1
|
Hurwitz E, Meltzer-Brody S, Butzin-Dozier Z, Patel RC, Elhadad N, Haendel MA. Unlocking the potential of wearable device wear time to enhance postpartum depression screening and detection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.07.24315026. [PMID: 39417142 PMCID: PMC11483018 DOI: 10.1101/2024.10.07.24315026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Postpartum depression (PPD) is a mood disorder affecting one in seven women after childbirth that is often under-screened and under-detected. If not diagnosed and treated, PPD is associated with long-term developmental challenges in the child and maternal morbidity. Wearable technologies, such as smartwatches and fitness trackers (e.g., Fitbit), offer continuous and longitudinal digital phenotyping for mood disorder diagnosis and monitoring, with device wear time being an important yet understudied aspect. Using the All of Us Research Program (AoURP) dataset, we assessed the percentage of days women with PPD wore Fitbit devices across pre-pregnancy, pregnancy, postpartum, and PPD periods, as determined by electronic health records. Wear time was compared in women with and without PPD using linear regression models. Results showed a strong trend that women in the PPD cohort wore their Fitbits more those without PPD during the postpartum (PPD: mean=72.9%, SE=13.8%; non-PPD: mean=58.9%, SE=12.2%, P-value=0.09) and PPD time periods (PPD: mean=70.7%, SE=14.5%; non-PPD: mean=55.6%, SE=12.9%, P-value=0.08). We hypothesize this may be attributed to hypervigilance, given the common co-occurrence of anxiety symptoms among women with PPD. Future studies should assess the link between PPD, hypervigilance, and wear time patterns. We envision that device wear patterns with digital biomarkers like sleep and physical activity could enhance early PPD detection using machine learning by alerting clinicians to potential concerns facilitating timely screenings, which may have implications for other mental health disorders.
Collapse
Affiliation(s)
- Eric Hurwitz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Samantha Meltzer-Brody
- Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Zachary Butzin-Dozier
- Division of Biostatistics, University of California, Berkeley, School of Public Health, Berkeley, CA, United States
| | - Rena C. Patel
- Department of Infectious Disease, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Noémie Elhadad
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, United States
- Department of Computer Science, Columbia University, New York, NY
| | - Melissa A. Haendel
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
2
|
Kasl P, Keeler Bruce L, Hartogensis W, Dasgupta S, Pandya LS, Dilchert S, Hecht FM, Gupta A, Altintas I, Mason AE, Smarr BL. Utilizing Wearable Device Data for Syndromic Surveillance: A Fever Detection Approach. SENSORS (BASEL, SWITZERLAND) 2024; 24:1818. [PMID: 38544080 PMCID: PMC10975930 DOI: 10.3390/s24061818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 04/01/2024]
Abstract
Commercially available wearable devices (wearables) show promise for continuous physiological monitoring. Previous works have demonstrated that wearables can be used to detect the onset of acute infectious diseases, particularly those characterized by fever. We aimed to evaluate whether these devices could be used for the more general task of syndromic surveillance. We obtained wearable device data (Oura Ring) from 63,153 participants. We constructed a dataset using participants' wearable device data and participants' responses to daily online questionnaires. We included days from the participants if they (1) completed the questionnaire, (2) reported not experiencing fever and reported a self-collected body temperature below 38 °C (negative class), or reported experiencing fever and reported a self-collected body temperature at or above 38 °C (positive class), and (3) wore the wearable device the nights before and after that day. We used wearable device data (i.e., skin temperature, heart rate, and sleep) from the nights before and after participants' fever day to train a tree-based classifier to detect self-reported fevers. We evaluated the performance of our model using a five-fold cross-validation scheme. Sixteen thousand, seven hundred, and ninety-four participants provided at least one valid ground truth day; there were a total of 724 fever days (positive class examples) from 463 participants and 342,430 non-fever days (negative class examples) from 16,687 participants. Our model exhibited an area under the receiver operating characteristic curve (AUROC) of 0.85 and an average precision (AP) of 0.25. At a sensitivity of 0.50, our calibrated model had a false positive rate of 0.8%. Our results suggest that it might be possible to leverage data from these devices at a public health level for live fever surveillance. Implementing these models could increase our ability to detect disease prevalence and spread in real-time during infectious disease outbreaks.
Collapse
Affiliation(s)
- Patrick Kasl
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, San Diego, CA 92093-0021, USA;
| | - Lauryn Keeler Bruce
- UC San Diego Health Department of Biomedical Informatics, University of California San Diego, San Diego, CA 92093-0021, USA;
| | - Wendy Hartogensis
- UCSF Osher Center for Integrative Health, University of California San Francisco, San Francisco, CA 92093-0021, USA; (W.H.); (L.S.P.); (F.M.H.); (A.E.M.)
| | - Subhasis Dasgupta
- San Diego Supercomputer Center, University of California San Diego, San Diego, CA 92093-0021, USA; (S.D.); (A.G.); (I.A.)
| | - Leena S. Pandya
- UCSF Osher Center for Integrative Health, University of California San Francisco, San Francisco, CA 92093-0021, USA; (W.H.); (L.S.P.); (F.M.H.); (A.E.M.)
| | - Stephan Dilchert
- Department of Management, Zicklin School of Business, Baruch College, The City University of New York, New York, NY 10010, USA;
| | - Frederick M. Hecht
- UCSF Osher Center for Integrative Health, University of California San Francisco, San Francisco, CA 92093-0021, USA; (W.H.); (L.S.P.); (F.M.H.); (A.E.M.)
| | - Amarnath Gupta
- San Diego Supercomputer Center, University of California San Diego, San Diego, CA 92093-0021, USA; (S.D.); (A.G.); (I.A.)
- Halıcıoğlu Data Science Institute, University of California San Diego, San Diego, CA 92093-0021, USA
| | - Ilkay Altintas
- San Diego Supercomputer Center, University of California San Diego, San Diego, CA 92093-0021, USA; (S.D.); (A.G.); (I.A.)
- Halıcıoğlu Data Science Institute, University of California San Diego, San Diego, CA 92093-0021, USA
| | - Ashley E. Mason
- UCSF Osher Center for Integrative Health, University of California San Francisco, San Francisco, CA 92093-0021, USA; (W.H.); (L.S.P.); (F.M.H.); (A.E.M.)
| | - Benjamin L. Smarr
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, San Diego, CA 92093-0021, USA;
- Halıcıoğlu Data Science Institute, University of California San Diego, San Diego, CA 92093-0021, USA
| |
Collapse
|