1
|
Han Z, Lu X, He Y, Zhang T, Zhou Z, Zhang J, Zhou H. Integration of bulk/scRNA-seq and multiple machine learning algorithms identifies PIM1 as a biomarker associated with cuproptosis and ferroptosis in abdominal aortic aneurysm. Front Immunol 2024; 15:1486209. [PMID: 39723205 PMCID: PMC11668634 DOI: 10.3389/fimmu.2024.1486209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is a serious life-threatening vascular disease, and its ferroptosis/cuproptosis markers have not yet been characterized. This study was aiming to identify markers associated with ferroptosis/cuproptosis in AAA by bioinformatics analysis combined with machine learning models and to perform experimental validation. Methods This study used three scRNA-seq datasets from different mouse models and a human PBMC bulk RNA-seq dataset. Candidate genes were identified by integrated analysis of scRNA-seq, cell communication analysis, monocle pseudo-time analysis, and hdWGCNA analysis. Four machine learning algorithms, LASSO, REF, RF and SVM, were used to construct a prediction model for the PBMC dataset, the above results were comprehensively analyzed, and the targets were confirmed by RT-qPCR. Results scRNA-seq analysis showed Mo/MF as the most sensitive cell type to AAA, and 34 cuproptosis associated ferroptosis genes were obtained. Pseudo-time series analysis, hdWGCNA and machine learning prediction model construction were performed on these genes. Subsequent comparison of the above results showed that only PIM1 appeared in all algorithms. RT-qPCR and western blot results were consistent with sequencing results, showing that PIM1 was significantly upregulated in AAA. Conclusion In a conclusion, PIM1 as a novel biomarker associated with cuproptosis/ferroptosis in AAA was highlighted.
Collapse
Affiliation(s)
- Zonglin Han
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiulian Lu
- Cisen Pharmaceutical Co., Ltd, Jining, Shandong, China
| | - Yuxiang He
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Tangshan Zhang
- Department of Vascular Surgery, Jinan Seventh People’s Hospital, Jinan, Shandong, China
| | - Zhengtong Zhou
- Department of Vascular Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Jingyong Zhang
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hua Zhou
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
2
|
Wu L, Xue Q, Xia X. High expression of TRIP13 is associated with tumor progression in H. pylori infection induced gastric cancer. Mutat Res 2024; 828:111854. [PMID: 38492425 DOI: 10.1016/j.mrfmmm.2024.111854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND/OBJECTIVE H. pylori is a recognized bacterial carcinogen in the world to cause gastric cancer (GC). However, the molecular mechanism of H. pylori infection-induced GC is not completely clear. Thus, there is an urgent need to reveal the precise mechanisms regulating cancer development due to H. pylori infection. METHODS GEO microarray databases and TCGA databases were extracted for the analysis of different expression genes (DEGs). Then, Kaplan-Meier Plotter was used for prognostic analysis. Functional enrichment analysis of TRIP13 was performed by metascape database and TIMER database. Specific role of TRIP13 in GC with H. pylori infection was confirmed by CCK8, cell cycle analysis and WB. RESULTS A total 10 DEGs were substantially elevated in GC and H. pylori+ tissues and might be associated with H. pylori infection in GC and only the highly expressed TRIP13 was statistically associated with poor prognosis in GC patients. Meanwhile, TRIP13 were upregulated in both CagA-transfected epithelial cells and GC cells. And TRIP13 deficiency inhibited cell proliferation and arrested the cell cycle at the G1 phase. CONCLUSION Our study suggested that high expression of TRIP13 can promote the proliferation, cell cycle in GC cells, which could be used as a biomarker for H. pylori infection GC.
