1
|
Li B, Liu C, Bai J, Huang Y, Su R, Wei Y, Ma B. Strategy to mitigate substrate inhibition in wastewater treatment systems. Nat Commun 2024; 15:7920. [PMID: 39256375 PMCID: PMC11387818 DOI: 10.1038/s41467-024-52364-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
Global urbanization requires more stable and sustainable wastewater treatment to reduce the burden on the water environment. To address the problem of substrate inhibition of microorganisms during wastewater treatment, which leads to unstable wastewater discharge, this study proposes an approach to enhance the tolerance of bacterial community by artificially setting up a non-lethal high substrate environment. And the feasibility of this approach was explored by taking the inhibition of anammox process by nitrite as an example. It was shown that the non-lethal high substrate environment could enhance the nitrite tolerance of anammox bacterial community, as the specific anammox activity increasing up to 24.71 times at high nitrite concentrations. Moreover, the system composed of anammox bacterial community with high nitrite tolerance also showed greater resistance (two-fold) in response to nitrite shock. The antifragility of the system was enhanced without affecting the operation of the main reactor, and the non-lethal high nitrite environment changed the dominant anammox genera to Candidatus Jettenia. This approach to enhance tolerance of bacterial community in a non-lethal high substrate environment not only allows the anammox system to operate stably, but also promises to be a potential strategy for achieving stable biological wastewater treatment processes to comply with standards.
Collapse
Affiliation(s)
- Beiying Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Conghe Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Jingjing Bai
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Yikun Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Run Su
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Yan Wei
- State Key Laboratory of Marine Resources Utilization in the South China Sea, Hainan University, Haikou, 570228, China
| | - Bin Ma
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China.
| |
Collapse
|
2
|
Guerra A, Azevedo A, Amorim F, Soares J, Neuparth T, Santos MM, Martins I, Colaço A. Using a food web model to predict the effects of Hazardous and Noxious Substances (HNS) accidental spills on deep-sea hydrothermal vents from the Mid-Atlantic Ridge (MAR) region. MARINE POLLUTION BULLETIN 2024; 199:115974. [PMID: 38176164 DOI: 10.1016/j.marpolbul.2023.115974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Deep-sea hydrothermal vents host unique ecosystems but face risks of incidents with Hazardous and Noxious Substances (HNS) along busy shipping lanes such as the transatlantic route. We developed an Ecopath with Ecosim (EwE) model of the Menez Gwen (MG) vent field (MG-EwE) (Mid-Atlantic Ridge) to simulate ecosystem effects of potential accidental spills of four different HNS, using a semi-Lagrangian Dispersion Model (sLDM) coupled with the Regional Ocean Modelling System (ROMS) calibrated for the study area. Food web modelling revealed a simplified trophic structure with low energy efficiency. The MG ecosystem was vulnerable to disruptions caused by all tested HNS, yet it revealed some long-term resilience. Understanding these impacts is vital for enhancing Spill Prevention, Control, and Countermeasure plans (SPCC) in remote marine areas and developing tools to assess stressors effects on these invaluable habitats.
Collapse
Affiliation(s)
- A Guerra
- IMAR Institute of Marine Research, University of the Azores, Rua Prof Frederico Machado, 9901-862 Horta, Portugal; CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal.
| | - A Azevedo
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal
| | - F Amorim
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal
| | - J Soares
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal; AIR Centre, TERINOV-Parque de Ciência e Tecnologia da Ilha Terceira, Canada de Belém S/N, Terra Chã, 9700-702 Angra do Heroísmo, Portugal
| | - T Neuparth
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal
| | - M M Santos
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal; FCUP, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - I Martins
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal.
| | - A Colaço
- Institute of Marine Sciences, Okeanos, University of the Azores, Rua Prof Frederico Machado, 9901-862 Horta, Portugal
| |
Collapse
|
3
|
Axenie C, López-Corona O, Makridis MA, Akbarzadeh M, Saveriano M, Stancu A, West J. Antifragility as a complex system's response to perturbations, volatility, and time. ARXIV 2023:arXiv:2312.13991v1. [PMID: 38196741 PMCID: PMC10775345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Antifragility characterizes the benefit of a dynamical system derived from the variability in environmental perturbations. Antifragility carries a precise definition that quantifies a system's output response to input variability. Systems may respond poorly to perturbations (fragile) or benefit from perturbations (antifragile). In this manuscript, we review a range of applications of antifragility theory in technical systems (e.g., traffic control, robotics) and natural systems (e.g., cancer therapy, antibiotics). While there is a broad overlap in methods used to quantify and apply antifragility across disciplines, there is a need for precisely defining the scales at which antifragility operates. Thus, we provide a brief general introduction to the properties of antifragility in applied systems and review relevant literature for both natural and technical systems' antifragility. We frame this review within three scales common to technical systems: intrinsic (input-output nonlinearity), inherited (extrinsic environmental signals), and interventional (feedback control), with associated counterparts in biological systems: ecological (homogeneous systems), evolutionary (heterogeneous systems), and interventional (control). We use the common noun in designing systems that exhibit antifragile behavior across scales and guide the reader along the spectrum of fragility-adaptiveness-resilience-robustness-antifragility, the principles behind it, and its practical implications.
