1
|
Cao ML, Nie Y, Yi XL, Xiong J, Wang W, Deng YP, Fu YT, Liu GH, Shao R. Drastic variation in mitochondrial genome organization between two congeneric species of bird lice (Philopteridae: Ibidoecus). BMC Genomics 2024; 25:1084. [PMID: 39543474 PMCID: PMC11566740 DOI: 10.1186/s12864-024-11005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
The over 4,100 species of bird lice are classified into 214 genera in the parvorders Amblycera and Ischnocera. Congeneric species of bird lice usually share much similarity in morphology and in mitochondrial (mt) genome organization. Two recent studies, however, reported substantial intra-genus variation in mt genome organization in bird lice. Both the ancestral single-chromosome mt genome and a fragmented mt genome with two or three minichromosomes were observed in the genera Austromenopon and Laemobothrion. To better understand intra-genus variation in mt genome organization, we sequenced the complete mt genome of the white spoonbill louse Ibidoecus plataleae and compared it with that of the glossy ibis feather louse Ibidoecus bisignatus reported previously. We found that I. plataleae had a fragmented mt genome with 12 minichromosomes; each minichromosome was 2,798 to 3,628 bp in size and had 2 to 6 genes. This is in stark contrast to the mt genome of I. bisignatus, which has all genes on a single chromosome, 14,909 bp in size. This is the most drastic intra-genus variation in mt genome organization observed to date in animals, indicating an unprecedented rapid process of mt genome fragmentation in the genus Ibidoecus. The divergence time between I. plataleae and I. bisignatus is currently unknown but is estimated to be less than 23 million years. Either many minichromosal split events occurred after I. plataleae diverged from I. bisignatus, or one minichromosome splits into multiple minichromosomes in a single event. Sequencing and comparing more Ibidoecusi species will help understand the unusual mt genome fragmentation in this genus.
Collapse
Affiliation(s)
- Mei-Ling Cao
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Yu Nie
- College of Biotechnology, Hunan University of Environment and Biology, Hengyang, 421001, China
| | - Xi-Long Yi
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jun Xiong
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Wang
- Centre for Bioinnovation and School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, 4556, Australia
| | - Yuan-Ping Deng
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Yi-Tian Fu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, 410013, China
| | - Guo-Hua Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| | - Renfu Shao
- Centre for Bioinnovation and School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, 4556, Australia.
| |
Collapse
|
2
|
Najer T, Doña J, Buček A, Sweet AD, Sychra O, Johnson KP. Mitochondrial genome fragmentation is correlated with increased rates of molecular evolution. PLoS Genet 2024; 20:e1011266. [PMID: 38701107 PMCID: PMC11095710 DOI: 10.1371/journal.pgen.1011266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/15/2024] [Accepted: 04/20/2024] [Indexed: 05/05/2024] Open
Abstract
While mitochondrial genome content and organization is quite diverse across all Eukaryotes, most bilaterian animal mitochondrial genomes (mitogenomes) exhibit highly conserved gene content and organisation, with genes typically encoded on a single circular chromosome. However, many species of parasitic lice (Insecta: Phthiraptera) are among the notable exceptions, having mitogenomes fragmented into multiple circular chromosomes. To better understand the process of mitogenome fragmentation, we conducted a large-scale genomic study of a major group of lice, Amblycera, with extensive taxon sampling. Analyses of the evolution of mitogenome structure across a phylogenomic tree of 90 samples from 53 genera revealed evidence for multiple independent origins of mitogenome fragmentation, some inferred to have occurred less than five million years ago. We leveraged these many independent origins of fragmentation to compare the rates of DNA substitution and gene rearrangement, specifically contrasting branches with fragmented and non-fragmented mitogenomes. We found that lineages with fragmented mitochondrial genomes had significantly higher rates of mitochondrial sequence evolution. In addition, lineages with fragmented mitochondrial genomes were more likely to have mitogenome gene rearrangements than those with single-chromosome mitochondrial genomes. By combining phylogenomics and mitochondrial genomics we provide a detailed portrait of mitogenome evolution across this group of insects with a remarkably unstable mitogenome structure, identifying processes of molecular evolution that are correlated with mitogenome fragmentation.
