1
|
Zhou Y, Zhou Y, Hu J, Xiao Y, Zhou Y, Yu L. Prognostic, oncogenic roles, and pharmacogenomic features of AMD1 in hepatocellular carcinoma. Cancer Cell Int 2024; 24:398. [PMID: 39695661 DOI: 10.1186/s12935-024-03593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND AMD1 is the gene encoding S-adenosylmethionine decarboxylase 1. How AMD1 affects the prognosis of hepatocellular carcinoma (HCC) patients is unclear. METHODS Using the Cancer Genome Atlas (TCGA) liver hepatocellular carcinoma datasets, gene enrichment and immunological traits were compared between groups with high and low AMD1 expression. After altering AMD1 expression in HCC cells, cell viability, the clonal formation rate, and migration and invasion ability were detected. Univariate Cox regression analysis and Pearson correlation were used to screen for AMD1-related genes (ARGs). Multidimensional bioinformatic algorithms were utilized to establish a risk score model for ARGs. RESULTS AMD1 expression was notably increased in the majority of cancer types. High AMD1 expression was associated with adverse outcomes and poorer immunotherapy response in HCC patients. AMD1 exhibited higher expression levels in HCC cell lines. The efficient inhibition of HCC cell proliferation, migration, and invasion in vitro can be achieved through the downregulation of AMD1. The AMD1-related risk score was constructed with the expression of 9 ARGs, and demonstrated high predictive efficacy in multiple validation cohorts. Patients with high risk scores exhibited greater resistance to classical chemotherapy drugs. The nomogram, which consists of age, stage, and the AMD1-related risk score, was used to calculate the probability of survival for each individual. CONCLUSION The present study indicates that AMD1 functions as a potential role in HCC progression and may serve as a therapeutic target in HCC. This study constructed a novel AMD1-related scoring system for predicting the prognosis and treatment responsiveness of patients with HCC, enabling the prediction of prognosis and identification of potential treatment targets.
Collapse
Affiliation(s)
- Youliang Zhou
- Department of Medical Insurance, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310015, Zhejiang, China
| | - Yi Zhou
- Department of Orthopedic, Yuhuan Hospital of Traditional Chinese Medicine, Taizhou, 317600, Zhejiang, China
| | - Jiabin Hu
- Department of Surgery, Yuhuan Hospital of Traditional Chinese Medicine, Taizhou, 317600, Zhejiang, China
| | - Yao Xiao
- Department of Medical Insurance, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310015, Zhejiang, China
| | - Yan Zhou
- Department of Pediatrics, The Yuhuan Branch of The First Affiliated Hospital with Wenzhou Medical University, Taizhou, 317600, Zhejiang, China.
| | - Liping Yu
- Department of Medical Insurance, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310015, Zhejiang, China.
| |
Collapse
|
2
|
Ma H, Zhang J, Shi Y, Wang Z, Nie W, Cai J, Huang Y, Liu B, Wang X, Lian C. PBK correlates with prognosis, immune escape and drug response in LUAD. Sci Rep 2023; 13:20452. [PMID: 37993518 PMCID: PMC10665404 DOI: 10.1038/s41598-023-47781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023] Open
Abstract
PBK (PDZ-binding kinase) is a protein-coding gene that encodes a serine/threonine protein kinase associated with the dual-specific mitogen-activated protein kinase (MAPKK) family. Overexpression of this gene is closely linked to tumor development. In this study, we aimed to investigate the role of PBK in lung adenocarcinoma (LUAD) progression, prognosis, and immune evasion. We conducted a pan-cancer analysis of PBK to examine its expression and prognostic value. In the LUAD cohort, we analyzed PBK expression, prognosis, mutational features, and immune infiltration in groups with different PBK expression levels. We constructed a PBK-associated genomic model, integrated it into a nomogram, and compared high and low-risk subgroups. In our pan-cancer analysis, PBK was significantly upregulated, particularly in LUAD patients, and displayed poor prognosis. The high PBK expression group had many deletion mutations but still showed gene upregulation. Immune infiltration analysis indicated that PBK-triggered immune escape in the high expression group might relate to antigen presentation, dendritic cell, and CD8+ T cell infiltration. We constructed a 5-gene prognostic model and a nomogram to quantify individual survival probabilities. The PBK-associated gene prognostic model reliably predicted patient prognosis and drug response. Our findings offer new insights into PBK-induced immune escape and targeted therapy during LUAD development, providing valuable suggestions for clinical treatment approaches.
Collapse
Affiliation(s)
- Hongyu Ma
- Department of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, China
- Department of Pulmonary and Critical Care Medicine, Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Jing Zhang
- Department of Genetics, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Yan Shi
- Department of Pulmonary and Critical Care Medicine, Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Ziqiang Wang
- Research Center of Clinical Laboratory Science, Bengbu Medical College, Bengbu, 233000, China
| | - Wenhu Nie
- Department of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, China
| | - Jingjing Cai
- Department of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, China
| | - Yinglong Huang
- Department of Genetics, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Bin Liu
- Department of Respiratory and Critical Care Medicine, Fuyang People's Hospital, Fuyang, 236000, China
| | - Xiaojing Wang
- Department of Pulmonary and Critical Care Medicine, Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China.
| | - Chaoqun Lian
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233000, China.
- Research Center of Clinical Laboratory Science, Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
3
|
Deris Zayeri Z, Parsi A, Shahrabi S, Kargar M, Davari N, Saki N. Epigenetic and metabolic reprogramming in inflammatory bowel diseases: diagnostic and prognostic biomarkers in colorectal cancer. Cancer Cell Int 2023; 23:264. [PMID: 37936149 PMCID: PMC10631091 DOI: 10.1186/s12935-023-03117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND AND AIM "Inflammatory bowel disease" (IBD) is a chronic, relapsing inflammatory disease of the intestinal tract that typically begins at a young age and might transit to colorectal cancer (CRC). In this manuscript, we discussed the epigenetic and metabolic change to present a extensive view of IBDs transition to CRC. This study discusses the possible biomarkers for evaluating the condition of IBDs patients, especially before the transition to CRC. RESEARCH APPROACH We searched "PubMed" and "Google Scholar" using the keywords from 2000 to 2022. DISCUSSION In this manuscript, interesting titles associated with IBD and CRC are discussed to present a broad view regarding the epigenetic and metabolic reprogramming and the biomarkers. CONCLUSION Epigenetics can be the main reason in IBD transition to CRC, and Hypermethylation of several genes, such as VIM, OSM4, SEPT9, GATA4 and GATA5, NDRG4, BMP3, ITGA4 and plus hypomethylation of LINE1 can be used in IBD and CRC management. Epigenetic, metabolisms and microbiome-derived biomarkers, such as Linoleic acid and 12 hydroxy 8,10-octadecadienoic acid, Serum M2-pyruvate kinase and Six metabolic genes (NAT2, XDH, GPX3, AKR1C4, SPHK and ADCY5) expression are valuable biomarkers for early detection and transition to CRC condition. Some miRs, such as miR-31, miR-139-5p, miR -155, miR-17, miR-223, miR-370-3p, miR-31, miR -106a, miR -135b and miR-320 can be used as biomarkers to estimate IBD transition to CRC condition.