Collapse
Affiliation(s)
- Longxiang Wu
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu 226361, China
| | - Qiu Xue
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu 226361, China
| | - Xiaochun Xia
- Department of Radiation Oncology, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu 226361, China.
| |
Collapse
|
3
|
Ullah A, Zhao J, Li J, Singla RK, Shen B. Involvement of CXC chemokines (CXCL1-CXCL17) in gastric cancer: Prognosis and therapeutic molecules. Life Sci 2024; 336:122277. [PMID: 37995936 DOI: 10.1016/j.lfs.2023.122277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Gastric cancer (GC) is the fifth-most prevalent and second-most deadly cancer worldwide. Due to the late onset of symptoms, GC is frequently treated at a mature stage. In order to improve the diagnostic and clinical decision-making processes, it is necessary to establish more specific and sensitive indicators valuable in the early detection of the disease whenever a cancer is asymptomatic. In this work, we gathered information about CXC chemokines and GC by using scientific search engines including Google Scholar, PubMed, SciFinder, and Web of Science. Researchers believe that GC chemokines, small proteins, class CXC chemokines, and chemokine receptors promote GC inflammation, initiation, and progression by facilitating angiogenesis, tumor transformation, invasion, survival, metastatic spread, host response safeguards, and inter-cell interaction. With our absolute best professionalism, the role of CXC chemokines and their respective receptors in GC diagnosis and prognosis has not been fully explained. This review article updates the general characteristics of CXC chemokines, their unique receptors, their function in the pathological process of GC, and their potential application as possible indicators for GC. Although there have only recently been a few studies focusing on the therapeutic efficacy of CXC chemokine inhibitors in GC, growing experimental evidence points to the inhibition of CXC chemokines as a promising targeted therapy. Therefore, further translational studies are warranted to determine whether specific antagonists or antibodies designed to target CXC chemokines alone or in combination with chemotherapy are useful for diagnosing advanced GC.
Collapse
Affiliation(s)
- Amin Ullah
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Zhao
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiakun Li
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rajeev K Singla
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bairong Shen
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Khan N, Rehman B, Almanaa TN, Aljahdali SM, Waheed Y, Ullah A, Asfandayar M, Al-Harbi AI, Naz T, Arshad M, Sanami S, Ahmad S. A novel therapeutic approach to prevent Helicobacter pylori induced gastric cancer using networking biology, molecular docking, and simulation approaches. J Biomol Struct Dyn 2023; 42:13876-13889. [PMID: 37962871 DOI: 10.1080/07391102.2023.2279276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
Helicobacter pylori infects 50% of the world population and in 80% of cases, the infection progresses to the point where an ulcer develops leading to gastric cancer (GC). This study aimed to prevent GC by predicting Hub genes that are inducing GC. Furthermore, the study objective was to screen inhibitory molecules that block the function of predicted genes through several biophysical approaches. These proteins, such as Mucin 4 (MUC4) and Baculoviral IAP repeat containing 3 (BIRC3), had LogFC values of 2.28 and 3.39, respectively, and were found to be substantially expressed in those who had H. pylori infection. The MUC4 and BIRC3 inhibit apoptosis of infected cells and promote cancerous cell survival. The proteins were examined for their Physico-chemical characteristics, 3D structure and secondary structure analysis, solvent assessable surface area (SASA), active site identification, and network analysis. The MUC4 and BIRC3 expression was inhibited by docking eighty different compounds collected from the ZINC database. Fifty-seven compounds were successfully docked into the active site resulting in the lowest binding energy scores. The ZINC585267910 and ZINC585268691 compounds showed the lowest binding energy of -8.5 kcal/mol for MUC4 and -7.1 kcal/mol for BIRC3, respectively, and were considered best-docked solutions for molecular dynamics simulations. The mean root mean square deviation (RMSD) value for the ZINC585267910-MUC4 complex was 0.86 Å and the ZINC585268691-BIRC3 complex was 1.01 Å. The net MM/GBSA energy value of the ZINC585267910-MUC4 complex estimated was -46.84 kcal/mol and that of the ZINC585268691-BIRC3 complex was -44.84 kcal/mol. In a nutshell, the compounds might be investigated further as an inhibitor of the said proteins to stop the progress of GC induced by H. pylori.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nadeem Khan
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Bushra Rehman
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadaa, Pakistan
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Yasir Waheed
- Office of Research, Innovation and Commercialization, Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Asad Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Muhammad Asfandayar
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Alhanouf I Al-Harbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Tahira Naz
- Department of Chemical and Life Sciences, Qurtuba University of Science and Technology, Peshawar, Pakistan
