1
|
Yavaş A, Kesmez Ö, Demir F, Aksel M. Synergistic Cytotoxicity of Nano-titanium Dioxide and Phthalocyanine on HepG2 Cells via Sonophotodynamic Therapy. Biol Trace Elem Res 2025:10.1007/s12011-025-04660-8. [PMID: 40366530 DOI: 10.1007/s12011-025-04660-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025]
Abstract
Hepatocellular carcinoma (HCC) presents a significant therapeutic challenge, necessitating novel approaches beyond conventional treatments. This study investigates the combined cytotoxic effects of nano-titanium dioxide (nano-TiO₂), copper (II) phthalocyanine (CuPc), and copper (II) phthalocyanine-modified nano-TiO₂-(nano-TiO₂/Pc) on HepG2 hepatocellular carcinoma cells using sonodynamic therapy (SDT), photodynamic therapy (PDT), and sonophotodynamic therapy (SPDT). The results show that individual treatments with nano-TiO₂ or CuPc alone did not induce significant cytotoxicity. However, when combined with SDT or PDT, a noticeable decrease in cell viability was observed. Strikingly, SPDT combined with nano-TiO₂/Pc demonstrated the most significant cytotoxic effect, achieving up to 83.80% apoptosis in HepG2 cells. This was associated with a marked reduction in Bcl-2 protein levels and an increase in cleaved caspase-3, cleaved caspase-9, cytochrome-c (cyt-c), and Bax indicating the activation of both intrinsic and extrinsic apoptotic pathways. Furthermore, SPDT-nano-TiO₂/Pc significantly increased oxidative stress, as evidenced by decreased levels of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH), along with elevated levels of malondialdehyde (MDA). These findings suggest that phthalocyanine-mediated SPDT effectively enhances mitochondrial apoptosis and disrupts the tumor cytoplasmic membrane, highlighting the potential of combining SDT and PDT with nano-TiO₂/Pc as a promising strategy for cancer treatment.
Collapse
Affiliation(s)
- Adem Yavaş
- Food Processing Department, Food Quality Control and Analysis Programme, Çine Vocational School, Aydin Adnan Menderes University, Aydin, 09500, Türkiye.
- Agricultural Biotechnology and Food Safety Research and Application Center, Adnan Menderes University, Aydin, 09970, Türkiye.
| | - Ömer Kesmez
- Department of Chemistry, Faculty of Science, Akdeniz University, Antalya, 07058, Türkiye
| | - Feride Demir
- Department of Chemistry, Faculty of Science, Akdeniz University, Antalya, 07058, Türkiye
| | - Mehran Aksel
- Department of Biophysics, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, 09010, Türkiye
| |
Collapse
|
2
|
Mittal G, A P, Dhali A, Prasad R, S Y, Nurani KM, Găman MA. Plant extracts with antioxidant and hepatoprotective benefits for liver health: A bibliometric analysis of drug delivery systems. World J Gastroenterol 2025; 31:105836. [DOI: 10.3748/wjg.v31.i18.105836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/07/2025] [Accepted: 04/21/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND The rising global burden of liver diseases, such as non-alcoholic fatty liver disease and liver fibrosis, has necessitated innovative therapeutic approaches. Plant-based therapies, recognized for their anti-inflammatory and antioxidant properties, have shown promising effects. However, poor bioavailability limits their clinical application.
AIM To map global research trends, key contributors, and emerging themes in plant-based therapies combined with advanced drug delivery systems for liver health.
METHODS Using the Scopus database, 645 documents were retrieved and analyzed using bibliometric tools Biblioshiny and VOSviewer. Analysis focused on publication trends, geographical contributions, and advancements in drug delivery technologies, including nanoparticles, liposomes, and polymeric micelles. Metrics such as publication growth rate, authorship collaboration, and thematic clustering were assessed.