Collapse
Affiliation(s)
- Tomáš Najer
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, Illinois, United States of America
| | - Jorge Doña
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, Illinois, United States of America
- Departamento de Biología Animal, Universidad de Granada, Granada, Spain
| | - Aleš Buček
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Okinawa Institute of Science & Technology Graduate University, Onna-son, Okinawa, Japan
| | - Andrew D. Sweet
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, United States of America
| | - Oldřich Sychra
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Kevin P. Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, Illinois, United States of America
| |
Collapse
|
3
|
Dong Y, Jelocnik M, Gillett A, Valenza L, Conroy G, Potvin D, Shao R. Mitochondrial Genome Fragmentation Occurred Multiple Times Independently in Bird Lice of the Families Menoponidae and Laemobothriidae. Animals (Basel) 2023; 13:2046. [PMID: 37370555 DOI: 10.3390/ani13122046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Mitochondrial (mt) genome fragmentation has been discovered in all five parvorders of parasitic lice (Phthiraptera). To explore whether minichromosomal characters derived from mt genome fragmentation are informative for phylogenetic studies, we sequenced the mt genomes of 17 species of bird lice in Menoponidae and Laemobothriidae (Amblycera). Four species of Menoponidae (Actornithophilus sp. 1 ex [pied oystercatcher], Act. sp. 2 ex [masked lapwing], Austromenopon sp. 2 ex [sooty tern and crested tern], Myr. sp. 1 ex [satin bowerbird]) have fragmented mt genomes, whereas the other 13 species retain the single-chromosome mt genomes. The two Actornithophilus species have five and six mt minichromosomes, respectively. Aus. sp. 2 ex [sooty tern and crested tern] has two mt minichromosomes, in contrast to Aus. sp. 1 ex [sooty shearwater], which has a single mt chromosome. Myr. sp. 1 ex [satin bowerbird] has four mt minichromosomes. When mapped on the phylogeny of Menoponidae and Laemobothriidae, it is evident that mt genome fragmentation has occurred multiple times independently among Menoponidae and Laemobothriidae species. We found derived mt minichromosomal characters shared between Myrsidea species, between Actornithophilus species, and between and among different ischnoceran genera, respectively. We conclude that while mt genome fragmentation as a general feature does not unite all the parasitic lice that have this feature, each independent mt genome fragmentation event does produce minichromosomal characters that can be informative for phylogenetic studies of parasitic lice at different taxonomic levels.
Collapse
Affiliation(s)
- Yalun Dong
- Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD 4556, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD 4556, Australia
| | - Martina Jelocnik
- Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD 4556, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD 4556, Australia
| | - Amber Gillett
- Australia Zoo Wildlife Hospital, 1638 Steve Irwin Way, Beerwah, QLD 4519, Australia
| | - Ludovica Valenza
- Australia Zoo Wildlife Hospital, 1638 Steve Irwin Way, Beerwah, QLD 4519, Australia
| | - Gabriel Conroy
- Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD 4556, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD 4556, Australia
| | - Dominique Potvin
- School of Science, Technology and Engineering, University of the Sunshine Coast, 1 Moreton Parade, Petrie, QLD 4502, Australia
| | - Renfu Shao
- Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD 4556, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD 4556, Australia
| |
Collapse
|
4
|
Fu YT, Suleman, Yao C, Wang HM, Wang W, Liu GH. A Novel Mitochondrial Genome Fragmentation Pattern in the Buffalo Louse Haematopinus tuberculatus (Psocodea: Haematopinidae). Int J Mol Sci 2022; 23:13092. [PMID: 36361879 PMCID: PMC9658350 DOI: 10.3390/ijms232113092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/08/2022] [Accepted: 10/25/2022] [Indexed: 08/01/2023] Open
Abstract
Sucking lice are obligate ectoparasites of mammalian hosts, causing serious public health problems and economic losses worldwide. It is well known that sucking lice have fragmented mitochondrial (mt) genomes, but many remain undetermined. To better understand patterns of mt genome fragmentation in the sucking lice, we sequenced the mt genome of the buffalo louse Haematopinus tuberculatus using next-generation sequencing (NGS). The mt genome of H. tuberculatus has ten circular minichromosomes containing a total of 37 genes. Each minichromosome is 2.9-5.0 kb long and carries one to eight genes plus one large non-coding region. The number of mt minichromosomes of H. tuberculatus (ten) is different from those of congeneric species (horse louse H. asini, domestic pig louse H. suis and wild pig louse H. apri) and other sucking lice. Two events (gene translocation and merger of mt minichromosome) are observed in Haematopinus. Compared to other studies, our phylogeny generated from mt genome datasets showed a different topology, suggesting that inclusion of data other than mt genomes would be required to resolve phylogeny of sucking lice. To our knowledge, this is the first report of a ten mt minichromosomes genome in sucking lice, which opens a new outlook into unexplored mt genome fragmentation patterns in sucking lice.
