1
|
Feng D, Yan C, Yuan L, Jia Y, Sun Y, Zhang J. Genome-wide identification of crustacyanin and function analysis of one isoform high-expression in carapace from Neocaridina denticulata sinensis. Int J Biol Macromol 2024; 278:135070. [PMID: 39187096 DOI: 10.1016/j.ijbiomac.2024.135070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Lipocalin proteins transport hydrophobic molecules, including apolipoprotein D, retinol-binding protein, and crustacyanin (CRCN). CRCN can combine with astaxanthin to cause a bathochromic shift in the emission spectrum of astaxanthin from red to blue. Therefore, CRCN influences the colors and patterns of crustaceans, which are important for various biological functions such as camouflage, reproduction, and communication. For aquatic organisms, body color is economically important and can be indicative of habitat water quality. In this study, thirteen CRCN genes (NdCRCNs) were first discovered in Neocaridina denticulata sinensis, contradicting prior findings of a few isoform genes in a species. The expression pattern of NdCRCNs in tissues showed that the expression of one CRCN isoform gene, named NdCRCN-30, was the highest in the carapace. In situ hybridization (ISH) analysis revealed that NdCRCN-30 was predominantly distributed in the outer epidermis of shrimp. Interference of NdCRCN-30 could cause a change in the color of the carapace. RNA-seq was performed after knockdown with the NdCRCN-30, and differential gene enrichment analysis revealed that this gene is primarily associated with antioxidant function, pigmentation, and molting. Overall, our results will provide new insights into the biological function of the CRCN and genetic breeding for changing body color in economic crustaceans.
Collapse
Affiliation(s)
- Dandan Feng
- School of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Congcong Yan
- School of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Longbin Yuan
- School of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding 071002, China
| | - Yuewen Jia
- School of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yuying Sun
- School of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding 071002, China.
| | - Jiquan Zhang
- School of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
2
|
Koellsch C, Poulin R, Salloum PM. Microbial artists: the role of parasite microbiomes in explaining colour polymorphism among amphipods and potential link to host manipulation. J Evol Biol 2024; 37:1009-1022. [PMID: 38989853 DOI: 10.1093/jeb/voae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/16/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Parasite infections are increasingly reported to change the microbiome of the parasitized hosts, while parasites bring their own microbes to what can be a multi-dimensional interaction. For instance, a recent hypothesis suggests that the microbial communities harboured by parasites may play a role in the well-documented ability of many parasites to manipulate host phenotype, and explain why the degree to which host phenotype is altered varies among conspecific parasites. Here, we explored whether the microbiomes of both hosts and parasites are associated with variation in host manipulation by parasites. Using colour quantification methods applied to digital images, we investigated colour variation among uninfected Transorchestia serrulata amphipods, as well as amphipods infected with Plagiorhynchus allisonae acanthocephalans and with a dilepidid cestode. We then characterized the bacteriota of amphipod hosts and of their parasites, looking for correlations between host phenotype and the bacterial taxa associated with hosts and parasites. We found large variation in amphipod colours, and weak support for a direct impact of parasites on the colour of their hosts. Conversely, and most interestingly, the parasite's bacteriota was more strongly correlated with colour variation among their amphipod hosts, with potential impact of amphipod-associated bacteria as well. Some bacterial taxa found associated with amphipods and parasites may have the ability to synthesize pigments, and we propose they may interact with colour determination in the amphipods. This study provides correlational support for an association between the parasite's microbiome and the evolution of host manipulation by parasites and host-parasite interactions more generally.
Collapse
Affiliation(s)
- Célia Koellsch
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
3
|
Teng T, Yang Y, Li H, Liu F. Toxic effect of fluorene on Perinereis aibuhitensis body wall and its corresponding defense mechanisms: A metabolomics perspective. MARINE POLLUTION BULLETIN 2024; 205:116674. [PMID: 38981191 DOI: 10.1016/j.marpolbul.2024.116674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/10/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024]
Abstract
Fluorene is a coastal sediment pollutant with high ecological risk. Perinereis aibuhitensis is an ecotoxicological model used for polycyclic aromatic hydrocarbon bioremediation; however, the effects of fluorene on the physiological metabolism of P. aibuhitensis and its corresponding responses remain unclear. This study explored the tolerance and defense responses of P. aibuhitensis in sediments with different fluorene concentrations using histology, ecological biomarkers, and metabolic responses. Metabolomics analyses revealed that P. aibuhitensis has high tolerance to fluorene in sediments. Fluorene stress disrupted the normal metabolism of the P. aibuhitensis body wall, resulting in excessive glycosphospholipid and stearamide accumulation and elevated oxygen consumption rates. To mitigate this, P. aibuhitensis has adopted tail cutting, yellowing, and modulation of metabolite contents in the body wall. This study provides novel insights into the potential ecological risk of fluorene pollution in marine sediments and proposes the use of P. aibuhitensis in the bioremediation of fluorene-contaminated sediments.