| | - Muhammad Arshad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Samira Sanami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
- Department of Natural Sciences, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
5
|
Korbecki J, Bosiacki M, Barczak K, Łagocka R, Chlubek D, Baranowska-Bosiacka I. The Clinical Significance and Role of CXCL1 Chemokine in Gastrointestinal Cancers. Cells 2023; 12:1406. [PMID: 37408240 DOI: 10.3390/cells12101406] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
One area of cancer research is the interaction between cancer cells and immune cells, in which chemokines play a vital role. Despite this, a comprehensive summary of the involvement of C-X-C motif ligand 1 (CXCL1) chemokine (also known as growth-regulated gene-α (GRO-α), melanoma growth-stimulatory activity (MGSA)) in cancer processes is lacking. To address this gap, this review provides a detailed analysis of CXCL1's role in gastrointestinal cancers, including head and neck cancer, esophageal cancer, gastric cancer, liver cancer (hepatocellular carcinoma (HCC)), cholangiocarcinoma, pancreatic cancer (pancreatic ductal adenocarcinoma), and colorectal cancer (colon cancer and rectal cancer). This paper presents the impact of CXCL1 on various molecular cancer processes, such as cancer cell proliferation, migration, and invasion, lymph node metastasis, angiogenesis, recruitment to the tumor microenvironment, and its effect on immune system cells, such as tumor-associated neutrophils (TAN), regulatory T (Treg) cells, myeloid-derived suppressor cells (MDSCs), and macrophages. Furthermore, this review discusses the association of CXCL1 with clinical aspects of gastrointestinal cancers, including its correlation with tumor size, cancer grade, tumor-node-metastasis (TNM) stage, and patient prognosis. This paper concludes by exploring CXCL1's potential as a therapeutic target in anticancer therapy.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54 Str., 71-210 Szczecin, Poland
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ryta Łagocka
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
6
|
The role of transcription factors in the acquisition of the four latest proposed hallmarks of cancer and corresponding enabling characteristics. Semin Cancer Biol 2022; 86:1203-1215. [PMID: 36244529 DOI: 10.1016/j.semcancer.2022.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 01/27/2023]
Abstract
With the recent description of the molecular and cellular characteristics that enable acquisition of both core and new hallmarks of cancer, the consequences of transcription factor dysregulation in the hallmarks scheme has become increasingly evident. Dysregulation or mutation of transcription factors has long been recognized in the development of cancer where alterations in these key regulatory molecules can result in aberrant gene expression and consequential blockade of normal cellular differentiation. Here, we provide an up-to-date review of involvement of dysregulated transcription factor networks with the most recently reported cancer hallmarks and enabling characteristic properties. We present some illustrative examples of the impact of dysregulated transcription factors, specifically focusing on the characteristics of phenotypic plasticity, non-mutational epigenetic reprogramming, polymorphic microbiomes, and senescence. We also discuss how new insights into transcription factor dysregulation in cancer is contributing to addressing current therapeutic challenges.
Collapse
|
7
|
Feng J, Tang X, Song L, Zhou Z, Jiang Y, Huang Y. Potential biomarkers and immune characteristics of small bowel adenocarcinoma. Sci Rep 2022; 12:16204. [PMID: 36171259 PMCID: PMC9519963 DOI: 10.1038/s41598-022-20599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022] Open
Abstract
Small bowel adenocarcinoma (SBA) is a gastrointestinal malignancy with low incidence but poor prognosis, and its pathogenesis is still unclear. This study aimed to explore potential disease-causing biomarkers of SBA. The gene expression datasets of SBA and normal samples were downloaded from the Gene Expression Omnibus database. First, differential gene expression analysis and weighted gene coexpression network analysis (WGCNA) were performed. Common genes (CGs) were obtained by intersection of differentially expressed genes (DEGs) and optimal modal genes of WGCNA. Subsequently, a protein‒protein interaction network was established to screen hub genes, and target genes were obtained by Lasso regression analysis of hub genes. An SBA risk prediction model was established based on target genes. The prediction accuracy of the model was evaluated by the area under the receiver operating characteristic curve (AUC). The levels of immune cell infiltration and activation of immune pathways were compared between SBA and normal samples using the "ggpubr" and "reshape2" packages. A total of 1058 DEGs were identified. WGCNA showed that the signature gene in the brown module was significantly associated with SBA (p = 7E−17), and 469 CGs were obtained. Four target genes (APOA4, APOB, COL1A2, FN1) were identified and showed excellent prediction of SBA risk (AUC = 0.965). In addition, active dendritic cells and macrophages showed higher infiltration levels in SBA. Meanwhile, the APC_co_stimulation pathway and parainflammation pathway were strongly active in SBA. Four target genes (APOA4, APOB, COL1A2, FN1) may be involved in the pathogenesis of small bowel adenocarcinoma.