Collapse
Affiliation(s)
- Zeinab Deris Zayeri
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abazar Parsi
- Alimentary Tract Research Center, Clinical Sciences Research Inistitute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Masoud Kargar
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nader Davari
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
4
|
Miao YD, Quan WX, Dong X, Gan J, Ji CF, Wang JT, Zhang F. Prognosis-related metabolic genes in the development of colorectal cancer progress and perspective. Gene 2023; 862:147263. [PMID: 36758843 DOI: 10.1016/j.gene.2023.147263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
Colorectal cancer (CRC) is one of the most commonplace malignant tumors in the world. The occurrence and development of CRC are involved in numerous events. Metabolic reprogramming is one of the hallmarks of cancer and is convoluted and associated with carcinogenesis. Lots of metabolic genes are involved in the occurrence and progression of CRC. Study methods combining tumor genomics and metabolomics are more likely to explore this field in depth. In this mini-review, we make the latest progress and future prospects into the different molecular mechanisms of seven prognosis-related metabolic genes, we screened out in previous research, involved in the occurrence and development of CRC.
Collapse
Affiliation(s)
- Yan-Dong Miao
- The Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, China
| | - Wu-Xia Quan
- Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, China
| | - Xin Dong
- The Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, China
| | - Jian Gan
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, China
| | - Cui-Feng Ji
- Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, China
| | - Jiang-Tao Wang
- Department of Thyroid and Breast Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, China
| | - Fang Zhang
- The Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264100, China.
| |
Collapse
|
5
|
Zhang B, Li Y, Song L, Xi H, Wang S, Yu C, Cui B. Cuproplasia characterization in colon cancer assists to predict prognosis and immunotherapeutic response. Front Oncol 2023; 13:1061084. [PMID: 37007132 PMCID: PMC10060792 DOI: 10.3389/fonc.2023.1061084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionColon cancer is the 3rd most prevalent cancer worldwide, with more than 900,000 deaths annually. Chemotherapy, targeted treatment, and immunotherapeutic treatment are the three cornerstones of colon cancer treatment; however, the occurrence of immune therapy resistance is the most pressing problem to solve. Copper is a mineral nutrient that is both beneficial and potentially toxic to cells and is increasingly implicated in cell proliferation and death pathways. Cuproplasia is characterized by copper-dependent cell growth and proliferation. This term encompasses both neoplasia and hyperplasia and describes the primary and secondary effects of copper. The connection between copper and cancer has been noted for decades. However, the relationship between cuproplasia and colon cancer prognosis remains unclear.MethodIn this study, we applied bioinformatics approaches including WGCNA, GSEA and etc. to delineate cuproplasia characterization of colon cancer, set up a robust Cu_riskScore model based on cuproplasia-relevant genes and found its relevant biological processes use qRT-pCR to validate our results on our cohort.ResultThe Cu_riskScore is found to be relevant to Stage and MSI-H subtype, and some biological processes including MYOGENESIS and MYC TARGETS. The Cu_riskScore high and low groups also showed different immune infiltration pattern and genomic traits. Finally, the result of our cohort showed the Cu_riskScore gene RNF113A has a marked effect in predicting immunotherapy response.DiscussionIn conclusion, we identified a cuproplasia-related gene expression signature consisting of six genes and studied the landscape of the clinical and biological characterization of this model in Colon Cancer. Furthermore, the Cu_riskScore was demonstrated to be a robust prognostic indicator and predictive factor for the benefits of immunotherapy.
Collapse
|
6
|
Wei M, Su J, Zhang J, Liu S, Ma J, Meng XP. Construction of a DDR-related signature for predicting of prognosis in metastatic colorectal carcinoma. Front Oncol 2023; 13:1043160. [PMID: 36816926 PMCID: PMC9931195 DOI: 10.3389/fonc.2023.1043160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Background Colorectal cancer (CRC) is the third most prevalent malignancy and the one of most lethal cancer. Metastatic CRC (mCRC) is the third most common cause of cancer deaths worldwide. DNA damage response (DDR) genes are closely associated with the tumorigenesis and development of CRC. In this study, we aimed to construct a DDR-related gene signature for predicting the prognosis of mCRC patients. Methods The gene expression and corresponding clinical information data of CRC/mCRC patients were obtained from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. A prognostic model was obtained and termed DDRScore by the multivariate Cox proportional hazards regression in the patients with mCRC. The Kaplan-Meier (K-M) and Receiver Operating Characteristic (ROC) curves were employed to validate the predictive ability of the prognostic model. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were performed for patients between the high-DDRscore and low-DDRscore groups. Results We constructed a prognostic model consisting of four DDR-related genes (EME2, MSH4, MLH3, and SPO11). Survival analysis showed that patients in the high-DDRscore group had a significantly worse OS than those in the low-DDRscore group. The area under the curve (AUC) value of the ROC curve of the predictive model is 0.763 in the training cohort GSE72970, 0.659 in the stage III/IV colorectal cancer (CRC) patients from The Cancer Genome Atlas (TCGA) data portal, and 0.639 in another validation cohort GSE39582, respectively. GSEA functional analysis revealed that the most significantly enriched pathways focused on nucleotide excision repair, base excision repair, homologous recombination, cytokine receptor interaction, chemokine signal pathway, cell adhesion molecules cams, ECM-receptor interaction, and focal adhesion. Conclusion The DDRscore was identified as an independent prognostic and therapy response predictor, and the DDR-related genes may be potential diagnosis or prognosis biomarkers for mCRC patients.