Collapse
Affiliation(s)
- Cristian Axenie
- Department of Computer Science and Center for Artificial Intelligence, Nuremberg Institute of Technology Georg Simon Ohm, Nuremberg, Germany
| | - Oliver López-Corona
- Investigadores por México (IxM) at Instituto de Investigaciones en Matemáticas Aplicadas y Sistemas (IIMAS), Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, CDMX, México
| | | | - Meisam Akbarzadeh
- Department of Transportation Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Matteo Saveriano
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Alexandru Stancu
- Department of Electrical and Electronic Engineering, The University of Manchester, Manchester, UK
| | - Jeffrey West
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| |
Collapse
|
4
|
G-Santoyo I, Ramírez-Carrillo E, Sanchez JD, López-Corona O. Potential long consequences from internal and external ecology: loss of gut microbiota antifragility in children from an industrialized population compared with an indigenous rural lifestyle. J Dev Orig Health Dis 2023; 14:469-480. [PMID: 37222148 DOI: 10.1017/s2040174423000144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Human health is strongly mediated by the gut microbiota ecosystem, which, in turn, depends not only on its state but also on its dynamics and how it responds to perturbations. Healthy microbiota ecosystems tend to be in criticality and antifragile dynamics corresponding to a maximum complexity configuration, which may be assessed with information and network theory analysis. Under this complex system perspective, we used a new analysis of published data to show that a children's population with an industrialized urban lifestyle from Mexico City exhibits informational and network characteristics similar to parasitized children from a rural indigenous population in the remote mountainous region of Guerrero, México. We propose then, that in this critical age for gut microbiota maturation, the industrialized urban lifestyle could be thought of as an external perturbation to the gut microbiota ecosystem, and we show that it produces a similar loss in criticality/antifragility as the one observed by internal perturbation due to parasitosis by the helminth A. lumbricoides. Finally, several general complexity-based guidelines to prevent or restore gut ecosystem antifragility are discussed.
Collapse
Affiliation(s)
- Isaac G-Santoyo
- Neuroecology Lab, Department of Psychology, UNAM, México, 04510
- Unidad de Investigación en Psicobiología y Neurociencias, Department of Psychology, UNAM, México, 04510
| | | | | | - Oliver López-Corona
- Investigadores por México (IxM)-CONACyT, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS), UNAM, México, 04510
| |
Collapse
|
5
|
Ramírez-Carrillo E, G-Santoyo I, López-Corona O, Rojas-Ramos OA, Falcón LI, Gaona O, de la Fuente Rodríguez RM, Hernández Castillo A, Cerqueda-García D, Sánchez-Quinto A, Hernández-Muciño D, Nieto J. Similar connectivity of gut microbiota and brain activity networks is mediated by animal protein and lipid intake in children from a Mexican indigenous population. PLoS One 2023; 18:e0281385. [PMID: 37384745 PMCID: PMC10310019 DOI: 10.1371/journal.pone.0281385] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/22/2023] [Indexed: 07/01/2023] Open
Abstract
The gut microbiota-brain axis is a complex communication network essential for host health. Any long-term disruption can affect higher cognitive functions, or it may even result in several chronic neurological diseases. The type and diversity of nutrients an individual consumes are essential for developing the gut microbiota (GM) and the brain. Hence, dietary patterns might influence networks communication of this axis, especially at the age that both systems go through maturation processes. By implementing Mutual Information and Minimum Spanning Tree (MST); we proposed a novel combination of Machine Learning and Network Theory techniques to study the effect of animal protein and lipid intake on the connectivity of GM and brain cortex activity (BCA) networks in children from 5-to 10 years old from an indigenous community in the southwest of México. Socio-ecological conditions in this nonwestern lifestyle community are very homogeneous among its inhabitants but it shows high individual heterogeneity in the consumption of animal products. Results suggest that MST, the critical backbone of information flow, diminishes under low protein and lipid intake. So, under these nonwestern regimens, deficient animal protein and lipid consumption diets may significantly affect the GM-BCA connectivity in crucial development stages. Finally, MST offers us a metric that unifies biological systems of different nature to evaluate the change in their complexity in the face of environmental pressures or disturbances. Effect of Diet on gut microbiota and brain networks connectivity.