Collapse
Affiliation(s)
- Yi-Tian Fu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Suleman
- Department of Zoology, University of Swabi, Swabi 23561, Pakistan
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis
| | - Hui-Mei Wang
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Wei Wang
- The Centre for Bioinnovation, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Guo-Hua Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
5
|
Johnson KP. Genomic Approaches to Uncovering the Coevolutionary History of Parasitic Lice. Life (Basel) 2022; 12:life12091442. [PMID: 36143478 PMCID: PMC9501036 DOI: 10.3390/life12091442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary New sequencing technologies have now made it possible to sequence entire genomes for a diversity of life on earth. Parasites comprise nearly half of all species. Lice are one important group of parasites of birds and mammals, including humans. Genome sequencing approaches have been applied to this group of parasites to uncover patterns of diversification. These patterns can be compared to the patterns of diversification in their hosts. Key findings from these studies have revealed that parasitic lice likely originated on birds and then switched to mammals multiple times. Within groups of birds and mammals, the evolutionary trees of lice match those for mammal hosts more than those for birds. Genomic approaches have also revealed that individual birds and mammals harbor distinct populations of lice. Thus, these new techniques allow for the study of patterns of diversification at a wide variety of scales. Abstract Next-generation sequencing technologies are revolutionizing the fields of genomics, phylogenetics, and population genetics. These new genomic approaches have been extensively applied to a major group of parasites, the lice (Insecta: Phthiraptera) of birds and mammals. Two louse genomes have been assembled and annotated to date, and these have opened up new resources for the study of louse biology. Whole genome sequencing has been used to assemble large phylogenomic datasets for lice, incorporating sequences of thousands of genes. These datasets have provided highly supported trees at all taxonomic levels, ranging from relationships among the major groups of lice to those among closely related species. Such approaches have also been applied at the population scale in lice, revealing patterns of population subdivision and inbreeding. Finally, whole genome sequence datasets can also be used for additional study beyond that of the louse nuclear genome, such as in the study of mitochondrial genome fragmentation or endosymbiont function.
Collapse
Affiliation(s)
- Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, 1816 South Oak Street, Champaign, IL 61820, USA
| |
Collapse
|
6
|
Nie Y, Fu YT, Wang W, Li R, Tang WQ, Liu GH. Comparative analyses of the fragmented mitochondrial genomes of wild pig louse Haematopinus apri from China and Japan. Int J Parasitol Parasites Wildl 2022; 18:25-29. [PMID: 35399589 PMCID: PMC8989706 DOI: 10.1016/j.ijppaw.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Nie
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yi-Tian Fu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Wei Wang
- The Centre for Bioinnovation, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Rong Li
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Wan-Qing Tang
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Guo-Hua Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Corresponding author.
| |
Collapse
|
7
|
Independent evolution of highly variable, fragmented mitogenomes of parasitic lice. Commun Biol 2022; 5:677. [PMID: 35804150 PMCID: PMC9270496 DOI: 10.1038/s42003-022-03625-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022] Open
Abstract
The mitochondrial genomes (mitogenomes) of bilaterian animals are highly conserved structures that usually consist of a single circular chromosome. However, several species of parasitic lice (Insecta: Phthiraptera) possess fragmented mitogenomes, where the mitochondrial genes are present on separate, circular chromosomes. Nevertheless, the extent, causes, and consequences of this structural variation remain poorly understood. Here, we combined new and existing data to better understand the evolution of mitogenome fragmentation in major groups of parasitic lice. We found strong evidence that fragmented mitogenomes evolved many times within parasitic lice and that the level of fragmentation is highly variable, including examples of heteroplasmic arrangements. We also found a significant association between mitochondrial fragmentation and signatures of relaxed selection. Mitochondrial fragmentation was also associated with changes to a lower AT%, possibly due to differences in mutation biases. Together, our results provide a significant advance in understanding the process of mitogenome fragmentation and provide an important perspective on mitochondrial evolution in eukaryotes.