RESULTS The dataset spans 43 years (1981-2024), with an annual growth rate of 11.09% in the number of publications. Research output is dominated by China (33%), followed by the United States (24%) and India (18%). Collaborative studies accounted for 24.34% of publications, with an average of 5.81 co-authors per document. Key innovations include nanoparticle encapsulation of curcumin and silymarin, improving bioavailability by up to 85%. Highly cited studies demonstrated the antioxidant, anti-inflammatory, and anti-fibrotic properties of these compounds. For instance, curcumin nanoparticles showed a 70% improvement in solubility, and silymarin liposomal formulations enhanced therapeutic efficiency by 62%. Thematic analysis revealed a transition from basic clinical observations to molecular and pharmacokinetic research, with a focus on oxidative stress mitigation and hepatoprotection.
CONCLUSION This study highlights the growing synergy between plant-based therapies and advanced drug delivery systems, with significant contributions from Asian and Western countries. Future efforts should prioritize clinical trials, standardization of plant extract formulations, and interdisciplinary approaches to maximize therapeutic outcomes. The findings provide a foundation for integrating plant-derived compounds into evidence-based hepatological therapies, addressing critical challenges in bioavailability and safety.
Collapse
Affiliation(s)
- Gaurav Mittal
- MBBS Final Year StudentMahatma Gandhi Institute of Medical Sciences, Maharashtra 442102, India
| | - Prashanth A
- Department of Physiology, Mahatma Gandhi Institute of Medical Sciences, Maharashtra 442102, India
| | - Arkadeep Dhali
- Academic Unit of Gastroenterology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield S5 7AU, United Kingdom
| | - Roshan Prasad
- Department of Medicine, Datta Meghe Institute of Higher Education and Research, Sawangi 442107, India
| | - Yogesh S
- Department of Medicine, Madras Medical College, Chennai 600003, India
| | | | - Mihnea-Alexandru Găman
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Hematology, Centre of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest 022328, Romania
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest 010001, Romania
| |
Collapse
|
3
|
Patel J, Roy H, Chintamaneni PK, Patel R, Bohara R. Advanced Strategies in Enhancing the Hepatoprotective Efficacy of Natural Products: Integrating Nanotechnology, Genomics, and Mechanistic Insights. ACS Biomater Sci Eng 2025; 11:2528-2549. [PMID: 40211874 PMCID: PMC12076289 DOI: 10.1021/acsbiomaterials.5c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 05/13/2025]
Abstract
Liver disorders like hepatitis, cirrhosis, and hepatocellular carcinoma present a significant global health challenge, with high morbidity and mortality rates. Key factors contributing to liver disorders include inflammation, oxidative stress, and apoptosis. Due to their multifaceted action, natural compounds are promising candidates for mitigating liver-related disorders. Research studies revealed the antioxidant, anti-inflammatory, and detoxifying properties of natural compounds like curcumin, glycyrrhizin, and silymarin and their potential for liver detoxification and protection. With advancements in nanotechnology in drug delivery, natural compounds have improved stability and targetability, thereby enhancing their bioavailability and therapeutic efficiency. Further, recent advancements in genomics and an increased understanding of genetic factors influencing liver disorders and the hepatoprotective effects of natural agents made way for personalized medicine. Moreover, combinatorial therapy with natural products, synthetic drugs, or other natural agents has improved therapeutic outcomes. Even though clinical trials have confirmed the efficiency of natural compounds as hepatoprotective agents, several challenges remain unanswered in their translation to clinical practice. Therefore, it is logical to integrate natural compounds with nanotechnology and genomics to further advance hepatoprotection. This review gives an overview of the substantial progress made in the field of hepatoprotection, with specific emphasis on natural compounds and their integration with nanotechnology and genomics. This provides valuable insights for future research and innovations in developing therapeutic strategies for liver disorders.