Collapse
Affiliation(s)
- Maohua Wei
- Department of General Surgery, Dalian Medical University, Dalian, China
| | - Junyan Su
- Department of Scientific Research Projects, ChosenMed Technology Co. Ltd., Beijing, China
| | - Jiali Zhang
- Department of Scientific Research Projects, ChosenMed Technology Co. Ltd., Beijing, China
| | - Siyao Liu
- Department of Scientific Research Projects, ChosenMed Technology Co. Ltd., Beijing, China
| | - Jia Ma
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China,*Correspondence: Xiang peng Meng, ; Jia Ma,
| | - Xiang peng Meng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China,*Correspondence: Xiang peng Meng, ; Jia Ma,
| |
Collapse
|
7
|
Miao Y, Mu L, Chen Y, Tang X, Wang J, Quan W, Mi D. Construction and Validation of a Protein-associated Prognostic Model for Gastrointestinal Cancer. Comb Chem High Throughput Screen 2023; 26:191-206. [PMID: 35430986 DOI: 10.2174/1386207325666220414105743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 11/22/2022]
Abstract
Background Gastrointestinal cancer (GIC) is a prevalent and lethal malignant tumor. It is obligatory to investigate innovative biomarkers for the diagnosis and prognosis. Proteins play a crucial role in regulating the occurrence and progression of GIC. However, the prognostic value of proteins is unclear in GIC. OBJECTIVE This paper aims to identify the hub prognosis-related proteins (PAPs) and construct a prognosis model for GIC patients for clinical application. METHODS Protein expression data of GIC was obtained from The Cancer Proteome Atlas (TCPA) and downloaded the clinicopathological data from The Cancer Genome Atlas database (TCGA). Besides, hub proteins were filtrated via univariate and multivariate Cox regression analysis. Moreover, survival analysis and nomogram were used to predict overall survival (OS). We used the calibration curves to assess the consistency of predictive and actual survival rates. The consistency index (C-index) was used to evaluate the prognostic ability of the predictive model. Furthermore, functional enrichment analysis and protein co-expression of PAPs were used to explore their roles in GIC. RESULTS Finally, a prognosis model was conducted based on ten PAPs (CYCLIND1, DVL3, NCADHERIN, SYK, ANNEXIN VII, CD20, CMET, RB, TFRC, and PREX1). The risk score calculated by the model was an independent prognostic predictor. Compared with the high-risk subgroup, the low-risk subgroup had better OS. In the TCGA cohort, the area under the curve value of the receiver operating characteristic curve of the prognostic model was 0.692. The expression of proteins and risk score had a significant association with the clinicopathological characteristics of GIC. Besides, a nomogram based on GIC clinicopathological features and risk scores could properly predict the OS of individual GIC patients. The C-index is 0.71 in the TCGA cohort and 0.73 in the GEO cohort. CONCLUSION The results indicate that the risk score is an independent prognostic biomarker and is related to the malignant clinical features of GIC patients. Besides, several PAPs associated with the survival and clinicopathological characteristics of GIC might be potential biomarkers for GIC diagnosis and treatment.
Collapse
Affiliation(s)
- Yandong Miao
- The First Clinical Medical College, Lanzhou University, Lanzhou City, 730000, China
- Gansu Academy of Traditional Chinese Medicine, Lanzhou, 730000, China
| | - Linjie Mu
- The First Clinical Medical College, Lanzhou University, Lanzhou City, 730000, China
- The First Affiliated Hospital of Kunming Medical University, Kunming, 650000, China
| | - Yonggang Chen
- The Second Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Xiaolong Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou City, 730000, China
| | - Jiangtao Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou City, 730000, China
| | - Wuxia Quan
- Qingyang People's Hospital, Qingyang City, Gansu Province, P.R. China
| | - Denghai Mi
- The First Clinical Medical College, Lanzhou University, Lanzhou City, 730000, China
- Gansu Academy of Traditional Chinese Medicine, Lanzhou, 730000, China
| |
Collapse
|
8
|
Liu J, Yu F, Liu Z, Wang X, Li J. A Robust Prognostic Signature of Tumor Microenvironment in Colorectal Cancer. Cancer Biother Radiopharm 2022; 37:963-975. [PMID: 34551265 DOI: 10.1089/cbr.2021.0171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Colorectal cancer (CRC) has been a major public health problem. Tumor microenvironment (TME) greatly contributes to the heterogeneity of CRC and is crucial for the regulation of CRC progression. The authors' study aimed to develop a robust prognostic signature for CRC patients based on TME-related genes. Materials and Methods: Gene expression data and clinicopathologic information of CRC patients were collected from Gene Expression Omnibus and The Cancer Genome Atlas databases. TME-related genes with prognostic value were identified by Cox regression and bootstrap method. The authors used the prognostic genes to construct a robust prognostic model using the least absolute shrinkage and selection operator (LASSO) regression method. The immune and stromal cell abundance of CRC samples were estimated by a microenvironment cell populations-counter method. Results: Based on a training set that comprised 893 CRC samples and 4775 TME-related genes, they established a prognostic model consisting of 25 TME-related genes. With specific risk score formulae, the prognostic model divided CRC patients into high-risk and low-risk subgroups with significantly different survival, which were further confirmed in validation cohorts consisting of other 473 CRC cases or subpopulation of specific stages. The result of time-dependent receiver operating characteristic analysis demonstrated strong predictive accuracy of the prognostic model both in training and validation cohorts. Multivariate Cox regression analysis showed that the 25-gene signature was an independent prognostic factor for overall survival, which was validated through clinical subgroups analysis. Further analysis revealed that CRC samples of high-risk group was abundant of stromal-relevant processes and had a significantly higher proportion of fibroblasts and endothelial cells infiltration. Conclusion: The authors established a robust prognostic signature of 25 TME-related genes which may be an effective tool for prognostic prediction and CRC patient stratification to assist in making treatment decisions.
