1
|
Black KJ, Kim S, Schlaggar BL, Greene DJ. The New Tics study: A Novel Approach to Pathophysiology and Cause of Tic Disorders. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2020; 5:e200012. [PMID: 32587895 PMCID: PMC7316401 DOI: 10.20900/jpbs.20200012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report on the ongoing project "The New Tics Study: A Novel Approach to Pathophysiology and Cause of Tic Disorders," describing the work completed to date, ongoing studies and long-term goals. The overall goals of this research are to study the pathophysiology of Provisional Tic Disorder, and to study tic remission (or improvement) in a prospective fashion. Preliminary data collection for the project began almost 10 years ago. The current study is nearing completion of its third year, and has already reported several novel and important results. First, surprisingly, at least 90% of children who had experienced tics for only a mean of 3 months still had tics at the 12-month anniversary of their first tic, though in some cases tics were seen only with remote video observation of the child sitting alone. Thus almost all of them now had a DSM-5 diagnosis of Tourette's Disorder or Persistent (Chronic) Tic Disorder. Baseline clinical features that predicted 12-month outcome included tic severity, subsyndromal autism spectrum symptoms, an anxiety disorder, and a history of 3 or more phonic tics. Second, we found that poorer tic suppression ability when immediately rewarded for suppression predicted greater tic severity at follow-up. Third, striatal volumes did not predict outcome as hypothesized, but a larger hippocampus at baseline predicted worse severity at follow-up. Enrollment and data collection continue, including functional connectivity MRI (fcMRI) imaging, and additional analyses are planned once the full sample is enrolled.
Collapse
Affiliation(s)
- Kevin J. Black
- Departments of Psychiatry, Neurology, Radiology and Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Soyoung Kim
- Departments of Psychiatry and Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Bradley L. Schlaggar
- Kennedy Krieger Institute, Baltimore, MD 21205; and Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Deanna J. Greene
- Departments of Psychiatry and Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
2
|
Hawkins PCT, Wood TC, Vernon AC, Bertolino A, Sambataro F, Dukart J, Merlo-Pich E, Risterucci C, Silber-Baumann H, Walsh E, Mazibuko N, Zelaya FO, Mehta MA. An investigation of regional cerebral blood flow and tissue structure changes after acute administration of antipsychotics in healthy male volunteers. Hum Brain Mapp 2017; 39:319-331. [PMID: 29058358 DOI: 10.1002/hbm.23844] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/13/2017] [Accepted: 10/02/2017] [Indexed: 01/05/2023] Open
Abstract
Chronic administration of antipsychotic drugs has been linked to structural brain changes observed in patients with schizophrenia. Recent MRI studies have shown rapid changes in regional brain volume following just a single dose of these drugs. However, it is not clear if these changes represent real volume changes or are artefacts ("apparent" volume changes) due to drug-induced physiological changes, such as increased cerebral blood flow (CBF). To address this, we examined the effects of a single, clinical dose of three commonly prescribed antipsychotics on quantitative measures of T1 and regional blood flow of the healthy human brain. Males (n = 42) were randomly assigned to one of two parallel groups in a double-blind, placebo-controlled, randomized, three-period cross-over study design. One group received a single oral dose of either 0.5 or 2 mg of risperidone or placebo during each visit. The other received olanzapine (7.5 mg), haloperidol (3 mg), or placebo. MR measures of quantitative T1, CBF, and T1-weighted images were acquired at the estimated peak plasma concentration of the drug. All three drugs caused localized increases in striatal blood flow, although drug and region specific effects were also apparent. In contrast, all assessments of T1 and brain volume remained stable across sessions, even in those areas experiencing large changes in CBF. This illustrates that a single clinically relevant oral dose of an antipsychotic has no detectable acute effect on T1 in healthy volunteers. We further provide a methodology for applying quantitative imaging methods to assess the acute effects of other compounds on structural MRI metrics. Hum Brain Mapp 39:319-331, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peter C T Hawkins