Collapse
|
8
|
Gong S, Xu Y, Xu S, Liang Y, Tian L, Cai W, Li H, Song F. The Complete Mitochondrial Genome of the Chicken Body Louse, Menacanthus cornutus, and Evolutionary Patterns of Extensive Gene Rearrangements in the Mitochondrial Genomes of Amblycera (Psocodea: Phthiraptera). Genes (Basel) 2022; 13:genes13030522. [PMID: 35328076 PMCID: PMC8950984 DOI: 10.3390/genes13030522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 02/04/2023] Open
Abstract
Animal mitochondrial (mt) genomes are typically double-strand circular DNA molecules, but diverse structural variations have been widely found in multiple groups. In parasitic lice (Phthiraptera), the structure of mt genomes varies remarkably across all five suborders. In this study, we reported the complete mt genome of a chicken body louse, Menacanthus cornutus, which has a typical single circular mt chromosome and drastic mt gene rearrangements. This mt genome is 15,693 bp in length, consisting of 13 protein-coding genes, 23 tRNA genes, 2 rRNA genes, and a control region. A comparison with a typical insect mt genome suggested that two highly similar trnM are present in the mt genome of M. cornutus. Moreover, almost every single gene was rearranged, and over half of mt genes were inverted. Phylogenetic analyses inferred from the mt genome sequences supported the monophyly and position of Amblycera. Mapped over the phylogenetic relationships of Amblycera, we identified two inversion events for the conserved gene blocks in Boopidae and Menoponidae. The inverted ND4L-ND4 was likely a synapomorphic rearrangement in Menoponidae. Our study demonstrated the importance of sequencing mt genomes for additional taxa to uncover the mechanism underlying the structural evolution of the mt genome in parasitic lice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fan Song
- Correspondence: ; Tel.: +86-10-62734842
| |
Collapse
|
9
|
Feng S, Pozzi A, Stejskal V, Opit G, Yang Q, Shao R, Dowling DK, Li Z. Fragmentation in mitochondrial genomes in relation to elevated sequence divergence and extreme rearrangements. BMC Biol 2022; 20:7. [PMID: 34996453 PMCID: PMC8742463 DOI: 10.1186/s12915-021-01218-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background A single circular mitochondrial (mt) genome is a common feature across most metazoans. The mt-genome includes protein-coding genes involved in oxidative phosphorylation, as well as RNAs necessary for translation of mt-RNAs, whose order and number are highly conserved across animal clades, with few known exceptions of alternative mt-gene order or mt-genome architectures. One such exception consists of the fragmented mitochondrial genome, a type of genome architecture where mt-genes are split across two or more mt-chromosomes. However, the origins of mt-genome fragmentation and its effects on mt-genome evolution are unknown. Here, we investigate these origin and potential mechanisms underlying mt-genome fragmentation, focusing on a genus of booklice, Liposcelis, which exhibits elevated sequence divergence, frequent rearrangement of mt-gene order, and fragmentation of the mt genome, and compare them to other Metazoan clades. Results We found this genus Liposcelis exhibits very low conservation of mt-gene order across species, relative to other metazoans. Levels of gene order rearrangement were, however, unrelated to whether or not mt-genomes were fragmented or intact, suggesting mitochondrial genome fragmentation is not affecting mt-gene order directly. We further investigated possible mechanisms underpinning these patterns and revealed very high conservation of non-coding sequences at the edges of multiple recombination regions across populations of one particular Liposcelis species, supportive of a hypothesis that mt-fragmentation arises from recombination errors between mt-genome copies. We propose these errors may arise as a consequence of a heightened mutation rate in clades exhibiting mt-fragmentation. Consistent with this, we observed a striking pattern across three Metazoan phyla (Arthropoda, Nematoda, Cnidaria) characterised by members exhibiting high levels of mt-gene order rearrangement and cases of mt-fragmentation, whereby the mt-genomes of species more closely related to species with fragmented mt-genomes diverge more rapidly despite experiencing strong purifying selection. Conclusions We showed that contrary to expectations, mt-genome fragmentation is not correlated with the increase in mt-genome rearrangements. Furthermore, we present evidence that fragmentation of the mt-genome may be part of a general relaxation of a natural selection on the mt-genome, thus providing new insights into the origins of mt-genome fragmentation and evolution. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01218-7.