Collapse
Affiliation(s)
- Jinggao Feng
- Department of Gastrointestinal and Anorectal Surgery, The Central Hospital of Yongzhou, No. 151, Xiaoshui West Road, Lingling District, Yongzhou, 425100, Hunan, China.
| | - Xiayu Tang
- Department of Gastrointestinal and Anorectal Surgery, The Central Hospital of Yongzhou, No. 151, Xiaoshui West Road, Lingling District, Yongzhou, 425100, Hunan, China
| | - Liusong Song
- Department of Gastrointestinal and Anorectal Surgery, The Central Hospital of Yongzhou, No. 151, Xiaoshui West Road, Lingling District, Yongzhou, 425100, Hunan, China
| | - Zhipeng Zhou
- Department of Gastrointestinal and Anorectal Surgery, The Central Hospital of Yongzhou, No. 151, Xiaoshui West Road, Lingling District, Yongzhou, 425100, Hunan, China
| | - Yuan Jiang
- Department of Gastrointestinal and Anorectal Surgery, The Central Hospital of Yongzhou, No. 151, Xiaoshui West Road, Lingling District, Yongzhou, 425100, Hunan, China
| | - Yao Huang
- Department of Gastrointestinal and Anorectal Surgery, The Central Hospital of Yongzhou, No. 151, Xiaoshui West Road, Lingling District, Yongzhou, 425100, Hunan, China
| |
Collapse
|
8
|
Zhang L, Wang N, Chen M, Wu S, Zeng J, Zhou F, Wu Q, Liu J, Shi Y. HDAC6/FOXP3/HNF4α axis promotes bile acids induced gastric intestinal metaplasia. Am J Cancer Res 2022; 12:1409-1422. [PMID: 35411233 PMCID: PMC8984877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/05/2022] [Indexed: 06/14/2023] Open
Abstract
Bile reflux is one of the main causes of gastric intestinal metaplasia (IM) which is an important precancerous lesion. Our previous study has shown that ectopic expression of Histone deacetylase 6 (HDAC6) promotes the activation of intestinal markers in bile acids (BA) induced gastric IM cells; however, the mechanism underlying how HDAC6-mediated epigenetic modifications regulate intestinal markers is not clear. In this study, we aimed to investigate the downstream targets of HDAC6 and the underlying mechanism in the process of BA induced gastric IM. We demonstrated that deoxycholic acid (DCA) upregulated HDAC6 in gastric cells, which further inhibited the transcription of Forkhead box protein 3 (FOXP3). Then, FOXP3 transcriptionally inhibited Hepatocyte nuclear factor 4α (HNF4α), which further inhibits the expression of downstream intestinal markers. These molecules have been shown to be clinically relevant, as FOXP3 levels were negatively correlated with HDAC6 and HNF4α in IM tissues. Transgenic mice experiments confirmed that HNF4α overexpression combined with DCA treatment induced gastric mucosa to secrete intestinal mucus and caused an abnormal mucosal structure. Our findings suggest that HDAC6 reduces FOXP3 through epigenetic modification, thus forming a closed loop HDAC6/FOXP3/HNF4α to promote gastric IM. Inhibition of HDAC6 may be a potential approach to prevent gastric IM in patients with bile reflux.
