1
|
Ratner MH, Rutchik JS. A rare case of early onset lewy body dementia with parkinsonism associated with chronic exposure to copper contaminated drinking water. FRONTIERS IN TOXICOLOGY 2024; 6:1451235. [PMID: 39285928 PMCID: PMC11402898 DOI: 10.3389/ftox.2024.1451235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024] Open
Abstract
There is a well-recognized relationship between a person's body burden of essential trace elements such as copper and their neurological function in which both deficiencies and exposures to excessive concentrations are associated with adverse clinical outcomes. Preclinical studies indicate chronic excess copper exposure is associated with altered motor function, dopaminergic neuronal loss, astrocytosis, and microgliosis. Copper also promotes oligomerization and fibrilization of α-synuclein suggesting it may hasten the course of an α-synucleinopathy. Here we report a rare case of early onset Lewy Body Dementia with Parkinsonism in a 53-year-old Caucasian woman exposed to copper contaminated drinking water for more than 10 years. Her hair and that of her daughter had streaks of blue-green discoloration as did the porcelain sinks in their home. Testing confirmed copper contamination of the drinking water. A neurologist diagnosed her with Lewy Body Dementia with Parkinsonism. Skin biopsy for phosphorylated α was consistent with a diagnosis of an α-synucleinopathy. These findings suggest chronic exposure to excessive copper may act as disease modifying factor in Lewy Body Dementia with Parkinsonism. It has previously been recommended that individuals at risk of Alzheimer's disease (AD) avoid excessive intake of copper. Genetic studies indicate that Lewy Body Dementia shares risk factors and pathways with AD. Based on the observations in this patient we recommend that individuals at risk for an α-synucleinopathy based on a positive family history, genetic testing, and/or positive results on a skin biopsy for phosphorylated α-synuclein avoid exposure to excess copper.
Collapse
Affiliation(s)
- Marcia H Ratner
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Jonathan S Rutchik
- Neurology, Environmental and Occupational Medicine Associates, CA and Division of Medicine, Occupational Medicine, University of California at San Francisco, San Francisco, CA, United States
| |
Collapse
|
2
|
Peasah MY, Awewomom J, Osae R, Agorku ES. Trace elements determination and health risk assessment of groundwater sources in Kumasi Metropolis, Ghana. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:857. [PMID: 39196296 DOI: 10.1007/s10661-024-13024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Trace element (TEs) contamination in groundwater is a key factor for health risk assessment and one of the environmental challenges linked with Ghana's sustainable development. This study aims to investigate TE concentrations in groundwater used for drinking and domestic purposes and their potential health risk in the Kumasi Metropolis using multivariate statistics. In the study, 23 groundwater samples were analyzed for 32 TEs using Perkin Elmer Nexion 2000 Inductively Coupled Plasma Mass Spectrometer (ICP-MS). Levels of TEs recorded in the study were in order of Na > Si > Ca > K > Mg > S > Ba > Cu > Zn > Al > Sr > Li > Mn > P > Fe > B > Pb > Ni > Co > Bi > Se > Sb > Cr > As > Ti > Be > V > U > C d > T l > Mo > Hg. The study revealed that the concentration of trace and toxic elements like Al, Cu, and Pb exceeded their corresponding WHO permissible standards. Hazard index (HI) values and total likely cancer risk (TLCR) values for non-carcinogenic and carcinogenic health risks indicate that 91.3% of the total sampling sites presented health concerns to adults and children. The mean TLCR values associated with exposure to carcinogenic metals via ingestion of groundwater samples were estimated to be 2.09 × 10-4 and 4.44 × 10-4 for adults and children respectively. Exposure through the ingestion pathway was found to be more risky compared to dermal contacts. Children are particularly vulnerable to these health hazards. Pearson correlation (PC) matrix, principal component analysis (PCA), and hierarchical cluster analysis (HCA) suggested that sources of TEs in the groundwater are attributed to both anthropogenic and geogenic factors.