Collapse
Affiliation(s)
- Shiqian Feng
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China.,School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Andrea Pozzi
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Vaclav Stejskal
- Crop Research Institute, Drnovská 507, 161 06, Prague, Czech Republic.,Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, 165 00, Prague, Czech Republic
| | - George Opit
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, 74078, USA
| | - Qianqian Yang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Renfu Shao
- GeneCology Research Centre, Centre for Animal Health Innovation, School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4556, Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Zhihong Li
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
Dong WG, Dong Y, Guo XG, Shao R. Frequent tRNA gene translocation towards the boundaries with control regions contributes to the highly dynamic mitochondrial genome organization of the parasitic lice of mammals. BMC Genomics 2021; 22:598. [PMID: 34362306 PMCID: PMC8344215 DOI: 10.1186/s12864-021-07859-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022] Open
Abstract
Background The typical single-chromosome mitochondrial (mt) genome of animals has fragmented into multiple minichromosomes in the lineage Mitodivisia, which contains most of the parasitic lice of eutherian mammals. These parasitic lice differ from each other even among congeneric species in mt karyotype, i.e. the number of minichromosomes, and the gene content and gene order in each minichromosome, which is in stark contrast to the extremely conserved single-chromosome mt genomes across most animal lineages. How fragmented mt genomes evolved is still poorly understood. We use Polyplax sucking lice as a model to investigate how tRNA gene translocation shapes the dynamic mt karyotypes. Results We sequenced the full mt genome of the Asian grey shrew louse, Polyplax reclinata. We then inferred the ancestral mt karyotype for Polyplax lice and compared it with the mt karyotypes of the three Polyplax species sequenced to date. We found that tRNA genes were entirely responsible for mt karyotype variation among these three species of Polyplax lice. Furthermore, tRNA gene translocation observed in Polyplax lice was only between different types of minichromosomes and towards the boundaries with the control region. A similar pattern of tRNA gene translocation can also been seen in other sucking lice with fragmented mt genomes. Conclusions We conclude that inter-minichromosomal tRNA gene translocation orientated towards the boundaries with the control region is a major contributing factor to the highly dynamic mitochondrial genome organization in the parasitic lice of mammals. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07859-w.
Collapse
Affiliation(s)
- Wen-Ge Dong
- Institute of Pathogens and Vectors, Key Laboratory for Preventing and Controlling Plague in Yunnan Province, Dali University, 671000, Dali, China.
| | - Yalun Dong
- GeneCology Research Centre, University of the Sunshine Coast, Maroochydore, Queensland, Australia.,School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Xian-Guo Guo
- Institute of Pathogens and Vectors, Key Laboratory for Preventing and Controlling Plague in Yunnan Province, Dali University, 671000, Dali, China
| | - Renfu Shao
- GeneCology Research Centre, University of the Sunshine Coast, Maroochydore, Queensland, Australia. .,School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia.
| |
Collapse
|
11
|
Spradling TA, Place AC, Campbell AL, Demastes JW. Mitochondrial genome of Geomydoecus aurei, a pocket-gopher louse. PLoS One 2021; 16:e0254138. [PMID: 34314423 PMCID: PMC8315533 DOI: 10.1371/journal.pone.0254138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/18/2021] [Indexed: 11/28/2022] Open
Abstract
Parasitic lice demonstrate an unusual array of mitochondrial genome architectures and gene arrangements. We characterized the mitochondrial genome of Geomydoecus aurei, a chewing louse (Phthiraptera: Trichodectidae) found on pocket gophers (Rodentia: Geomyidae) using reads from both Illumina and Oxford Nanopore sequencing coupled with PCR, cloning, and Sanger sequencing to verify structure and arrangement for each chromosome. The genome consisted of 12 circular mitochondrial chromosomes ranging in size from 1,318 to 2,088 nucleotides (nt). Total genome size was 19,015 nt. All 37 genes typical of metazoans (2 rRNA genes, 22 tRNA genes, and 13 protein-coding genes) were present. An average of 26% of each chromosome was composed of non-gene sequences. Within the non-gene region of each chromosome, there was a 79-nt nucleotide sequence that was identical among chromosomes and a conserved sequence with secondary structure that was always followed by a poly-T region. We hypothesize that these regions may be important in the initiation of transcription and DNA replication, respectively. The G. aurei genome shares 8 derived gene clusters with other chewing lice of mammals, but in G. aurei, genes on several chromosomes are not contiguous.
Collapse
Affiliation(s)
- Theresa A. Spradling
- Department of Biology, University of Northern Iowa, Cedar Falls, Iowa, United States of America
| | - Alexandra C. Place
- Department of Biology, University of Northern Iowa, Cedar Falls, Iowa, United States of America
| | - Ashley L. Campbell
- Department of Biology, University of Northern Iowa, Cedar Falls, Iowa, United States of America
| | - James W. Demastes
- Department of Biology, University of Northern Iowa, Cedar Falls, Iowa, United States of America
| |
Collapse
|
12
|
Mitochondrial Genomic Landscape: A Portrait of the Mitochondrial Genome 40 Years after the First Complete Sequence. Life (Basel) 2021; 11:life11070663. [PMID: 34357035 PMCID: PMC8303319 DOI: 10.3390/life11070663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/11/2022] Open
Abstract
Notwithstanding the initial claims of general conservation, mitochondrial genomes are a largely heterogeneous set of organellar chromosomes which displays a bewildering diversity in terms of structure, architecture, gene content, and functionality. The mitochondrial genome is typically described as a single chromosome, yet many examples of multipartite genomes have been found (for example, among sponges and diplonemeans); the mitochondrial genome is typically depicted as circular, yet many linear genomes are known (for example, among jellyfish, alveolates, and apicomplexans); the chromosome is normally said to be “small”, yet there is a huge variation between the smallest and the largest known genomes (found, for example, in ctenophores and vascular plants, respectively); even the gene content is highly unconserved, ranging from the 13 oxidative phosphorylation-related enzymatic subunits encoded by animal mitochondria to the wider set of mitochondrial genes found in jakobids. In the present paper, we compile and describe a large database of 27,873 mitochondrial genomes currently available in GenBank, encompassing the whole eukaryotic domain. We discuss the major features of mitochondrial molecular diversity, with special reference to nucleotide composition and compositional biases; moreover, the database is made publicly available for future analyses on the MoZoo Lab GitHub page.