Collapse
Affiliation(s)
- Teng Teng
- Ocean College, Yantai Institute of China Agricultural University, Yantai 264670, Shandong, China
| | - Yuting Yang
- Ocean College, Yantai Institute of China Agricultural University, Yantai 264670, Shandong, China
| | - Huihong Li
- Ocean College, Yantai Institute of China Agricultural University, Yantai 264670, Shandong, China
| | - Feng Liu
- Ocean College, Yantai Institute of China Agricultural University, Yantai 264670, Shandong, China.
| |
Collapse
|
4
|
Nishida Y, Berg PC, Shakersain B, Hecht K, Takikawa A, Tao R, Kakuta Y, Uragami C, Hashimoto H, Misawa N, Maoka T. Astaxanthin: Past, Present, and Future. Mar Drugs 2023; 21:514. [PMID: 37888449 PMCID: PMC10608541 DOI: 10.3390/md21100514] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Astaxanthin (AX), a lipid-soluble pigment belonging to the xanthophyll carotenoids family, has recently garnered significant attention due to its unique physical properties, biochemical attributes, and physiological effects. Originally recognized primarily for its role in imparting the characteristic red-pink color to various organisms, AX is currently experiencing a surge in interest and research. The growing body of literature in this field predominantly focuses on AXs distinctive bioactivities and properties. However, the potential of algae-derived AX as a solution to various global environmental and societal challenges that threaten life on our planet has not received extensive attention. Furthermore, the historical context and the role of AX in nature, as well as its significance in diverse cultures and traditional health practices, have not been comprehensively explored in previous works. This review article embarks on a comprehensive journey through the history leading up to the present, offering insights into the discovery of AX, its chemical and physical attributes, distribution in organisms, and biosynthesis. Additionally, it delves into the intricate realm of health benefits, biofunctional characteristics, and the current market status of AX. By encompassing these multifaceted aspects, this review aims to provide readers with a more profound understanding and a robust foundation for future scientific endeavors directed at addressing societal needs for sustainable nutritional and medicinal solutions. An updated summary of AXs health benefits, its present market status, and potential future applications are also included for a well-rounded perspective.
Collapse
Affiliation(s)
- Yasuhiro Nishida
- Fuji Chemical Industries, Co., Ltd., 55 Yokohoonji, Kamiich-machi, Nakaniikawa-gun, Toyama 930-0405, Japan
| | | | - Behnaz Shakersain
- AstaReal AB, Signum, Forumvägen 14, Level 16, 131 53 Nacka, Sweden; (P.C.B.); (B.S.)
| | - Karen Hecht
- AstaReal, Inc., 3 Terri Lane, Unit 12, Burlington, NJ 08016, USA;
| | - Akiko Takikawa
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan;
| | - Ruohan Tao
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Yumeka Kakuta
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Chiasa Uragami
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Hideki Hashimoto
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Suematsu, Nonoichi-shi 921-8836, Japan;
| | - Takashi Maoka
- Research Institute for Production Development, 15 Shimogamo-morimoto-cho, Sakyo-ku, Kyoto 606-0805, Japan
| |
Collapse
|
5
|
Chen H, Ji H, Pan C, Zhang D, Su W, Liu S, Deng Y, Huang X. Purification and Characterisation of Two Novel Pigment Proteins from the Carapace of Red Swamp Crayfish (Procambarus clarkii). Foods 2021; 11:foods11010035. [PMID: 35010161 PMCID: PMC8750329 DOI: 10.3390/foods11010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022] Open
Abstract
Pigment proteins play a vital role in the red colour change of the red swamp crayfish (Procambarus clarkii) shell after cooking. In this study, two red-change-related pigment proteins with molecular weights of approximately 170 and 43 kDa—denoted as F1 and F2, respectively—were purified by ammonium sulphate salting-out and size exclusion chromatography. F1 and F2 entirely comprised homomultimeric protein complexes composed of 21 kDa subunits. LC-MS/MS analysis showed that the 21 kDa protein subunit belonged to the crustacyanin family, named P. clarkii crustacyanin A2 (PcCRA2). The full-length cDNA of PcCRA2 was cloned, which encoded 190 amino acid residues and was highly homologous (91.58%) with Cherax quadricarinatus crustacyanin A. The predicted 3D structure showed that PcCRA2 had a β-barrel structure for pigment encapsulation. The colour change of F1 was first detected at 40 °C, and the red change occurred upon heating above 60 °C. Additionally, with increasing temperature, its β-sheet content increased, and its α-helix content reduced. Correlation analysis showed that the redness value of F1 was significantly related to the heating temperature and the β-sheet content.
