1
|
Li S, Dong L, Pan Z, Yang G. Targeting the neural stem cells in subventricular zone for the treatment of glioblastoma: an update from preclinical evidence to clinical interventions. Stem Cell Res Ther 2023; 14:125. [PMID: 37170286 PMCID: PMC10173522 DOI: 10.1186/s13287-023-03325-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 04/03/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Glioblastoma is one of the most common and aggressive adult brain tumors. The conventional treatment strategy, surgery combined with chemoradiotherapy, did not change the fact that the recurrence rate was high and the survival rate was low. Over the years, accumulating evidence has shown that the subventricular zone has an important role in the recurrence and treatment resistance of glioblastoma. The human adult subventricular zone contains neural stem cells and glioma stem cells that are probably a part of reason for therapy resistance and recurrence of glioblastoma. MAIN BODY Over the years, both bench and bedside evidences strongly support the view that the presence of neural stem cells and glioma stem cells in the subventricular zone may be the crucial factor of recurrence of glioblastoma after conventional therapy. It emphasizes the necessity to explore new therapy strategies with the aim to target subventricular zone to eradicate neural stem cells or glioma stem cells. In this review, we summarize the recent preclinical and clinical advances in targeting neural stem cells in the subventricular zone for glioblastoma treatment, and clarify the prospects and challenges in clinical application. CONCLUSIONS Although there remain unresolved issues, current advances provide us with a lot of evidence that targeting the neural stem cells and glioma stem cells in subventricular zone may have the potential to solve the dilemma of glioblastoma recurrence and treatment resistance.
Collapse
Affiliation(s)
- Sijia Li
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, 130021, China
| | - Lihua Dong
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zhenyu Pan
- Department of Radiation Oncology, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516000, China.
| | - Guozi Yang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, 130021, China.
- Department of Radiation Oncology, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516000, China.
| |
Collapse
|
2
|
Jovanovich N, Habib A, Head J, Anthony A, Edwards L, Zinn PO. Opinion: Bridging gaps and doubts in glioblastoma cell-of-origin. Front Oncol 2022; 12:1002933. [PMID: 36338762 PMCID: PMC9634038 DOI: 10.3389/fonc.2022.1002933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/30/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Nicolina Jovanovich
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Ahmed Habib
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Jeffery Head
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Austin Anthony
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Lincoln Edwards
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Pascal O. Zinn
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Bender K, Träger M, Wahner H, Onken J, Scheel M, Beck M, Ehret F, Budach V, Kaul D. What is the role of the subventricular zone in radiotherapy of glioblastoma patients? Radiother Oncol 2021; 158:138-145. [PMID: 33636228 DOI: 10.1016/j.radonc.2021.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/28/2021] [Accepted: 02/13/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND PURPOSE Current glioblastoma (GBM) therapies prolong survival, but overall prognosis is still poor. Irradiation of the subventricular zone (SVZ) has recently been discussed as a promising concept as this tissue harbors stem cells which seem to play a role in the initiation and recurrence of GBM. In this study, we retrospectively examined the relationship of SVZ irradiation dose and survival in a large, homogeneous GBM patient cohort. MATERIALS AND METHODS We included 200 GBM patients who had been treated at our institution with trimodal therapy (surgery, radiotherapy and chemotherapy) between 2009 and 2020. The SVZ was delineated, and dose-volume histograms were calculated and extracted. Tumors were classified according to their contact with the SVZ. The Kaplan-Meier method was used for survival analysis, and univariable and multivariable Cox regression (MVA) were used to determine prognostic effects on progression-free survival (PFS) and overall survival (OS). RESULTS Median PFS of the study group was 7.2 months; median OS was 15.1 months. In MVA (with mean dose to the ipsilateral SVZ as a continuous covariable), PFS was significantly lower for patients with a Karnofsky performance status (KPS) < 70% and without MGMT promoter methylation. Factors prognostic for shorter OS were old age, lower KPS, unmethylated MGMT status, SVZ contact and biopsy instead of subtotal- or gross total resection. There was no significant correlation between survival and SVZ dose. CONCLUSION In this cohort, an increased mean dose to the ipsilateral or contralateral SVZ did not correlate with improved survival in irradiated GBM patients in MVA. Patients whose tumor directly involved the SVZ showed worse OS in MVA.
Collapse
Affiliation(s)
- Katja Bender
- Department of Radiation Oncology Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Malte Träger
- Department of Radiation Oncology Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Helena Wahner
- Department of Radiation Oncology Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; German Cancer Consortium (DKTK), partner site Berlin, Germany
| | - Michael Scheel
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Marcus Beck
- Department of Radiation Oncology Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Felix Ehret
- Department of Radiation Oncology Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Volker Budach
- Department of Radiation Oncology Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - David Kaul
- Department of Radiation Oncology Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; German Cancer Consortium (DKTK), partner site Berlin, Germany.
| |
Collapse
|
4
|
Lombard A, Digregorio M, Delcamp C, Rogister B, Piette C, Coppieters N. The Subventricular Zone, a Hideout for Adult and Pediatric High-Grade Glioma Stem Cells. Front Oncol 2021; 10:614930. [PMID: 33575218 PMCID: PMC7870981 DOI: 10.3389/fonc.2020.614930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/09/2020] [Indexed: 12/23/2022] Open
Abstract
Both in adult and children, high-grade gliomas (WHO grades III and IV) account for a high proportion of death due to cancer. This poor prognosis is a direct consequence of tumor recurrences occurring within few months despite a multimodal therapy consisting of a surgical resection followed by chemotherapy and radiotherapy. There is increasing evidence that glioma stem cells (GSCs) contribute to tumor recurrences. In fact, GSCs can migrate out of the tumor mass and reach the subventricular zone (SVZ), a neurogenic niche persisting after birth. Once nested in the SVZ, GSCs can escape a surgical intervention and resist to treatments. The present review will define GSCs and describe their similarities with neural stem cells, residents of the SVZ. The architectural organization of the SVZ will be described both for humans and rodents. The migratory routes taken by GSCs to reach the SVZ and the signaling pathways involved in their migration will also be described hereafter. In addition, we will debate the advantages of the microenvironment provided by the SVZ for GSCs and how this could contribute to tumor recurrences. Finally, we will discuss the clinical relevance of the SVZ in adult GBM and pediatric HGG and the therapeutic advantages of targeting that neurogenic region in both clinical situations.