Collapse
|
13
|
Nie Y, Fu YT, Zhang Y, Deng YP, Wang W, Tu Y, Liu GH. Highly rearranged mitochondrial genome in Falcolipeurus lice (Phthiraptera: Philopteridae) from endangered eagles. Parasit Vectors 2021; 14:269. [PMID: 34016171 PMCID: PMC8139141 DOI: 10.1186/s13071-021-04776-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background Fragmented mitochondrial (mt) genomes and extensive mt gene rearrangements have been frequently reported from parasitic lice (Insecta: Phthiraptera). However, relatively little is known about the mt genomes from the family Philopteridae, the most species-rich family within the suborder Ischnocera. Methods Herein, we use next-generation sequencing to decode the mt genome of Falcolipeurus suturalis and compare it with the mt genome of F. quadripustulatus. Phylogenetic relationships within the family Philopteridae were inferred from the concatenated 13 protein-coding genes of the two Falcolipeurus lice and members of the family Philopteridae using Bayesian inference (BI) and maximum likelihood (ML) methods. Results The complete mt genome of F. suturalis is a circular, double-stranded DNA molecule 16,659bp in size that contains 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and three non-coding regions. The gene order of the F. suturalis mt genome is rearranged relative to that of F. quadripustulatus, and is radically different from both other louse species and the putative ancestral insect. Phylogenetic analyses revealed clear genetic distinctiveness between F. suturalis and F. quadripustulatus (Bayesian posterior probabilities=1.0 and bootstrapping frequencies=100), and that the genus Falcolipeurus is sister to the genus Ibidoecus (Bayesian posterior probabilities=1.0 and bootstrapping frequencies=100). Conclusions These datasets help to better understand gene rearrangements in lice and the phylogenetic position of Falcolipeurus and provide useful genetic markers for systematic studies of bird lice. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04776-5.
Collapse
Affiliation(s)
- Yu Nie
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yi-Tian Fu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yu Zhang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yuan-Ping Deng
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Wei Wang
- School of Science and Engineering, GeneCology Research Centre, Animal Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Ya Tu
- Beijing Wildlife Rescue and Rehabilitation Center, Beijing, 101300, China.
| | - Guo-Hua Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
14
|
Moreno-Carmona M, Cameron SL, Prada Quiroga CF. How are the mitochondrial genomes reorganized in Hexapoda? Differential evolution and the first report of convergences within Hexapoda. Gene 2021; 791:145719. [PMID: 33991648 DOI: 10.1016/j.gene.2021.145719] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022]
Abstract
The evolution of the Hexapoda mitochondrial genome has been the focus of several genetic and evolutionary studies over the last decades. However, they have concentrated on certain taxonomic orders of economic or health importance. The recent increase of mitochondrial genomes sequencing of diverse taxonomic orders generates an important opportunity to clarify the evolution of this group of organisms. However, there is no comparative study that investigates the evolution of the Hexapoda mitochondrial genome. In order to verify the level of rearrangement and the mitochondrial genome evolution, we performed a comparative genomic analysis of the Hexapoda mitochondrial genome available in the NCBI database. Using a combination of bioinformatics methods to carefully examine the mitochondrial gene rearrangements in 1198 Hexapoda species belonging to 32 taxonomic orders, we determined that there is a great variation in the rate of rearrangement by gene and by taxonomic order. A higher rate of genetic reassortment is observed in Phthiraptera, Thysanoptera, Protura, and Hymenoptera; compared to other taxonomic orders. Twenty-four events of convergence in the genetic order between different taxonomic orders were determined, most of them not previously reported; which proves the great evolutionary dynamics within Hexapoda.