Collapse
Affiliation(s)
- Luyao Zhang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an, Shaanxi, China
| | - Na Wang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an, Shaanxi, China
| | - Min Chen
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an, Shaanxi, China
| | - Siran Wu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an, Shaanxi, China
| | - Jiaoxia Zeng
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an, Shaanxi, China
| | - Fenli Zhou
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an, Shaanxi, China
| | - Qiong Wu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an, Shaanxi, China
| | - Junye Liu
- Department of Radiation Protective Medicine, Fourth Military Medical UniversityXi’an, Shaanxi, China
| | - Yongquan Shi
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an, Shaanxi, China
| |
Collapse
|
9
|
Park CH, Hong C, Lee AR, Sung J, Hwang TH. Multi-omics reveals microbiome, host gene expression, and immune landscape in gastric carcinogenesis. iScience 2022; 25:103956. [PMID: 35265820 PMCID: PMC8898972 DOI: 10.1016/j.isci.2022.103956] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/03/2022] [Accepted: 02/16/2022] [Indexed: 12/17/2022] Open
Abstract
To date, there has been no multi-omic analysis characterizing the intricate relationships between the intragastric microbiome and gastric mucosal gene expression in gastric carcinogenesis. Using multi-omic approaches, we provide a comprehensive view of the connections between the microbiome and host gene expression in distinct stages of gastric carcinogenesis (i.e., healthy, gastritis, cancer). Our integrative analysis uncovers various associations specific to disease states. For example, uniquely in gastritis, Helicobacteraceae is highly correlated with the expression of FAM3D, which has been previously implicated in gastrointestinal inflammation. In addition, in gastric cancer but not in adjacent gastritis, Lachnospiraceae is highly correlated with the expression of UBD, which regulates mitosis and cell cycle time. Furthermore, lower abundances of B cell signatures in gastric cancer compared to gastritis may suggest a previously unidentified immune evasion process in gastric carcinogenesis. Our study provides the most comprehensive description of microbial, host transcriptomic, and immune cell factors of the gastric carcinogenesis pathway. Multi-omics finds genetic, microbial, and immunological links in gastric cancer Helicobacteraceae was highly associated with the expression of inflammation genes Pasteurellaceae and Lachnospiraceae were associated with cancer-related genes B cell infiltration was prominent in gastritis tissues but not in gastric cancer
Collapse
Affiliation(s)
- Chan Hyuk Park
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggido 11923, Republic of Korea
| | - Changjin Hong
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - A-reum Lee
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggido 11923, Republic of Korea
| | - Jaeyun Sung
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Corresponding author
| | - Tae Hyun Hwang
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Immunology, Mayo Clinic, Jacksonville, FL 32224, USA
- Corresponding author
| |
Collapse
|
10
|
Clinical Effect of Clarithromycin Combined with Tinidazole on Helicobacter pylori-Related Gastritis and Its Influence on COX-2 Expression. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4171019. [PMID: 34888378 PMCID: PMC8651390 DOI: 10.1155/2021/4171019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022]
Abstract
Studies have shown that COX-2 expression is upregulated in gastric cancer (GC) as well as in precancerous lesions and in Helicobacter pylori-induced inflammation, suggesting that cyclooxygenase-2 (COX-2) may play an important role in gastric carcinogenesis. We attempted to investigate the role of clarithromycin with tinidazole on Helicobacter pylori-related gastritis from the aspects of clinical effect and COX-2 expression. From January 2016 to January 2019, 130 patients with Helicobacter pylori-related chronic gastritis were collected and grouped into the observation group (OG) and the control group (CG). Altogether, 80 patients in the OG were treated with clarithromycin with tinidazole, while 50 patients in the CG were treated with amoxicillin with metronidazole. Clinical symptom improvement time, content of COX-2 and B cell lymphoma-2 (BCL-2), content of inflammatory factors interleukin-1 (IL-1), IL-4, and C-reactive protein (CRP), expression level of nutritional indicators serum albumin (ALB), realbumin (PA), and transferrin (TF), clearance of Helicobacter pylori, total effective rate, and incidence of adverse reactions were detected. Compared with the CG, the OG had shorter clinical symptom improvement time, lower COX-2 and Bcl-2, lower expression of inflammatory factors IL-1, IL-4, and CRP, higher expression of nutritional indicators ALB, TF, and PA, higher clearance rate of Helicobacter pylori, higher total effective rate, and lower incidence of adverse reactions. Clarithromycin combined with tinidazole can effectively improve the clinical effect of Helicobacter pylori-related gastritis and reduce the expression level of COX-2.
Collapse
|