Collapse
Affiliation(s)
- Michael Yaw Peasah
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Jonathan Awewomom
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Richard Osae
- Institute for Environment and Sanitation Studies, University of Ghana, Accra, Ghana
| | - Eric Selorm Agorku
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
3
|
Kipker N, Alessi K, Bojkovic M, Padda I, Parmar MS. Neurological-Type Wilson Disease: Epidemiology, Clinical Manifestations, Diagnosis, and Management. Cureus 2023; 15:e38170. [PMID: 37252588 PMCID: PMC10224700 DOI: 10.7759/cureus.38170] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/14/2023] [Indexed: 05/31/2023] Open
Abstract
Wilson disease (WD) is a complex metabolic disorder caused by disruptions to copper regulation within the body, leading to an unregulated accumulation of copper within various tissues. A less understood organ affected by the collection of copper is the brain, which further leads to the generation of oxygen-free radicals and resultant demyelination. Healthcare providers must keep the neurological form of WD in their list of differentials when patients present with diverse neurological manifestations. The initial step to diagnosis will be to distinguish the characteristic disease presentation with a thorough history and physical and neurological examination. A high clinical disease suspicion of WD should warrant further investigation by laboratory workup and imaging modalities to support the clinical findings and confirm the diagnosis of WD. Once a WD diagnosis is established, the healthcare provider should treat the underlying biological process of WD symptomatically. This review article discusses the epidemiology and pathogenesis of the neurological form of WD, its clinical and behavioral implications, diagnostic features, and treatment modalities (current and emerging therapies), further aiding healthcare professionals in early diagnosis and management strategies.
Collapse
Affiliation(s)
- Nathaniel Kipker
- Foundational Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, USA
| | - Kaitlyn Alessi
- Foundational Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, USA
| | | | - Inderbir Padda
- Internal Medicine, Richmond University Medical Center, New York, USA
| | - Mayur S Parmar
- Foundational Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, USA
| |
Collapse
|
4
|
Tian L, Dong T, Hu S, Zhao C, Yu G, Hu H, Yang W. Radiomic and clinical nomogram for cognitive impairment prediction in Wilson's disease. Front Neurol 2023; 14:1131968. [PMID: 37188313 PMCID: PMC10177658 DOI: 10.3389/fneur.2023.1131968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
Objective To investigate potential biomarkers for the early detection of cognitive impairment in patients with Wilson's disease (WD), we developed a computer-assisted radiomics model to distinguish between WD and WD cognitive impairment. Methods Overall, 136 T1-weighted MR images were retrieved from the First Affiliated Hospital of Anhui University of Chinese Medicine, including 77 from patients with WD and 59 from patients with WD cognitive impairment. The images were divided into training and test groups at a ratio of 70:30. The radiomic features of each T1-weighted image were extracted using 3D Slicer software. R software was used to establish clinical and radiomic models based on clinical characteristics and radiomic features, respectively. The receiver operating characteristic profiles of the three models were evaluated to assess their diagnostic accuracy and reliability in distinguishing between WD and WD cognitive impairment. We combined relevant neuropsychological test scores of prospective memory to construct an integrated predictive model and visual nomogram to effectively assess the risk of cognitive decline in patients with WD. Results The area under the curve values for distinguishing WD and WD cognitive impairment for the clinical, radiomic, and integrated models were 0.863, 0.922, and 0.935 respectively, indicative of excellent performance. The nomogram based on the integrated model successfully differentiated between WD and WD cognitive impairment. Conclusion The nomogram developed in the current study may assist clinicians in the early identification of cognitive impairment in patients with WD. Early intervention following such identification may help improve long-term prognosis and quality of life of these patients.