Collapse
Affiliation(s)
- Elvia Ramírez-Carrillo
- NeuroEcology Lab, Department of Psychology, UNAM, CDMX, México
- Investigadoras por México, Posdoc-CONACyT, Facultad de Psicología, Universidad Nacional Autónoma de México (UNAM), CDMX, México
| | - Isaac G-Santoyo
- NeuroEcology Lab, Department of Psychology, UNAM, CDMX, México
- Unidad de Investigación en Psicobiología y Neurociencias, Department of Psychology, Universidad Nacional Autónoma de México (UNAM), CDMX, México
| | - Oliver López-Corona
- Cátedras CONACyT, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS), Universidad Nacional Autónoma de México (UNAM), CDMX, México
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, CDMX, México
| | - Olga A. Rojas-Ramos
- NeuroEcology Lab, Department of Psychology, UNAM, CDMX, México
- Coordinación de Psciobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México (UNAM), CDMX, México
| | - Luisa I. Falcón
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, Parque Científico y Tecnológico de Yucatán, Mérida, México
| | - Osiris Gaona
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, Parque Científico y Tecnológico de Yucatán, Mérida, México
| | | | | | - Daniel Cerqueda-García
- Consorcio de Investigación del Golfo de México (CIGoM), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Departamento de Recursos del Mar, Mérida, Yucatán, México
| | - Andrés Sánchez-Quinto
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, Parque Científico y Tecnológico de Yucatán, Mérida, México
| | - Diego Hernández-Muciño
- Laboratorio de Agroecología Instituto de Investigaciones en Ecosistema y Sustentabilidad, UNAM, Morelia, México
| | - Javier Nieto
- Laboratorio de Aprendizaje y Adaptación, Facultad de Psicología, Universidad Nacional Autónoma de México (UNAM), CDMX, México
| |
Collapse
|
6
|
González C. Evolution of the concept of ecological integrity and its study through networks. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2022.110224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
7
|
Alatorre D, Gershenson C, Mateos JL. Stocks and cryptocurrencies: Antifragile or robust? A novel antifragility measure of the stock and cryptocurrency markets. PLoS One 2023; 18:e0280487. [PMID: 36928831 PMCID: PMC10019607 DOI: 10.1371/journal.pone.0280487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 12/29/2022] [Indexed: 03/18/2023] Open
Abstract
In contrast with robust systems that resist noise or fragile systems that break with noise, antifragility is defined as a property of complex systems that benefit from noise or disorder. Here we define and test a simple measure of antifragility for complex dynamical systems. In this work we use our antifragility measure to analyze real data from return prices in the stock and cryptocurrency markets. Our definition of antifragility is the product of the return price and a perturbation. We explore different types of perturbations that typically arise from within the system. Our results suggest that for both the stock market and the cryptocurrency market, the tendency among the 'top performers' is to be robust rather than antifragile. It would be important to explore other possible definitions of antifragility to understand its role in financial markets and in complex dynamical systems in general.
Collapse
Affiliation(s)
- Darío Alatorre
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, México
- Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad de México, México
- * E-mail:
| | - Carlos Gershenson
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, México
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad de México, México
- Santa Fe Institute, Santa Fe, NM, United States of America
| | - José L. Mateos
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, México
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
8
|
Pascariu GC, Banica A, Nijkamp P. A Meta-Overview and Bibliometric Analysis of Resilience in Spatial Planning - the Relevance of Place-Based Approaches. APPLIED SPATIAL ANALYSIS AND POLICY 2022; 16:1-31. [PMID: 35495415 PMCID: PMC9033936 DOI: 10.1007/s12061-022-09449-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
This study offers a literature review and bibliometric analysis aiming to enhance our understanding of the actual contribution of resilience approaches to spatial and territorial development and planning studies. Using citation link-based clustering and statistical text-mining techniques (in terms of prevalence of topics, over time, extraction of relevant terms, keywords frequencies), our study maps scientific domains that include the spatial dimension of resilience thinking. It offers a systematic assessment of modern approaches by connecting profoundly theoretical views to more instrumental and policy-oriented approaches. Firstly, the theoretical background of spatial resilience used in numerous studies in various fields is analysed from the viewpoint of the type of embedded resilience (engineering, ecological, social-ecological, economic, social etc.). Secondly, we review and discuss the significance of three main and consistent research directions in terms of different scales and political/institutional contexts that matter from the viewpoint of spatial and territorial planning. Our findings show that spatial resilience debates are far from being settled, as according to many scientists, resilience measurements are often based on technical-reductionist frameworks that cannot comprehensively reflect the complex systems and issues they address. Our conclusions highlight the necessity of a harmonized framework and integrated perspective on resilience in sustainable territorial planning and development, in both theoretical and empirical contexts.