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Tobias C Wood
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari BA, Italy
| | - Fabio Sambataro
- Department of Experimental and Clinical Medical Sciences, University of Udine, Udine, Italy
| | - Juergen Dukart
- Translational Medicine Neuroscience and Biomarkers, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Emilio Merlo-Pich
- CNS Therapeutic Area Unit, Takeda Development Centre Europe, London, United Kingdom
| | - Celine Risterucci
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Hanna Silber-Baumann
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Eamonn Walsh
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Ndabezinhle Mazibuko
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Fernando O Zelaya
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Mitul A Mehta
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
3
|
Syrimi ZJ, Vojtisek L, Eliasova I, Viskova J, Svatkova A, Vanicek J, Rektorova I. Arterial spin labelling detects posterior cortical hypoperfusion in non-demented patients with Parkinson's disease. J Neural Transm (Vienna) 2017; 124:551-557. [PMID: 28271290 DOI: 10.1007/s00702-017-1703-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/27/2017] [Indexed: 01/04/2023]
Abstract
While previous studies suggested that perfusion abnormalities in Parkinson's disease (PD) are driven by dementia, our study aimed to identify perfusion underpinning of cognitive alteration in non-demented PD patients. Cerebral blood flow was measured using arterial spin labelling (ASL) in 28 PD patients (age 65 years ± 9.9 SD) and 16 age-matched healthy controls (HC) (age 65 years ± 7.8 SD), who also underwent neurological and cognitive testing. The 3D pseudocontinuous ASL and T2-weighted scans from 22 PD patients and 16 HC were analysed in a voxel-wise manner using SPM8 software. Associations between the ASL values in volumes of interest (VOIs) and behavioural and cognitive measures were assessed by Spearman correlation analysis. Posterior cortical hypoperfusion was found in PD patients compared to HC in the left supramarginal gyrus/superior temporal gyrus (VOI1) and left posterior cingulate/precuneus (VOI2). Positive correlation was revealed between perfusion in the VOI2 and Addenbrooke's Cognitive Examination Revised (ACE-R) scores after filtering out the effect of age, levodopa equivalent dose (LED), and total intracranial volume (TIV) (R = 0.51, p = 0.04). Conversely, negative correlation between VOI1 and ACE-R was detected (R = -0.62, p = 0.01) after regressing out the effects of motor impairment, age, LED, and TIV. In non-demented subjects with PD, blood flow abnormalities in precuneus/posterior cingulate were linked to the level of motor impairment and global cognitive performance. Oppositely, perfusion abnormalities in supramarginal gyrus might serve as a compensatory mechanism for brain degeneration and decreased cognitive performance.
Collapse
Affiliation(s)
| | - Lubomir Vojtisek
- Multimodal and Functional Neuroimaging Research Group, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ilona Eliasova
- Applied Neuroscience Research Group, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,First Department of Neurology, Medical Faculty, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic
| | - Jana Viskova
- Applied Neuroscience Research Group, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Medical Imaging, Medical Faculty, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic
| | - Alena Svatkova
- Multimodal and Functional Neuroimaging Research Group, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Paediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Jiri Vanicek
- Department of Medical Imaging, Medical Faculty, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic
| | - Irena Rektorova
- Applied Neuroscience Research Group, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic. .,First Department of Neurology, Medical Faculty, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
4
|
Pollak TA, De Simoni S, Barimani B, Zelaya FO, Stone JM, Mehta MA. Phenomenologically distinct psychotomimetic effects of ketamine are associated with cerebral blood flow changes in functionally relevant cerebral foci: a continuous arterial spin labelling study. Psychopharmacology (Berl) 2015; 232:4515-24. [PMID: 26438425 DOI: 10.1007/s00213-015-4078-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/07/2015] [Indexed: 12/30/2022]
Abstract