Collapse
Affiliation(s)
- Jitendra Patel
- Datta
Meghe College of Pharmacy, Datta Meghe Institute
of Higher Education (Deemed to be University), Sawangi (Meghe), Wardha 442001, Maharashtra, India
| | - Harekrishna Roy
- Department
of Pharmaceutics, Nirmala College of Pharmacy, Mangalagiri 522503, Andhra Pradesh, India
| | - Pavan Kuma Chintamaneni
- Department
of Pharmaceutics, GITAM School of Pharmacy, GITAM Deemed to be University, Hyerabad 502329, Telangana, India
| | - Rukmani Patel
- Department
of Chemistry, Bharati University Durg, Durg 491001, Chhattisgarh, India
| | | |
Collapse
|
4
|
Yin C, Zhang H, Du J, Zhu Y, Zhu H, Yue H. Artificial intelligence in imaging for liver disease diagnosis. Front Med (Lausanne) 2025; 12:1591523. [PMID: 40351457 PMCID: PMC12062035 DOI: 10.3389/fmed.2025.1591523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/08/2025] [Indexed: 05/14/2025] Open
Abstract
Liver diseases, including hepatitis, non-alcoholic fatty liver disease (NAFLD), cirrhosis, and hepatocellular carcinoma (HCC), remain a major global health concern, with early and accurate diagnosis being essential for effective management. Imaging modalities such as ultrasound (US), computed tomography (CT), and magnetic resonance imaging (MRI) play a crucial role in non-invasive diagnosis, but their sensitivity and diagnostic accuracy can be limited. Recent advancements in artificial intelligence (AI) have improved imaging-based liver disease assessment by enhancing pattern recognition, automating fibrosis and steatosis quantification, and aiding in HCC detection. AI-driven imaging techniques have shown promise in fibrosis staging through US, CT, MRI, and elastography, reducing the reliance on invasive liver biopsy. For liver steatosis, AI-assisted imaging methods have improved sensitivity and grading consistency, while in HCC detection and characterization, AI models have enhanced lesion identification, classification, and risk stratification across imaging modalities. The growing integration of AI into liver imaging is reshaping diagnostic workflows and has the potential to improve accuracy, efficiency, and clinical decision-making. This review provides an overview of AI applications in liver imaging, focusing on their clinical utility and implications for the future of liver disease diagnosis.
Collapse
Affiliation(s)
- Chenglong Yin
- Department of Gastroenterology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
- Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu, China
| | | | - Jin Du
- Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu, China
- Department of Science and Education, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
| | - Yingling Zhu
- Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu, China
- Department of Science and Education, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
| | - Hua Zhu
- Department of Gastroenterology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
- Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu, China
| | - Hongqin Yue
- Department of Gastroenterology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
- Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu, China
| |
Collapse
|
5
|
Gadour E, Miutescu B, Hassan Z, Aljahdli ES, Raees K. Advancements in the diagnosis of biliopancreatic diseases: A comparative review and study on future insights. World J Gastrointest Endosc 2025; 17:103391. [PMID: 40291132 PMCID: PMC12019128 DOI: 10.4253/wjge.v17.i4.103391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/19/2025] [Accepted: 03/08/2025] [Indexed: 04/14/2025] Open
Abstract
Owing to the complex and often asymptomatic presentations, the diagnosis of biliopancreatic diseases, including pancreatic and biliary malignancies, remains challenging. Recent technological advancements have remarkably improved the diagnostic accuracy and patient outcomes in these diseases. This review explores key advancements in diagnostic modalities, including biomarkers, imaging techniques, and artificial intelligence (AI)-based technologies. Biomarkers, such as cancer antigen 19-9, KRAS mutations, and inflammatory markers, provide crucial insights into disease progression and treatment responses. Advanced imaging modalities include enhanced computed tomography (CT), positron emission tomography-CT, magnetic resonance cholangiopancreatography, and endoscopic ultrasound. AI integration in imaging and pathology has enhanced diagnostic precision through deep learning algorithms that analyze medical images, automate routine diagnostic tasks, and provide predictive analytics for personalized treatment strategies. The applications of these technologies are diverse, ranging from early cancer detection to therapeutic guidance and real-time imaging. Biomarker-based liquid biopsies and AI-assisted imaging tools are essential for non-invasive diagnostics and individualized patient management. Furthermore, AI-driven models are transforming disease stratification, thus enhancing risk assessment and decision-making. Future studies should explore standardizing biomarker validation, improving AI-driven diagnostics, and expanding the accessibility of advanced imaging technologies in resource-limited settings. The continued development of non-invasive diagnostic techniques and precision medicine approaches is crucial for optimizing the detection and management of biliopancreatic diseases. Collaborative efforts between clinicians, researchers, and industry stakeholders will be pivotal in applying these advancements in clinical practice.