Collapse
Affiliation(s)
- Jingwen Liu
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Fei Yu
- Emergency Department, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, P.R. China
| | - Zhao Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xiaojing Wang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jianming Li
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
9
|
Construction of a Prognostic Model Based on Cuproptosis-Related lncRNA Signatures in Pancreatic Cancer. Can J Gastroenterol Hepatol 2022; 2022:4661929. [PMID: 36406148 PMCID: PMC9674419 DOI: 10.1155/2022/4661929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/12/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
Aim The aim of this study is to identify cuproptosis-related lncRNAs and construct a prognostic model for pancreatic cancer patients for clinical use. Methods The expression profile of lncRNAs was downloaded from The Cancer Genome Atlas database, and cuproptosis-related lncRNAs were identified. The prognostic cuproptosis-related lncRNAs were obtained and used to establish and validate a prognostic risk score model in pancreatic cancer. Results In total, 181 cuproptosis-related lncRNAs were obtained. The prognostic risk score model was constructed based on five lncRNAs (AC025257.1, TRAM2-AS1, AC091057.1, LINC01963, and MALAT1). Patients were assigned to two groups according to the median risk score. Kaplan-Meier survival curves showed that the difference in the prognosis between the high- and low-risk groups was statistically significant. Multivariate Cox analysis showed that our risk score was an independent risk factor for pancreatic cancer patients. Receiver operator characteristic curves revealed that the cuproptosis-related lncRNA model can effectively predict the prognosis of pancreatic cancer. The principal component analysis showed a difference between the high- and low-risk groups intuitively. Functional enrichment analysis showed that different genes were involved in cancer-related pathways in patients in the high- and low-risk groups. Conclusion The risk model based on five prognostic cuproptosis-related lncRNAs can well predict the prognosis of pancreatic cancer patients. Cuproptosis-related lncRNAs could be potential biomarkers for pancreatic cancer diagnosis and treatment.
Collapse
|
10
|
Chen MM, Meng LH. The double faced role of xanthine oxidoreductase in cancer. Acta Pharmacol Sin 2022; 43:1623-1632. [PMID: 34811515 PMCID: PMC9253144 DOI: 10.1038/s41401-021-00800-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/19/2021] [Indexed: 01/02/2023] Open
Abstract
Xanthine oxidoreductase (XOR) is a critical, rate-limiting enzyme that controls the last two steps of purine catabolism by converting hypoxanthine to xanthine and xanthine to uric acid. It also produces reactive oxygen species (ROS) during the catalytic process. The enzyme is generally recognized as a drug target for the therapy of gout and hyperuricemia. The catalytic products uric acid and ROS act as antioxidants or oxidants, respectively, and are involved in pro/anti-inflammatory actions, which are associated with various disease manifestations, including metabolic syndrome, ischemia reperfusion injury, cardiovascular disorders, and cancer. Recently, extensive efforts have been devoted to understanding the paradoxical roles of XOR in tumor promotion. Here, we summarize the expression of XOR in different types of cancer and decipher the dual roles of XOR in cancer by its enzymatic or nonenzymatic activity to provide an updated understanding of the mechanistic function of XOR in cancer. We also discuss the potential to modulate XOR in cancer therapy.
Collapse
Affiliation(s)
- Man-man Chen
- grid.9227.e0000000119573309Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ling-hua Meng
- grid.9227.e0000000119573309Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
11
|
Ma B, Wang K, Liang Y, Meng Q, Li Y. Molecular Characteristics, Oncogenic Roles, and Relevant Immune and Pharmacogenomic Features of EVA1B in Colorectal Cancer. Front Immunol 2022; 13:809837. [PMID: 35250982 PMCID: PMC8888821 DOI: 10.3389/fimmu.2022.809837] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE EVA1B, a protein coding gene, is a critical paralog of EVA1A gene. Herein, our study was conducted to investigate the role of EVA1B in colorectal cancer (CRC) progression and prognosis. METHODS Pan-cancer analysis was conducted to analyze expression, genetic and epigenetic alterations, and immunological characteristics of EVA1B. Especially, immunological characteristics and mutational landscape were compared between high and low EVA1B expression groups in the combined TCGA-COAD and TCGA-READ datasets. Through random survival forest analysis, an EVA1B-derived genomic model was developed, and its prognostic value was verified in the external datasets (GSE14333, GSE39582, and GSE87211). Drug sensitivity was compared between high- and low-risk subpopulations. A nomogram was conducted through integrating independent factors. RESULTS EVA1B expression presented a remarkable upregulation in most cancer types, especially CRC. EVA1B expression was significantly correlated to DNA methyltransferases, DNA mismatch repair genes, m6A regulators, TMB, and MSI across pan-cancer. High EVA1B expression indicated an undesirable CRC patients' prognosis. Additionally, its upregulation was correlated to enhanced immune cell infiltration, increased stromal and immune activation, and elevated activities of cancer immunity cycle. Higher frequencies of amplification and deletion were investigated in high EVA1B expression subpopulation. Following verification, the EVA1B-derived genomic model reliably predicted patients' prognosis and drug responses. The nomogram (age, stage, EVA1B-derived risk score) was conducted to quantify an individual's survival probability. Furthermore, our experimental validation based on immunohistochemistry indicated that EVA1B overexpression is correlated with CRC tumorigenesis and poor outcomes in our CRC patients' cohort. CONCLUSION Collectively, our findings provided valuable resource for guiding the mechanisms and therapeutic analysis of EVA1B in CRC.