Collapse
Affiliation(s)
- Manuela Moreno-Carmona
- Grupo de investigación de Biología y ecología de artrópodos, Facultad de Ciencias, Universidad del Tolima, Colombia
| | - Stephen L Cameron
- Department of Entomology, Purdue University, 901 West State Street, West Lafayette, IN 47907, USA
| | - Carlos Fernando Prada Quiroga
- Grupo de investigación de Biología y ecología de artrópodos, Facultad de Ciencias, Universidad del Tolima, Colombia.
| |
Collapse
|
15
|
Namasivayam S, Baptista RP, Xiao W, Hall EM, Doggett JS, Troell K, Kissinger JC. A novel fragmented mitochondrial genome in the protist pathogen Toxoplasma gondii and related tissue coccidia. Genome Res 2021; 31:852-865. [PMID: 33906963 PMCID: PMC8092004 DOI: 10.1101/gr.266403.120] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 03/09/2021] [Indexed: 12/19/2022]
Abstract
Mitochondrial genome content and structure vary widely across the eukaryotic tree of life, with protists displaying extreme examples. Apicomplexan and dinoflagellate protists have evolved highly reduced mitochondrial genome sequences, mtDNA, consisting of only three cytochrome genes and fragmented rRNA genes. Here, we report the independent evolution of fragmented cytochrome genes in Toxoplasma and related tissue coccidia and evolution of a novel genome architecture consisting minimally of 21 sequence blocks (SBs) totaling 5.9 kb that exist as nonrandom concatemers. Single-molecule Nanopore reads consisting entirely of SBs ranging from 0.1 to 23.6 kb reveal both whole and fragmented cytochrome genes. Full-length cytochrome transcripts including a divergent coxIII are detected. The topology of the mitochondrial genome remains an enigma. Analysis of a cob point mutation reveals that homoplasmy of SBs is maintained. Tissue coccidia are important pathogens of man and animals, and the mitochondrion represents an important therapeutic target. The mtDNA sequence has been elucidated, but a definitive genome architecture remains elusive.
Collapse
Affiliation(s)
- Sivaranjani Namasivayam
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| | - Rodrigo P Baptista
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA.,Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602, USA
| | - Wenyuan Xiao
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| | - Erica M Hall
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Joseph S Doggett
- Division of Infectious Diseases, Oregon Health Sciences University, Portland, Oregon 97239, USA.,Division of Infectious Diseases, Veterans Affairs Portland Health Care System, Portland, Oregon 97239, USA
| | - Karin Troell
- Department of Microbiology, National Veterinary Institute, SE-751 89 Uppsala, Sweden
| | - Jessica C Kissinger
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA.,Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
16
|
Plazzi F, Puccio G, Passamonti M. HERMES: An improved method to test mitochondrial genome molecular synapomorphies among clades. Mitochondrion 2021; 58:285-295. [PMID: 33639269 DOI: 10.1016/j.mito.2021.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/10/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023]
Abstract
Mitochondrial chromosomes have diversified among eukaryotes and many different architectures and features are now acknowledged for this genome. Here we present the improved HERMES index, which can measure and quantify the amount of molecular change experienced by mitochondrial genomes. We test the improved approach with ten molecular phylogenetic studies based on complete mitochondrial genomes, representing six bilaterian Phyla. In most cases, HERMES analysis spotted out clades or single species with peculiar molecular synapomorphies, allowing to identify phylogenetic and ecological patterns. The software presented herein handles linear, circular, and multi-chromosome genomes, thus widening the HERMES scope to the complete eukaryotic domain.
Collapse
Affiliation(s)
- Federico Plazzi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi, 3, 40126 Bologna, Italy.
| | - Guglielmo Puccio
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi, 3, 40126 Bologna, Italy.
| | - Marco Passamonti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi, 3, 40126 Bologna, Italy.
| |
Collapse
|
17
|
Sweet AD, Johnson KP, Cao Y, de Moya RS, Skinner RK, Tan M, Virrueta Herrera S, Cameron SL. Structure, gene order, and nucleotide composition of mitochondrial genomes in parasitic lice from Amblycera. Gene 2020; 768:145312. [PMID: 33220346 DOI: 10.1016/j.gene.2020.145312] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 11/28/2022]
Abstract
Parasitic lice have unique mitochondrial (mt) genomes characterized by rearranged gene orders, variable genome structures, and less AT content compared to most other insects. However, relatively little is known about the mt genomes of Amblycera, the suborder sister to all other parasitic lice. Comparing among nine different genera (including representative of all seven families), we show that Amblycera have variable and highly rearranged mt genomes. Some genera have fragmented genomes that vary considerably in length, whereas others have a single mt chromosome. Notably, these genomes are more AT-biased than most other lice. We also recover genus-level phylogenetic relationships among Amblycera that are consistent with those reported from large nuclear datasets, indicating that mt sequences are reliable for reconstructing evolutionary relationships in Amblycera. However, gene order data cannot reliably recover these same relationships. Overall, our results suggest that the mt genomes of lice, already know to be distinctive, are even more variable than previously thought.