Collapse
Affiliation(s)
- Eyad Gadour
- Multiorgan Transplant Centre of Excellence, Liver Transplantation Unit, King Fahad Specialist Hospital, Dammam 32253, Saudi Arabia
- Internal Medicine, Zamzam University College, School of Medicine, Khartoum 11113, Sudan
| | - Bogdan Miutescu
- Department of Gastroenterology and Hepatology, Victor Babes University of Medicine and Pharmacy, Timisoara 300041, Romania
- Advanced Regional Research Center in Gastroenterology and Hepatology, Victor Babes University of Medicine and Pharmacy, Timisoara 30041, Romania
| | - Zeinab Hassan
- Department of Internal Medicine, Stockport Hospitals NHS Foundation Trust, Manchester SK2 7JE, United Kingdom
| | - Emad S Aljahdli
- Gastroenterology Division, King Abdulaziz University, Faculty of Medicine, Jeddah 21589, Saudi Arabia
- Gastrointestinal Oncology Unit, King Abdulaziz University Hospital, Jeddah 22252, Saudi Arabia
| | - Khurram Raees
- Department of Gastroenterology and Hepatology, Royal Blackburn Hospital, Blackburn BB2 3HH, United Kingdom
| |
Collapse
|
6
|
Starnawski P, Nowak K, Augustyn Z, Malicki D, Piąta A, Lorek D, Janczura J. Role of hepatotropic viruses in promoting hepatocellular carcinoma-current knowledge and recent advances. Med Oncol 2025; 42:111. [PMID: 40095313 DOI: 10.1007/s12032-025-02674-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, with chronic infections by hepatotropic viruses such as hepatitis B virus (HBV), and hepatitis C virus (HCV), being major risk factors. Chronic infections with these viruses are the leading cause of HCC worldwide, with HBV alone responsible for over 50% of cases. Despite advances in direct-acting antivirals (DAAs) for HCV and nucleos(t)ide analogues (NAs) for HBV, challenges remain in HCC prevention, early detection, and treatment. Recent research highlights the role of viral-induced metabolic alterations, such as the Warburg effect, mitochondrial dysfunction, and lipid dysregulation, in promoting HCC. Moreover, immune checkpoint inhibitors have emerged as effective treatments for advanced HCC, though responses vary between HBV- and HCV-related cancers. Additionally, novel therapeutic approaches and metabolic-targeted therapies offer promising avenues for virus-associated HCC treatment. Advancements in liquid biopsy biomarkers and artificial intelligence-driven diagnostics are improving HCC surveillance and risk stratification, potentially enabling earlier interventions. While HBV vaccination has significantly reduced HCC incidence, disparities in global vaccination coverage persist. Furthermore, antiviral therapies combined with structured surveillance programs have proven effective in reducing HCC incidence and mortality. This review highlights the complex connection between viral, genetic, and environmental factors in HCC development and underscores the importance of integrated prevention strategies to reduce its burden globally.
Collapse
Affiliation(s)
- Piotr Starnawski
- Collegium Medicum, Jan Kochanowski University, Aleja IX Wieków Kielc 19A, 25-317, Kielce, Poland
| | - Klaudia Nowak
- Collegium Medicum, Jan Kochanowski University, Aleja IX Wieków Kielc 19A, 25-317, Kielce, Poland
| | - Zuzanna Augustyn
- Collegium Medicum, Jan Kochanowski University, Aleja IX Wieków Kielc 19A, 25-317, Kielce, Poland
| | - Dominik Malicki
- Collegium Medicum, Jan Kochanowski University, Aleja IX Wieków Kielc 19A, 25-317, Kielce, Poland
| | - Aleksandra Piąta
- Collegium Medicum, Jan Kochanowski University, Aleja IX Wieków Kielc 19A, 25-317, Kielce, Poland
| | - Dominika Lorek
- Collegium Medicum, Jan Kochanowski University, Aleja IX Wieków Kielc 19A, 25-317, Kielce, Poland
| | - Jakub Janczura
- Collegium Medicum, Jan Kochanowski University, Aleja IX Wieków Kielc 19A, 25-317, Kielce, Poland.