Collapse
Affiliation(s)
- Bin Ma
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Kangchun Wang
- Department of Organ Transplantation and Hepatobiliary, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yu Liang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Qingkai Meng
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Yongmin Li
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
12
|
Song D, Zhang D, Chen S, Wu J, Hao Q, Zhao L, Ren H, Du N. Identification and validation of prognosis-associated DNA repair gene signatures in colorectal cancer. Sci Rep 2022; 12:6946. [PMID: 35484177 PMCID: PMC9050689 DOI: 10.1038/s41598-022-10561-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/04/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor. DNA damage plays a crucial role in tumorigenesis, and abnormal DNA repair pathways affect the occurrence and progression of CRC. In the current study, we aimed to construct a DNA repair-related gene (DRG) signature to predict the overall survival (OS) of patients with CRC patients. The differentially expressed DRGs (DE-DRGs) were analyzed using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The prognostic gene signature was identified by univariate Cox regression and least absolute shrinkage and selection operator (LASSO)-penalized Cox proportional hazards regression analysis. The predictive ability of the model was evaluated using the Kaplan–Meier curves and time-dependent receiver operating characteristic (ROC) curves. The gene set enrichment analysis (GSEA) was performed to explore the underlying biological processes and signaling pathways. ESTIMATE and CIBERSORT were implemented to estimate the tumor immune score and immune cell infiltration status between the different risk group. The half-maximal inhibitory concentration (IC50) was evaluated to representing the drug response of this signature. Nine DE-DRGs (ESCO2, AXIN2, PLK1, CDC25C, IGF1, TREX2, ALKBH2, ESR1 and MC1R) signatures was constructed to classify patients into high- and low-risk groups. The risk score was an independent prognostic indicator of OS (hazard ratio > 1, P < 0.001). The genetic alteration analysis indicated that the nine DE-DRGs in the signature were changed in 63 required samples (100%), and the major alteration was missense mutation. Function enrichment analysis revealed that the immune response and mtotic sister chromatid segregation were the main biological processes. The high-risk group had higher immune score than the low-risk group. What’s more, low-risk patients were more sensitive to selumetinib and dasatinib. The nine DE-DRGs signature was significantly associated with OS and provided a new insight for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Dingli Song
- Department of Thoracic Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Dai Zhang
- Department of Oncology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Sisi Chen
- Department of Thoracic Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jie Wu
- Department of Thoracic Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Qian Hao
- Department of Oncology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Lili Zhao
- Department of Neurology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Hong Ren
- Department of Thoracic Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Ning Du
- Department of Thoracic Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
13
|
Miao Y, Su B, Tang X, Wang J, Quan W, Chen Y, Mi D. Construction and validation of m 6 A RNA methylation regulators associated prognostic model for gastrointestinal cancer. IET Syst Biol 2022; 16:59-71. [PMID: 35174637 PMCID: PMC8965361 DOI: 10.1049/syb2.12040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/26/2021] [Accepted: 01/30/2022] [Indexed: 11/20/2022] Open
Abstract
N6-methyladenosine (m6 A) RNA methylation is correlated with carcinogenesis and dynamically possessed through the m6 A RNA methylation regulators. This paper aimed to explore 13 m6 A RNA methylation regulators' role in gastrointestinal cancer (GIC) and determine the risk model and prognosis value of m6 A RNA methylation regulators in GIC. We used several bioinformatics methods to identify the differential expression of m6 A RNA methylation regulators in GIC, constructed a prognostic model, and carried out functional enrichment analysis. Eleven of 13 m6 A RNA methylation regulators were differentially expressed in different clinicopathological characteristics of GIC, and m6 A RNA methylation regulators were nearly associated with GIC. We constructed a risk model based on five m6 A RNA methylation regulators (METTL3, FTO, YTHDF1, ZC3H13, and WTAP); the risk score is an independent prognosis biomarker. Moreover, the five m6 A RNA methylation regulators can also forecast the 1-, 3- and 5-year overall survival through a nomogram. Furthermore, four hallmarks of oxidative phosphorylation, glycolysis, fatty acid metabolism, and cholesterol homoeostasis gene sets were significantly enriched in GIC. m6 A RNA methylation regulators were related to the malignant clinicopathological characteristics of GIC and may be used for prognostic stratification and development of therapeutic strategies.
Collapse
Affiliation(s)
- Yandong Miao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Bin Su
- Department of Oncology, The 920th Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Kunming, China
| | - Xiaolong Tang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jiangtao Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Wuxia Quan
- Qingyang People's Hospital, Qingyang, China
| | | | - Denghai Mi
- The First Clinical Medical College of Lanzhou University, Lanzhou, China.,Gansu Academy of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
14
|
Dang Q, Liu Z, Hu S, Chen Z, Meng L, Hu J, Wang G, Yuan W, Han X, Li L, Sun Z. Derivation and Clinical Validation of a Redox-Driven Prognostic Signature for Colorectal Cancer. Front Oncol 2021; 11:743703. [PMID: 34778061 PMCID: PMC8578893 DOI: 10.3389/fonc.2021.743703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC), a seriously threat that endangers public health, has a striking tendency to relapse and metastasize. Redox-related signaling pathways have recently been extensively studied in cancers. However, the study and potential role of redox in CRC remain unelucidated. We developed and validated a risk model for prognosis and recurrence prediction in CRC patients via identifying gene signatures driven by redox-related signaling pathways. The redox-driven prognostic signature (RDPS) was demonstrated to be an independent risk factor for patient survival (including OS and RFS) in four public cohorts and one clinical in-house cohort. Additionally, there was an intimate association between the risk score and tumor immune infiltration, with higher risk score accompanied with less immune cell infiltration. In this study, we used redox-related factors as an entry point, which may provide a broader perspective for prognosis prediction in CRC and have the potential to provide more promising evidence for immunotherapy.
Collapse
Affiliation(s)
- Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhuang Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lingfang Meng
- Department of Ultrasound, Zhengzhou Sixth People's Hospital, Henan Infectious Disease Hospital, Zhengzhou, China
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guixian Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Lu W, Wu Y, Huang S, Zhang D. A Ferroptosis-Related Gene Signature for Predicting the Prognosis and Drug Sensitivity of Head and Neck Squamous Cell Carcinoma. Front Genet 2021; 12:755486. [PMID: 34745224 PMCID: PMC8566369 DOI: 10.3389/fgene.2021.755486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/07/2021] [Indexed: 01/20/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers worldwide and has a high mortality. Ferroptosis, an iron-dependent form of programmed cell death, plays a crucial role in tumor suppression and chemotherapy resistance in cancer. However, the prognostic and clinical values of ferroptosis-related genes (FRGs) in HNSCC remain to be further explored. In the current study, we constructed a ferroptosis-related prognostic model based on the Cancer Genome Atlas database and then explored its prognostic and clinical values in HNSCC via a series of bioinformatics analyses. As a result, we built a four-gene prognostic signature, including FTH1, BNIP3, TRIB3, and SLC2A3. Survival analysis showed that the high-risk group presented significantly poorer overall survival than the low-risk group. Moreover, the ferroptosis-related signature was found to be an independent prognostic predictor with high accuracy in survival prediction for HNSCC. According to immunity analyses, we found that the low-risk group had higher anti-tumor immune infiltration cells and higher expression of immune checkpoint molecules and meanwhile corelated more closely with some anti-tumor immune functions. Meanwhile, all the above results were validated in the independent HSNCC cohort GSE65858. Besides, the signature was found to be remarkably correlated with sensitivity of common chemotherapy drugs for HNSCC patients and the expression levels of signature genes were also significantly associated with drug sensitivity to cancer cells. Overall, we built an effective ferroptosis-related prognostic signature, which could predict the prognosis and help clinicians to perform individualized treatment strategy for HNSCC patients.