Collapse
Affiliation(s)
- Andrew D Sweet
- Department of Entomology, Purdue University, West Lafayette, IN, USA; Department of Biological Sciences, Arkansas State University, State University, AR, USA.
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA
| | - Yanghui Cao
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA
| | - Robert S de Moya
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA; Department of Entomology, University of Illinois, Urbana, IL, USA
| | - Rachel K Skinner
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA; Department of Entomology, University of Illinois, Urbana, IL, USA
| | - Milton Tan
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA
| | - Stephany Virrueta Herrera
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA; Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, IL, USA
| | - Stephen L Cameron
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
18
|
Fu YT, Nie Y, Duan DY, Liu GH. Variation of mitochondrial minichromosome composition in Hoplopleura lice (Phthiraptera: Hoplopleuridae) from rats. Parasit Vectors 2020; 13:506. [PMID: 33023651 PMCID: PMC7539455 DOI: 10.1186/s13071-020-04381-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/25/2020] [Indexed: 11/10/2022] Open
Abstract
Background The family Hoplopleuridae contains at least 183 species of blood-sucking lice, which widely parasitize both mice and rats. Fragmented mitochondrial (mt) genomes have been reported in two rat lice (Hoplopleura kitti and H. akanezumi) from this family, but some minichromosomes were unidentified in their mt genomes. Methods We sequenced the mt genome of the rat louse Hoplopleura sp. with an Illumina platform and compared its mt genome organization with H. kitti and H. akanezumi. Results Fragmented mt genome of the rat louse Hoplopleura sp. contains 37 genes which are on 12 circular mt minichromosomes. Each mt minichromosome is 1.8–2.7 kb long and contains 1–5 genes and one large non-coding region. The gene content and arrangement of mt minichromosomes of Hoplopleura sp. (n = 3) and H. kitti (n = 3) are different from those in H. akanezumi (n = 3). Phylogenetic analyses based on the deduced amino acid sequences of the eight protein-coding genes showed that the Hoplopleura sp. was more closely related to H. akanezumi than to H. kitti, and then they formed a monophyletic group. Conclusions Comparison among the three rat lice revealed variation in the composition of mt minichromosomes within the genus Hoplopleura. Hoplopleura sp. is the first species from the family Hoplopleuridae for which a complete fragmented mt genome has been sequenced. The new data provide useful genetic markers for studying the population genetics, molecular systematics and phylogenetics of blood-sucking lice.![]()
Collapse
Affiliation(s)
- Yi-Tian Fu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yu Nie
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - De-Yong Duan
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China. .,Hunan Co-Innovation Center of Animal Production Safety, Changsha, 410128, Hunan, People's Republic of China.
| | - Guo-Hua Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China. .,Hunan Co-Innovation Center of Animal Production Safety, Changsha, 410128, Hunan, People's Republic of China.
| |
Collapse
|
19
|
Fu YT, Dong Y, Wang W, Nie Y, Liu GH, Shao R. Fragmented mitochondrial genomes evolved in opposite directions between closely related macaque louse Pedicinus obtusus and colobus louse Pedicinus badii. Genomics 2020; 112:4924-4933. [PMID: 32898640 DOI: 10.1016/j.ygeno.2020.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/08/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
We report for the first time the fragmented mitochondrial (mt) genomes of two Pedicinus species: Pedicinus obtusus and Pedicinus badii, and compared them with the lice of humans and chimpanzees. Despite being congeneric, the two monkey lice are distinct from each other in mt karyotype. The variation in mt karyotype between the two Pedicinus lice is the most pronounced among the congeneric species of sucking lice observed to date and is attributable to the opposite directions between them in mt karyotype evolution. Two of the inferred ancestral mt minichromosomes of the higher primate lice merged as one in the macaque louse whereas one of the ancestral minichromosomes split into two in the colobus louse after these two species diverged from their most recent common ancestor. Our results showed that mt genome fragmentation was a two-way process in the higher primate lice, and minichromosome merger was more common than previously thought.
Collapse
Affiliation(s)
- Yi-Tian Fu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Yalun Dong
- GeneCology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Wei Wang
- GeneCology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Yu Nie
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Guo-Hua Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China.
| | - Renfu Shao
- GeneCology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia.
| |
Collapse
|