Collapse
Affiliation(s)
- Arnaud Lombard
- Laboratory of Nervous System Disorders and Therapy, Groupement Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Neurosciences Research Centre, University of Liège, Liège, Belgium.,Department of Neurosurgery, CHU of Liège, Liège, Belgium
| | - Marina Digregorio
- Laboratory of Nervous System Disorders and Therapy, Groupement Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Neurosciences Research Centre, University of Liège, Liège, Belgium
| | - Clément Delcamp
- Laboratory of Nervous System Disorders and Therapy, Groupement Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Neurosciences Research Centre, University of Liège, Liège, Belgium
| | - Bernard Rogister
- Laboratory of Nervous System Disorders and Therapy, Groupement Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Neurosciences Research Centre, University of Liège, Liège, Belgium.,Department of Neurology, CHU of Liège, Liège, Belgium
| | - Caroline Piette
- Laboratory of Nervous System Disorders and Therapy, Groupement Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Neurosciences Research Centre, University of Liège, Liège, Belgium.,Department of Pediatrics, Division of Hematology-Oncology, CHU of Liège, Liège, Belgium
| | - Natacha Coppieters
- Laboratory of Nervous System Disorders and Therapy, Groupement Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Neurosciences Research Centre, University of Liège, Liège, Belgium
| |
Collapse
|
5
|
Valiyaveettil D, Malik M, Akram KS, Ahmed SF, Joseph DM. Prospective study to assess the survival outcomes of planned irradiation of ipsilateral subventricular and periventricular zones in glioblastoma. Ecancermedicalscience 2020; 14:1021. [PMID: 32256704 PMCID: PMC7105331 DOI: 10.3332/ecancer.2020.1021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose/objective(s) Retrospective evidence suggests that the irradiation of stem cells in the periventricular zone (PVZ), specifically the subventricular zone (SVZ), to higher doses may be associated with improved outcomes. Materials/methods This was a prospective study, done from 2012 to 2017 in glioblastoma patients to assess the efficacy of planned irradiation of ipsilateral PVZ and SVZ on survival outcomes. The clinical target volume included the tumour bed with a 1.5–2 cm margin, perilesional oedema and was expanded to encompass the ipsilateral PVZ (5 mm lateral expansion adjacent to the ventricles, including the SVZ, which was a 5 mm expansion lateral to lateral ventricle). The ipsilateral PVZ was planned to receive a dose of ≥50 Gy. Results 89 patients were recruited of which 74 patients were available for the analysis. Median age was 48 years. Mean doses to ipsilateral PVZ and SVZ were 56.2 and 55.1Gy, respectively. Median overall survival in the entire group was 13 months. There was no significant correlation between survival and doses to ipsilateral, contralateral, or bilateral PVZ and SVZ. Median survival was 16, 12 and 6 months for Eastern Cooperative Oncology Group (ECOG) PS 1, 2 and 3, respectively (p = 0.05). Conclusion Planned irradiation of potential stem cell niches in the ipsilateral cerebral hemisphere did not result in improved survival as suggested by retrospective studies. Doses to contralateral or bilateral PVZ or SVZ also did not influence survival.
Collapse
Affiliation(s)
- Deepthi Valiyaveettil
- Department of Radiation Oncology, Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad 500082, India
| | - Monica Malik
- Department of Radiation Oncology, Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad 500082, India
| | - Kothwal Syed Akram
- Department of Radiation Oncology, Yashoda Superspeciality Hospital, Malakpet, Hyderabad 500036, India
| | - Syed Fayaz Ahmed
- Department of Radiation Oncology, Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad 500082, India
| | - Deepa M Joseph
- Department of Radiation Oncology, All India Institute of Medical Sciences, Rishikesh, India
| |
Collapse
|
6
|
The Role of SVZ Stem Cells in Glioblastoma. Cancers (Basel) 2019; 11:cancers11040448. [PMID: 30934929 PMCID: PMC6521108 DOI: 10.3390/cancers11040448] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/27/2022] Open
Abstract
As most common primary brain cancer, glioblastoma is also the most aggressive and malignant form of cancer in the adult central nervous system. Glioblastomas are genetic and transcriptional heterogeneous tumors, which in spite of intensive research are poorly understood. Over the years conventional therapies failed to affect a cure, resulting in low survival rates of affected patients. To improve the clinical outcome, an important approach is to identify the cells of origin. One potential source for these are neural stem cells (NSCs) located in the subventricular zone, which is one of two niches in the adult nervous system where NSCs with the capacity of self-renewal and proliferation reside. These cells normally give rise to neuronal as well as glial progenitor cells. This review summarizes current findings about links between NSCs and cancer stem cells in glioblastoma and discusses current therapeutic approaches, which arise as a result of identifying the cell of origin in glioblastoma.
Collapse
|