Collapse
Affiliation(s)
- Gabriela Carmen Pascariu
- Faculty of Economics and Business Administration, Alexandru Ioan Cuza University of Iaşi, Iaşi, Romania
- Centre for European Studies, Faculty of Law, Alexandru Ioan Cuza University of Iaşi, Iaşi, Romania
| | - Alexandru Banica
- Department of Geography, Faculty of Geography and Geology, Alexandru Ioan Cuza, University of Iaşi, Iaşi, Romania
- Geographic Research Center, Romanian Academy, Iași Branch, Iaşi, Romania
| | - Peter Nijkamp
- Centre for European Studies, Faculty of Law, Alexandru Ioan Cuza University of Iaşi, Iaşi, Romania
- Open University of the Netherlands (OU), Heerlen, The Netherlands
- Polytechnic University (UMP6), Ben Guerir, Morocco
| |
Collapse
|
9
|
Gershenson C. Intelligence as Information Processing: Brains, Swarms, and Computers. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.755981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is no agreed definition of intelligence, so it is problematic to simply ask whether brains, swarms, computers, or other systems are intelligent or not. To compare the potential intelligence exhibited by different cognitive systems, I use the common approach used by artificial intelligence and artificial life: Instead of studying the substrate of systems, let us focus on their organization. This organization can be measured with information. Thus, I apply an informationist epistemology to describe cognitive systems, including brains and computers. This allows me to frame the usefulness and limitations of the brain-computer analogy in different contexts. I also use this perspective to discuss the evolution and ecology of intelligence.
Collapse
|
10
|
High-integrity human intervention in ecosystems: Tracking self-organization modes. PLoS Comput Biol 2021; 17:e1009427. [PMID: 34587157 PMCID: PMC8504872 DOI: 10.1371/journal.pcbi.1009427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/11/2021] [Accepted: 09/06/2021] [Indexed: 11/19/2022] Open
Abstract
Humans play major roles in shaping and transforming the ecology of Earth. Unlike natural drivers of ecosystem change, which are erratic and unpredictable, human intervention in ecosystems generally involves planning and management, but often results in detrimental outcomes. Using model studies and aerial-image analysis, we argue that the design of a successful human intervention form calls for the identification of the self-organization modes that drive ecosystem change, and for studying their dynamics. We demonstrate this approach with two examples: grazing management in drought-prone ecosystems, and rehabilitation of degraded vegetation by water harvesting. We show that grazing can increase the resilience to droughts, rather than imposing an additional stress, if managed in a spatially non-uniform manner, and that fragmental restoration along contour bunds is more resilient than the common practice of continuous restoration in vegetation stripes. We conclude by discussing the need for additional studies of self-organization modes and their dynamics. Human intervention in ecosystems is motivated by various functional needs, such as provisioning ecosystem services, but often has unexpected detrimental outcomes. A major question in ecology is how to manage human intervention so as to achieve its goal without impairing ecosystem function. The main idea pursued here is the need to identify the inherent response ways of ecosystems to disturbances, and use them as road maps for conducting interventions. This approach is demonstrated mathematically using two contexts, grazing management and vegetation restoration, and compared to remote sensing data for the latter. Among the surprising insights obtained is the beneficial effect of grazing, in terms of resilience to droughts, that can be achieved by managing it non-uniformly in space.
Collapse
|
11
|
Breaking the Black-Box of Regional Resilience: A Taxonomy Using a Dynamic Cumulative Shift-Share Occupational Approach. SUSTAINABILITY 2020. [DOI: 10.3390/su12219070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In the European literature on the regional and local development, the concept of resilience has progressively gained momentum, eventually overcoming that of competitiveness and posing a critical challenge for the future of territorial studies and the territorialisation of the policy discourse. In the current economic turmoil, the success of an urban and regional economy relies more and more on its capacity to react to sudden shocks in a positive and evolutionary perspective, i.e., in its resilience. Nevertheless, as a recent analysis of the employment dynamics of Italian metro-regions in the period before and after 2008 has demonstrated that the existing taxonomies may be distant from reality and hardly communicable. The paper proposes a taxonomy of regional resilience based on the consideration of the region’s capacity of both improving its employment rate during the pre-crisis period and overcoming the concurrent performance of the nation. Via a shift-share analysis of the employment in Italian metro-regions, the paper investigates the contribution of the sectoral structure of the local labour market in terms of economic resilience. The result is twofold: a geography of the dynamism of the territorial systems in Italy that diverges from some “classic” interpretative frameworks; a novel taxonomic approach to regional resilience.
Collapse
|