Collapse
Affiliation(s)
- Hao Chen
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (H.C.); (D.Z.); (W.S.); (S.L.); (Y.D.); (X.H.)
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Hongwu Ji
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (H.C.); (D.Z.); (W.S.); (S.L.); (Y.D.); (X.H.)
- Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China;
- Correspondence:
| | - Chuang Pan
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China;
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Di Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (H.C.); (D.Z.); (W.S.); (S.L.); (Y.D.); (X.H.)
- Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Weiming Su
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (H.C.); (D.Z.); (W.S.); (S.L.); (Y.D.); (X.H.)
- Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shucheng Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (H.C.); (D.Z.); (W.S.); (S.L.); (Y.D.); (X.H.)
- Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China;
| | - Yijia Deng
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (H.C.); (D.Z.); (W.S.); (S.L.); (Y.D.); (X.H.)
| | - Xiaodan Huang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (H.C.); (D.Z.); (W.S.); (S.L.); (Y.D.); (X.H.)
| |
Collapse
|
6
|
Bedulina D, Drozdova P, Gurkov A, von Bergen M, Stadler PF, Luckenbach T, Timofeyev M, Kalkhof S. Proteomics reveals sex-specific heat shock response of Baikal amphipod Eulimnogammarus cyaneus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143008. [PMID: 33187699 DOI: 10.1016/j.scitotenv.2020.143008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/26/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
The ancient Lake Baikal is the largest source of liquid freshwater on Earth and home to a unique fauna. Several hundred mostly cold-adapted endemic amphipod species inhabit Baikal, an ecosystem that is already being influenced by global change. In this study, we characterized the core proteome and heat stress-induced changes in a temperature-tolerant endemic amphipod, Eulimnogammarus cyaneus, using a proteogenomic approach (PRIDE dataset PXD013237) to unravel the molecular mechanisms of the observed adverse effects. As males were previously found to be much more tolerant to thermal stress, we placed special emphasis on differences between the sexes. For both sexes, we observed adaption of energy metabolism, cytoskeleton, lipid, and carbohydrate metabolism upon heat stress. In contrast, significant differences were determined in the molecular chaperone response. Females from the control conditions possessed significantly higher levels of heat shock proteins (HSP70, HSPb1, Hsc70-3), which, in contrast to males, were not further increased in response to heat stress. The inability of females to further increase heat shock protein synthesis in response to temperature stress may be due to sex-specific processes, such as egg production, requiring a large proportion of the available energy. As ovigerous females synthesize generally higher amounts of protein, they also need higher levels of molecular chaperones for the folding of these new proteins. Thus, the higher sensitivity of females to heat shock may be due to the lack of molecular chaperone molecules to counteract the heat-induced protein denaturation.
Collapse
Affiliation(s)
- Daria Bedulina
- Institute of Biology, Irkutsk State University, Lenin str. 3, Irkutsk, Russia; Baikal Research Centre, Lenin str. 21, Irkutsk, Russia.
| | - Polina Drozdova
- Institute of Biology, Irkutsk State University, Lenin str. 3, Irkutsk, Russia; Baikal Research Centre, Lenin str. 21, Irkutsk, Russia
| | - Anton Gurkov
- Institute of Biology, Irkutsk State University, Lenin str. 3, Irkutsk, Russia; Baikal Research Centre, Lenin str. 21, Irkutsk, Russia
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, Leipzig, Germany; Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany; Competence Center for Scalable Data Services and Solutions Dresden/Leipzig, Interdisciplinary Center for Bioinformatics, German Centre for Integrative Biodiversity Research (iDiv), and Leipzig Research Center for Civilization Diseases, Universität Leipzig, Augustusplatz 12, 04107 Leipzig, Germany; Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Germany; Department of Theoretical Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.; Facultad de Ciencias, Universidad National de Colombia, Sede Bogotá, Ciudad Universitaria, 111321 Bogotá, D.C., Colombia; Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe NM87501, USA
| | - Till Luckenbach
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Maxim Timofeyev
- Institute of Biology, Irkutsk State University, Lenin str. 3, Irkutsk, Russia; Baikal Research Centre, Lenin str. 21, Irkutsk, Russia
| | - Stefan Kalkhof
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, Leipzig, Germany; Fraunhofer Institute for Cell Therapy and Immunology, Dept. Cell Engineering, Perlickstr. 1, 04103 Leipzig, Germany; Institute of Bioanalysis, University of Applied Sciences and Arts of Coburg, Friedrich-Streib-Str. 2, 96450 Coburg, Germany
| |
Collapse
|