Collapse
Affiliation(s)
- Wei Lu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yihua Wu
- Department of Oral Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
16
|
Ottaiano A, Circelli L, Santorsola M, Savarese G, Fontanella D, Gigantino V, Di Mauro A, Capuozzo M, Zappavigna S, Lombardi A, Perri F, Cascella M, Granata V, Capuozzo M, Nasti G, Caraglia M. Metastatic colorectal cancer and type 2 diabetes: prognostic and genetic interactions. Mol Oncol 2021; 16:319-332. [PMID: 34668636 PMCID: PMC8763648 DOI: 10.1002/1878-0261.13122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/04/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
The present study was undertaken to analyze prognostic and genetic interactions between type 2 diabetes and metastatic colorectal cancer. Patients’ survival was depicted through the Kaplan–Meier product limit method. Prognostic factors were examined through the Cox proportional‐hazards regression model, and associations between diabetes and clinical‐pathologic variables were evaluated by the χ2 test. In total, 203 metastatic colorectal cancer patients were enrolled. Lymph nodes (P = 0.0004) and distant organs (> 2 distant sites, P = 0.0451) were more frequently involved in diabetic patients compared with those without diabetes. Diabetes had an independent statistically significant negative prognostic value for survival. Highly selected patients with cancer and/or diabetes as their only illness(es) were divided into three groups: (a) seven oligo‐metastatic patients without diabetes, (b) 10 poly‐metastatic patients without diabetes, and (c) 12 poly‐metastatic diabetic patients. These groups of patients were genetically characterized through the Illumina NovaSeq 6000 (San Diego, CA, USA) platform and TruSigt™Oncology 500 kit, focusing on genes involved in diabetes and colorectal cancer. Gene variants associated with diabetes and cancer were more frequent in patients in group 3. We found that type 2 diabetes is a negative prognostic factor for survival in colorectal cancer. Diabetes‐associated gene variants could concur with malignancy, providing a rational basis for innovative models of tumor progression and therapy.
Collapse
Affiliation(s)
| | - Luisa Circelli
- AMES, Centro Polidiagnostico Strumentale srl, Naples, Italy
| | | | | | | | | | | | | | - Silvia Zappavigna
- Department of Precision Medicine, University "L. Vanvitelli" of Naples, Italy.,Cytometric and Mutational Diagnostics, Azienda Universitaria Policlinico "L. Vanvitelli,", Naples, Italy
| | - Angela Lombardi
- Department of Precision Medicine, University "L. Vanvitelli" of Naples, Italy.,Cytometric and Mutational Diagnostics, Azienda Universitaria Policlinico "L. Vanvitelli,", Naples, Italy
| | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale,", Naples, Italy
| | - Marco Cascella
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale,", Naples, Italy
| | - Vincenza Granata
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale,", Naples, Italy
| | | | - Guglielmo Nasti
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale,", Naples, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University "L. Vanvitelli" of Naples, Italy.,Cytometric and Mutational Diagnostics, Azienda Universitaria Policlinico "L. Vanvitelli,", Naples, Italy.,Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Ariano Irpino, Italy
| |
Collapse
|
17
|
Miao YD, Kou ZY, Wang JT, Mi DH. Prognostic implications of ferroptosis-associated gene signature in colon adenocarcinoma. World J Clin Cases 2021; 9:8671-8693. [PMID: 34734046 PMCID: PMC8546824 DOI: 10.12998/wjcc.v9.i29.8671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/17/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colon adenocarcinoma (COAD) is one of the most common and fatal malignant tumors, which increases the difficulty of prognostic predictions. Thus, new biomarkers for the diagnosis and prognosis of COAD should be explored. Ferroptosis is a recently identified programmed cell death process that has the characteristics of iron-dependent lipid peroxide accumulation. However, the predictive value of ferroptosis-related genes (FRGs) for COAD still needs to be further clarified.
AIM To identify some critical FRGs and construct a COAD patient prognostic signature for clinical utilization.
METHODS The Cancer Genome Atlas database (TCGA) and Gene Expression Omnibus databases were the data sources for mRNA expression and corresponding COAD patient clinical information. Differentially expressed FRGs were recognized using R and Perl software. We constructed a multi-FRG signature of the TCGA-COAD cohort by performing a univariate Cox regression and least absolute shrinkage and selection operator Cox regression analysis. COAD patients from the Gene Expression Omnibus cohort were utilized for verification.
RESULTS Our research showed that most of the FRGs (85%) were differentially expressed between the corresponding adjacent normal tissues and cancer tissues in the TCGA-COAD cohort. Seven FRGs were related to overall survival (OS) in the univariate Cox analysis (all P < 0.05). A model with five FRGs (AKR1C1, AKR1C3, ALOX12, CRYAB, and FDFT1) was constructed to divide patients into high- and low-risk groups. The OS of patients in the high-risk group was significantly lower than that of the low-risk group (all P < 0.01 in the TCGA and Gene Expression Omnibus cohorts). The risk score was an independent prognosticator of OS in the multivariate Cox analysis (hazard ratio > 1, P < 0.01). The predictive capacity of the model was verified by a receiver operating characteristic curve analysis. In addition, a nomogram based on the expression of five hub FRGs and risk score can precisely predict the OS of individual COAD cancer patients. Immune correlation analysis and functional enrichment analysis results revealed that immunology-related pathways were abundant, and the immune states of the high-risk group and the low-risk group were different.
CONCLUSION In conclusion, a novel five FRG model can be utilized for predicting prognosis in COAD. Targeting ferroptosis may be a treatment option for COAD.