Collapse
Affiliation(s)
- Liwei Tian
- Graduate School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Ting Dong
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
- Key Laboratory of Xin’An Medicine, Ministry of Education, Hefei, Anhui, China
- *Correspondence: Ting Dong,
| | - Sheng Hu
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Chenling Zhao
- Graduate School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Guofang Yu
- Graduate School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Huibing Hu
- Qimen People's Hospital, Huangshan, Anhui, China
| | - Wenming Yang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
- Key Laboratory of Xin’An Medicine, Ministry of Education, Hefei, Anhui, China
| |
Collapse
|
5
|
Caioni G, Cimini A, Benedetti E. Food Contamination: An Unexplored Possible Link between Dietary Habits and Parkinson’s Disease. Nutrients 2022; 14:nu14071467. [PMID: 35406080 PMCID: PMC9003245 DOI: 10.3390/nu14071467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Importance of a healthy lifestyle in maintaining the population’s well-being and health, especially in terms of balanced nutrition, is well known. Food choice of and dieting habits could impact disease management, which is especially true for Parkinson’s disease (PD). However, nowadays, it is not that simple to maintain a balance in nutrition, and the idea of a healthy diet tends to fade as the consequence of a western lifestyle. This should not only be dealt with in the context of food choice, but also from an environmental point of view. What we put into our bodies is strictly related to the quality of ecosystems we live in. For these reasons, attention should be directed to all the pollutants, which in many cases, we unknowingly ingest. It will be necessary to explore the interaction between food and environment, since human activity also influences the raw materials destined for consumption. This awareness can be achieved by means of an innovative scientific approach, which involves the use of new models, in order to overcome the traditional scientific investigations included in the study of Parkinson’s disease.
Collapse
Affiliation(s)
- Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.C.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.C.)
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.C.)
- Correspondence: ; Tel.: +39-086-243-3267
| |
Collapse
|
6
|
Arora N, Wasti K, Suri V, Malhotra P. “Face of a Giant Panda” and “Beating Wings” in a Young Male. Cureus 2022; 14:e22429. [PMID: 35371680 PMCID: PMC8941676 DOI: 10.7759/cureus.22429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 11/18/2022] Open
Abstract
Mutations in the gene coding for ATPase copper transporting beta polypeptide (ATP7B) cause Wilson's disease, located on chromosome 13. It has mainly hepatic and neurological presentations. Movement disorders are a characteristic finding in Wilson's disease, and “wing-beating tremors” are classical characteristics found on physical examination. We came across and managed a case of Wilson's disease with primarily neurological presentation with classical wing-beating tremors and “face of a giant panda” on radiology. As the patient had very typical findings and he also improved with the treatment, it will be beneficial to the clinicians in their daily practice to identify the disease seeing these clinical findings.
Collapse
|
7
|
Wang T, Wu L, Chen Q, Chen K, Tan F, Liu J, Liu X, Han H. Copper deposition in Wilson's disease causes male fertility decline by impairing reproductive hormone release through inducing apoptosis and inhibiting ERK signal in hypothalamic-pituitary of mice. Front Endocrinol (Lausanne) 2022; 13:961748. [PMID: 35992126 PMCID: PMC9389053 DOI: 10.3389/fendo.2022.961748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Wilson's disease (WD) is an autosomal recessive disorder of copper metabolism characterized by liver and central nervous system dysfunction. Considerable evidence suggests that infertility is also very common in male patients with WD, but the exact molecular mechanisms involved remain unknown. In order to further investigate the pathological changes in the hypothalamic-pituitary-testicular (HPT) axis and its mechanisms, mice were divided into the normal control group (NC), WD model TX mice group (WD), dimercaptosuccinic acid-treated TX mice group (DMSA), and pregnant horse serum gonadotropin-treated TX mice group (PMSG). The copper content and morphology of hypothalamus and pituitary tissues, the ultrastructure and apoptosis of hypothalamus neurons and pituitary gonadotropin cells, the serum levels of reproductive hormones, and the pregnancy rate and litter size of the female mice were studied. The expression of apoptosis-related proteins and the phosphorylation of extracellular regulatory protein kinase (ERK) 1/2 in the hypothalamus and pituitary were detected. The results showed that the copper content was significantly increased in the WD group, and the histopathological morphology and ultrastructure of the hypothalamus and pituitary were damaged. The levels of the gonadotropin-releasing hormone, the follicle-stimulating hormone, the luteinizing hormone, and testosterone were significantly decreased. The apoptosis rate in the hypothalamus and pituitary was significantly increased. The expressions of proapoptotic proteins Bax and Caspase-3 were significantly increased, the expression of the anti-apoptotic protein Bcl-2 was significantly decreased, and the phosphorylation level of ERK1/2 was significantly decreased. Fertility is significantly reduced. After DMSA intervention, the hypothalamus tissue copper content decreased, the hypothalamus and pituitary tissue morphology and ultrastructure were improved, cell apoptosis was alleviated, the expression of Bax and Caspase-3 was significantly decreased, the expression of Bcl-2 was significantly increased, and the reproductive hormone level, phosphorylation level, and fertility were increased. Fertility was preserved after treatment with PMSG in male TX mice. These results suggest that copper deposition in WD causes male fertility decline by impairing reproductive neuroendocrine hormone release through inducing apoptosis and inhibiting the ERK signal in the hypothalamic-pituitary region. This study can also provide reference for the damage of copper pollution to the male reproductive system.
