, Technical University of Munich, Arcisstraße 21, 80333, Munich, Germany.
| | - Andrei Dragomir
- The N.1 Institute for Health, National University of Singapore, 28 Medical Dr. 05-COR, Singapore, 117456, Singapore
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Houston, TX, 77204, USA
| | - Jin Ho Lee
- Institute for Cognitive Systems, Technical University of Munich, Arcisstraße 21, 80333, Munich, Germany
| | - Nida Itrat Abbasi
- The N.1 Institute for Health, National University of Singapore, 28 Medical Dr. 05-COR, Singapore, 117456, Singapore
| | - Emmanuel Dean
- Institute for Cognitive Systems, Technical University of Munich, Arcisstraße 21, 80333, Munich, Germany
- Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Aishwarya Bandla
- The N.1 Institute for Health, National University of Singapore, 28 Medical Dr. 05-COR, Singapore, 117456, Singapore
| | - Rohit Bose
- Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA, 15261, USA
| | - Raghav Sundar
- The N.1 Institute for Health, National University of Singapore, 28 Medical Dr. 05-COR, Singapore, 117456, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, National University Hospital, 5 Lower Kent Ridge Rd, Singapore, 119074, Singapore
| | - Anastasios Bezerianos
- The N.1 Institute for Health, National University of Singapore, 28 Medical Dr. 05-COR, Singapore, 117456, Singapore
- Hellenic Institute of Transport (HIT), Centre for Research and Technology (CERTH), Thessaloniki, Greece
| | - Nitish V Thakor
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, 720 Rutland Ave, Baltimore, MD, 21205, USA
- Department of Biomedical Engineering, National University of Singapore, Engineering Drive 3, #04-08, Singapore, 117583, Singapore
| | - Gordon Cheng
- Institute for Cognitive Systems, Technical University of Munich, Arcisstraße 21, 80333, Munich, Germany
| |
Collapse
|