Collapse
Affiliation(s)
- Yan-Dong Miao
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Zhi-Yong Kou
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650000, Yunnan Province, China
| | - Jiang-Tao Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Deng-Hai Mi
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Dean’s Office, Gansu Academy of Traditional Chinese Medicine, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
18
|
Zhang Z, Luo A, Zeng Z, Zhou Y, Wu W. Identification of hub genes and functional modules in colon adenocarcinoma based on public databases by bioinformatics analysis. J Gastrointest Oncol 2021; 12:1613-1624. [PMID: 34532115 DOI: 10.21037/jgo-21-415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/05/2021] [Indexed: 11/06/2022] Open
Abstract
Background Colon adenocarcinoma (COAD) is one of the most common cancers in the world. Although an extensive effort has been made to elucidate its pathogenesis, the underlying molecular mechanisms and genetic characteristics remain elusive. Methods In this study, protein-coding transcript expression profiles of COAD were downloaded from the Cancer RNA-Seq Nexus (CRN) database. They were then integrated to identify the overlapping transcripts expressed in every COAD RNA sequencing (RNA-seq) subset. The functional annotation of these overlapping genes (OLGs) involved noting their biological process (BP), cellular components (CC), molecular function (MF) for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway in the Database for Annotation, Visualization and Integrated Discovery (DAVID). Protein-protein interaction (PPI) networks were then constructed and analyzed using Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and Cytoscape 3.8.2. Results A total of 10 hub genes and 3 functional modules were screened by the plugin cytoHubba and MCODE, respectively. The plugin ClueGO and DAVID were used for the functional enrichment analyses of both hub genes and modules. The expression of hub genes was verified through the gene expression profiling interactive analysis (GEPIA) database. Survival analysis of the hub genes revealed that low expressions of ADCY5, GNG2, and PTPRC were significantly associated with an improved COAD prognosis. Furthermore, the expression level of ADCY5 in stages I/II was lower than that in stages III/IV, which seems to explain why the low expression of ADCY5 results in a better prognosis. Conclusions The identification of hub genes, functional modules, and pathways have the potential to improve our understanding of the causes and underlying molecular events of COAD. The hub gene ADCY5 could also be a prognostic monitoring indicator or therapeutic target in the treatment of COAD.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Department of Geratology Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Aihong Luo
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijun Zeng
- Department of Geratology Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yikai Zhou
- Department of Geratology Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Wu
- Department of Geratology Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Miao YD, Mu LJ, Mi DH. Metabolism-associated genes in occurrence and development of gastrointestinal cancer: Latest progress and future prospect. World J Gastrointest Oncol 2021; 13:758-771. [PMID: 34457185 PMCID: PMC8371517 DOI: 10.4251/wjgo.v13.i8.758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/27/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancer remains one of the most prevalent cancers in the world. The occurrence and progression of GI cancer involve multiple events. Metabolic reprogramming is one of the hallmarks of cancer and is intricately related to tumorigenesis. Many metabolic genes are involved in the occurrence and development of GI cancer. Research approaches combining tumor genomics and metabolomics are more likely to provide deeper insights into this field. In this paper, we review the roles of metabolism-associated genes, especially those involved in the regulation pathways, in the occurrence and progression of GI cancer. We provide the latest progress and future prospect into the different molecular mechanisms of metabolism-associated genes involved in the occurrence and development of GI cancer.
Collapse
Affiliation(s)
- Yan-Dong Miao
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Lin-Jie Mu
- The First Affiliated Hospital, Kunming Medical University, Kunming 650000, Yunnan Province, China
| | - Deng-Hai Mi
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Dean’s Office, Gansu Academy of Traditional Chinese Medicine, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
20
|
Investigating the Mechanism of Scutellariae barbata Herba in the Treatment of Colorectal Cancer by Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3905367. [PMID: 34381520 PMCID: PMC8352706 DOI: 10.1155/2021/3905367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/11/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022]
Abstract
Background Colorectal cancer (CRC) is one of the most common gastrointestinal tumors, which accounts for approximately 10% of all diagnosed cancers and cancer deaths worldwide per year. Scutellariae barbatae Herba (SBH) is one of the most frequently used traditional Chinese medicine (TCM) in the treatment of CRC. Although many experiments have been carried out to explain the mechanisms of SBH, the mechanisms of SBH have not been illuminated fully. Thus, we constructed a network pharmacology and molecular docking to investigate the mechanisms of SBH. Methods We adopted active constituent prescreening, target predicting, protein-protein interaction (PPI) analysis, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, differentially expressed gene analysis, and molecular docking to establish a system pharmacology database of SBH against CRC. Results A total of 64 active constituents of SBH were obtained and 377 targets were predicted, and the result indicated that quercetin, luteolin, wogonin, and apigenin were the main active constituents of SBH. Glucocorticoid receptor (NR3C1), pPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform (PIK3CA), cellular tumor antigen p53 (TP53), transcription factor AP-1 (JUN), mitogen-activated protein kinase 1 (MAPK1), Myc protooncogene protein (MYC), cyclin-dependent kinase 1 (CDK1), and broad substrate specificity ATP-binding cassette transporter ABCG2 (ABCG2) were the major targets of SBH in the treatment of CRC. GO analysis illustrated that the core biological process regulated by SBH was the regulation of the cell cycle. Thirty pathways were presented and 8 pathways related to CRC were involved. Molecular docking presented the binding details of 3 key targets with 6 active constituents. Conclusions The mechanisms of SBH against CRC depend on the synergistic effect of multiple active constituents, multiple targets, and multiple pathways.
Collapse
|
21
|
Miao Y, Zhang H, Su B, Wang J, Quan W, Li Q, Mi D. Construction and validation of an RNA-binding protein-associated prognostic model for colorectal cancer. PeerJ 2021; 9:e11219. [PMID: 33868829 PMCID: PMC8029696 DOI: 10.7717/peerj.11219] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent and fatal malignancies, and novel biomarkers for the diagnosis and prognosis of CRC must be identified. RNA-binding proteins (RBPs) are essential modulators of transcription and translation. They are frequently dysregulated in various cancers and are related to tumorigenesis and development. The mechanisms by which RBPs regulate CRC progression are poorly understood and no clinical prognostic model using RBPs has been reported in CRC. We sought to identify the hub prognosis-related RBPs and to construct a prognostic model for clinical use. mRNA sequencing and clinical data for CRC were obtained from The Cancer Genome Atlas database (TCGA). Gene expression profiles were analyzed to identify differentially expressed RBPs using R and Perl software. Hub RBPs were filtered out using univariate Cox and multivariate Cox regression analysis. We used functional enrichment analysis, including Gene Ontology and Gene Set Enrichment Analysis, to perform the function and mechanisms of the identified RBPs. The nomogram predicted overall survival (OS). Calibration curves were used to evaluate the consistency between the predicted and actual survival rate, the consistency index (c-index) was calculated, and the prognostic effect of the model was evaluated. Finally, we identified 178 differently expressed RBPs, including 121 up-regulated and 57 down-regulated proteins. Our prognostic model was based on nine RBPs (PNLDC1, RRS1, HEXIM1, PPARGC1A, PPARGC1B, BRCA1, CELF4, AEN and NOVA1). Survival analysis showed that patients in the high-risk subgroup had a worse OS than those in the low-risk subgroup. The area under the curve value of the receiver operating characteristic curve of the prognostic model is 0.712 in the TCGA cohort and 0.638 in the GEO cohort. These results show that the model has a moderate diagnostic ability. The c-index of the nomogram is 0.77 in the TCGA cohort and 0.73 in the GEO cohort. We showed that the risk score is an independent prognostic biomarker and that some RBPs may be potential biomarkers for the diagnosis and prognosis of CRC.