Collapse
Affiliation(s)
- Tingting Wang
- Encephalopathy Center, The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Limin Wu
- Reproductive and Genetic Branch, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Hui Han, ; Limin Wu,
| | - Qiuying Chen
- Encephalopathy Center, The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Kuiyu Chen
- Encephalopathy Center, The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Fang Tan
- Encephalopathy Center, The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Jiabo Liu
- Encephalopathy Center, The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Xiang Liu
- Encephalopathy Center, The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Hui Han
- Encephalopathy Center, The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, China
- *Correspondence: Hui Han, ; Limin Wu,
| |
Collapse
|
8
|
Diagnosis of Wilson Disease and Its Phenotypes by Using Artificial Intelligence. Biomolecules 2021; 11:biom11081243. [PMID: 34439909 PMCID: PMC8394607 DOI: 10.3390/biom11081243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 01/03/2023] Open
Abstract
WD is caused by ATP7B variants disrupting copper efflux resulting in excessive copper accumulation mainly in liver and brain. The diagnosis of WD is challenged by its variable clinical course, onset, morbidity, and ATP7B variant type. Currently it is diagnosed by a combination of clinical symptoms/signs, aberrant copper metabolism parameters (e.g., low ceruloplasmin serum levels and high urinary and hepatic copper concentrations), and genetic evidence of ATP7B mutations when available. As early diagnosis and treatment are key to favorable outcomes, it is critical to identify subjects before the onset of overtly detrimental clinical manifestations. To this end, we sought to improve WD diagnosis using artificial neural network algorithms (part of artificial intelligence) by integrating available clinical and molecular parameters. Surprisingly, WD diagnosis was based on plasma levels of glutamate, asparagine, taurine, and Fischer's ratio. As these amino acids are linked to the urea-Krebs' cycles, our study not only underscores the central role of hepatic mitochondria in WD pathology but also that most WD patients have underlying hepatic dysfunction. Our study provides novel evidence that artificial intelligence utilized for integrated analysis for WD may result in earlier diagnosis and mechanistically relevant treatments for patients with WD.
Collapse
|
9
|
Yu B, Mamedov R, Fuhler GM, Peppelenbosch MP. Drug Discovery in Liver Disease Using Kinome Profiling. Int J Mol Sci 2021; 22:2623. [PMID: 33807722 PMCID: PMC7961955 DOI: 10.3390/ijms22052623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
The liver is one of the most important organs, playing critical roles in maintaining biochemical homeostasis. Accordingly, disease of the liver is often debilitating and responsible for untold human misery. As biochemical nexus, with kinases being master regulators of cellular biochemistry, targeting kinase enzymes is an obvious avenue for treating liver disease. Development of such therapy, however, is hampered by the technical difficulty of obtaining comprehensive insight into hepatic kinase activity, a problem further compounded by the often unique aspects of hepatic kinase activities, which makes extrapolations from other systems difficult. This consideration prompted us to review the current state of the art with respect to kinome profiling approaches towards the hepatic kinome. We observe that currently four different approaches are available, all showing significant promise. Hence we postulate that insight into the hepatic kinome will quickly increase, leading to rational kinase-targeted therapy for different liver diseases.
Collapse
Affiliation(s)
| | | | | | - Maikel P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC—University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands; (B.Y.); (R.M.); (G.M.F.)
| |
Collapse
|