RATIONALE The N-methyl-D-aspartate (NMDA) receptor antagonist ketamine provides a pragmatic approach to address the link between glutamate-mediated changes in brain function and psychosis-like experiences. Most studies using PET or BOLD fMRI have assessed these symptoms broadly, which may limit inference about specific mechanisms. OBJECTIVES The objective of this study is to identify the cerebral blood flow (CBF) correlates of ketamine-induced psychopathology, focusing on individual psychotomimetic symptom dimensions, which may have separable neurobiological substrates. METHODS We measured validated psychotomimetic symptom factors following intravenous ketamine administration in 23 healthy male volunteers (10 given a lower dose and 13 a higher dose) and correlated ketamine-induced changes in symptoms with regional changes in CBF, measured non-invasively using arterial spin labelling (ASL). RESULTS The main effect of ketamine paralleled previous studies, with increases in CBF in anterior and subgenual cingulate cortex and decreases in superior and medial temporal cortex. Subjective effects were greater in the high-dose group. For this group, ketamine-induced anhedonia inversely related to orbitofrontal cortex CBF changes and cognitive disorganisation was positively correlated with CBF changes in posterior thalamus and the left inferior and middle temporal gyrus. Perceptual distortion was correlated with different regional CBF changes in the low- and high-dose groups. CONCLUSIONS Here, we provide evidence for the sensitivity of ASL to the effects of ketamine and the strength of subjective experience, suggesting plausible neural mechanisms for ketamine-induced anhedonia and cognitive disorganisation.
Collapse
Affiliation(s)
- T A Pollak
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, De Crespigny Park, Denmark Hill, London, SE5 8AF, UK.
| | - S De Simoni
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Medicine, Imperial College London, London, UK
| | - B Barimani
- Faculty of Medicine, Imperial College London, London, UK
| | - F O Zelaya
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - J M Stone
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - M A Mehta
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
5
|
Stewart SB, Koller JM, Campbell MC, Black KJ. Arterial spin labeling versus BOLD in direct challenge and drug-task interaction pharmacological fMRI. PeerJ 2014; 2:e687. [PMID: 25538867 PMCID: PMC4266850 DOI: 10.7717/peerj.687] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/16/2014] [Indexed: 11/30/2022] Open
Abstract
A carefully controlled study allowed us to compare the sensitivity of ASL (arterial spin labeling) and BOLD (blood oxygen level dependent) fMRI for detecting the effects of the adenosine A2a antagonist tozadenant in Parkinson disease. The study compared the effect of drug directly or the interaction of the drug with a cognitive task. Only ASL detected the direct effect of tozadenant. BOLD was more sensitive to the cognitive task, which (unlike most drugs) allows on–off comparisons over short periods of time. Neither ASL nor BOLD could detect a cognitive-pharmacological interaction. These results are consistent with the known relative advantages of each fMRI method, and suggest that for drug development, directly imaging pharmacodynamic effects with ASL may have advantages over cognitive-pharmacological interaction BOLD, which has hitherto been the more common approach to pharmacological fMRI.
Collapse
Affiliation(s)
- Stephanie B Stewart
- Department of Psychiatry, Washington University School of Medicine , St Louis, MO , USA ; Department of Neurology, Washington University School of Medicine , St Louis, MO , USA
| | - Jonathan M Koller
- Department of Psychiatry, Washington University School of Medicine , St Louis, MO , USA
| | - Meghan C Campbell
- Department of Neurology, Washington University School of Medicine , St Louis, MO , USA ; Department of Radiology, Washington University School of Medicine , St Louis, MO , USA
| | - Kevin J Black
- Department of Psychiatry, Washington University School of Medicine , St Louis, MO , USA ; Department of Neurology, Washington University School of Medicine , St Louis, MO , USA ; Department of Radiology, Washington University School of Medicine , St Louis, MO , USA ; Department of Anatomy and Neurobiology, Washington University School of Medicine , St Louis, MO , USA ; Division of Biology and Biomedical Sciences, Washington University School of Medicine , St Louis, MO , USA
| |
Collapse
|