Collapse
Affiliation(s)
- Yandong Miao
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Hongling Zhang
- Cancer Ward, Palliative Medical Center, New Kunhua Hospital, Kunming, Yunnan, China
| | - Bin Su
- Department of Oncology, The 920th Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Kunming, Yunnan, China
| | - Jiangtao Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Wuxia Quan
- Qingyang People's Hospital, Qingyang, Gansu, China
| | - Qiutian Li
- Department of Oncology, The 920th Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Kunming, Yunnan, China
| | - Denghai Mi
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,Gansu Academy of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
22
|
Cui Y, Han B, Zhang H, Liu H, Zhang F, Niu R. Identification of Metabolic-Associated Genes for the Prediction of Colon and Rectal Adenocarcinoma. Onco Targets Ther 2021; 14:2259-2277. [PMID: 33833525 PMCID: PMC8020594 DOI: 10.2147/ott.s297134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/05/2021] [Indexed: 12/31/2022] Open
Abstract
Background and Aim Uncontrolled proliferation is the most prominent biological feature of tumors. In order to rapidly proliferate, tumor cells regulate their metabolic behavior by controlling the expression of metabolism-related genes (MRGs) to maximize the utilization of available nutrients. In this study, we aimed to construct prognosis models for colorectal adenocarcinoma (COAD) and rectum adenocarcinoma (READ) using MRGs to predict the prognoses of patients. Methods We first acquired the gene expression profiles of COAD and READ from the TCGA database, and then utilized univariate Cox analysis, Lasso regression, and multivariable Cox analysis to identify the MRGs for risk models. Results Eight genes (CPT1C, PLCB2, PLA2G2D, GAMT, ENPP2, PIP4K2B, GPX3, and GSR) in the colon cancer risk model and six genes (TDO2, PKLR, GAMT, EARS2, ACO1, and WAS) in the rectal cancer risk model were identified successfully. Multivariate Cox analysis indicated that these two models could accurately and independently predict overall survival (OS) for patients with COAD or READ. Furthermore, functional enrichment analysis was used to identify the metabolism pathway of MRGs in the risk models and analyzed these genes comprehensively. Then, we verified the prognosis model in independent COAD cohorts (GSE17538) and detected the correlations of the protein expression levels of GSR and ENPP2 with prognosis for COAD or READ. Conclusion In this study, 14 MRGs were identified as potential prognostic biomarkers and therapeutic targets for colorectal cancer.
Collapse
Affiliation(s)
- Yanfen Cui
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, People's Republic of China
| | - Baoai Han
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, People's Republic of China
| | - He Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, People's Republic of China
| | - Hui Liu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, People's Republic of China
| | - Fei Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, People's Republic of China
| | - Ruifang Niu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, People's Republic of China
| |
Collapse
|
23
|
Ahluwalia P, Kolhe R, Gahlay GK. The clinical relevance of gene expression based prognostic signatures in colorectal cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188513. [PMID: 33493614 DOI: 10.1016/j.bbcan.2021.188513] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers, with more than one million new cases every year. In the last few decades, several advancements in therapeutic and preventative levels have reduced the mortality rate, but new biomarkers are required for improved prognosis. The alterations at the genetic and epigenetic level have been recognized as major players in tumorigenesis. The products of gene expression in the form of mRNA, microRNA, and long-noncoding RNA, have started to emerge as important regulatory molecules, playing an important role in cancer. Gene-expression based prognostic risk scores, which quantify and compare their expression, have emerged as promising biomarkers with enormous clinical value. These composite multi-gene models in which more than one gene is used to predict prognosis have been shown to be significantly effective in identifying patients with multiple clinico-pathological risks like overall mortality, response to chemotherapy, risk of metastasis, etc. The advent of microarray and advanced sequencing technologies have led to the generation of large datasets like TCGA (The Cancer Genome Atlas) and GEO (Gene Expression Omnibus), which have fueled the search for new biomarkers. Continuous evaluation of these candidate biomarkers in clinical settings is promising to improve the management of CRC. These composite gene signatures provide potential in identifying high-risk patients, which might help clinicians to better manage these patients and design appropriate personalized therapeutic interventions. In this review, we emphasize on composite prognostic scores from diverse resources with clinical utility in CRC.
Collapse
Affiliation(s)
- Pankaj Ahluwalia
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India; Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Gagandeep K Gahlay
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India.
| |
Collapse
|
24
|
Miao Y, Wang J, Ma X, Yang Y, Mi D. Identification prognosis-associated immune genes in colon adenocarcinoma. Biosci Rep 2020; 40:BSR20201734. [PMID: 33140821 PMCID: PMC7670579 DOI: 10.1042/bsr20201734] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/15/2020] [Accepted: 11/02/2020] [Indexed: 12/25/2022] Open
Abstract
Colon adenocarcinoma (COAD) is one of the most prevalent malignant tumors worldwide. Immune genes (IGs) have a considerable correlation with tumor initiation and prognosis. The present paper aims to identify the prognosis value of IGs in COAD and conduct a prognosis model for clinical utility. Gene expression data of COAD were downloaded from The Cancer Genome Atlas (TCGA), screening and analyzing differentially expressed IGs by bioinformatics. Core genes were screened by univariate and multivariate Cox regression analyses. Survival analysis was appraised by the Kaplan-Meier method and the log-rank test. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment Analysis (GSEA) were used to identify IGs' relevant signal pathways. We predicted the overall survival (OS) by nomogram. Finally, a prognosis model was conducted based on 12 IGs (SLC10A2, CXCL3, NOX4, FABP4, ADIPOQ, IGKV1-33, IGLV6-57, INHBA, UCN, VIP, NGFR, and TRDC). The risk score was an independent prognostic factor, and a nomogram could accurately predict the OS of individual COAD patients. These results were validated in GSE39582, GSE12945, and GSE103479 cohorts. Functional enrichment analysis demonstrated that these IGs are mainly enriched in hormone secretion, hormone transport, lipid transport, cytokine-cytokine receptor interaction, and peroxisome proliferators-activated receptor signaling pathway. In summary, the risk score is an independent prognostic biomarker. We also excavated several IGs related to COAD's survival and maybe potential biomarkers for COAD diagnosis and treatment.
Collapse
Affiliation(s)
- Yandong Miao
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, P.R. China
| | - Jiangtao Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, P.R. China
| | - Xueping Ma
- Second People’s Hospital of Gansu Province, Lanzhou City, Gansu Province, P.R. China
| | - Yuan Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, P.R. China
| | - Denghai Mi
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, P.R. China
- Gansu Academy of Traditional Chinese Medicine, Lanzhou City, Gansu Province, P.R. China
| |
Collapse
|