| |
Collapse
|
7
|
Jiang Y, Chen J, Xu L, Lv L, Gan X. Development of a Novel four-gene Model for Monitoring the Progression from Metabolic Dysfunction-associated Steatotic Liver Disease to Hepatocellular Carcinoma in Males. J Cancer 2025; 16:917-931. [PMID: 39781352 PMCID: PMC11705051 DOI: 10.7150/jca.100724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/14/2024] [Indexed: 01/12/2025] Open
Abstract
The pathogenesis of metabolic dysfunction-associated steatotic liver disease-associated hepatocellular carcinoma (MASLD-HCC) is complex and exhibits sex-specific differences. Effective methods for monitoring MASLD progression to HCC are lacking. Transcriptomic data from liver tissue samples sourced from multiple public databases were integrated. Utilizing both differential expression analysis and robust rank aggregation analysis, differentially expressed genes (DEGs) in patients with MASLD-HCC were identified. Based on these DEGs, diagnostic prediction models for MASLD (DP.MASLD) and HCC (DP.HCC) were constructed using elastic net analysis for various comparisons, including steatosis versus normal, steatohepatitis versus steatosis, and cancer versus non-cancer. Weighted gene correlation network analysis and gene set enrichment analysis were conducted to unveil the underlying pathogenesis of MASLD-HCC in males. Five overlapping DEGs with diagnostic significance in the progression from MASLD to HCC were identified, namely, AKR1B10, CYR61, FABP4, GNMT, and THBS1. DP.HCC demonstrated excellent predictive accuracy, with an area under the curve of 0.910 in the training group and 0.981 in the validation group. Similarly, DP.MASLD showed robust predictive accuracy. The pathogenesis of MASLD-HCC in males primarily involves extracellular matrix-receptor interaction, DNA replication, cell cycle, and T-cell receptor signaling. Overall, our study provides a quantitative assessment tool for the early detection and monitoring of MASLD-HCC, highlighting the male-specific molecular characteristics involved in its progression.
Collapse
Affiliation(s)
- Yuchuan Jiang
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, China
| | - Jiejian Chen
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Lin Xu
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Lin Lv
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Xiaoning Gan
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
- Department, University, City, Postcode, Country Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
Zielińska M, Popek M, Albrecht J. Neuroglia in hepatic encephalopathy. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:191-212. [PMID: 40148045 DOI: 10.1016/b978-0-443-19102-2.00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Neuroglia contribute to the pathophysiology of hepatic encephalopathy (HE) either beneficially or detrimentally. Pathogenesis of HE is linked to damage triggered by blood-derived toxins, with ammonia being the main causative factor. Neuroglial cells, especially astrocytes and microglia, respond to HE-associated systemic and central signals and undergo complex and variable changes in their metabolism, morphology, and function, which include ion and water dyshomeostasis in conjunction with neurotransmission imbalance and neuroinflammation. HE-induced alterations of astrocytes are defined as astrocytopathy, with aberrant astrocytes resulting in either gain or loss of functions. In the chronic HE, the presence of Alzheimer type II cells is a histologic hallmark, with asthenic astrocytes emerging as a newcomer. In acute HE, rapid swelling of astrocytes is a primary cause of cerebral edema and mortality. This chapter reviews the dominant role of astrocytes in the pathogenesis of HE resulting from acute and chronic liver failure, mainly in experimental models. The focus is on the loss of homeostatic function bearing upon the functioning of the glymphatic system, aberrant neurotransmission as a consequence of astrocyte-neuron miscommunication, and the concordant neuroinflammatory response of astrocytes and microglia. The chapter concludes with a delineation of concepts for future research.
Collapse
Affiliation(s)
- Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
| | - Mariusz Popek
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
9
|
Gan X, Zhou Y, Li Y, Xu L, Liu G. Development of a novel diagnostic model to monitor the progression of metabolic dysfunction-associated steatotic liver disease to hepatocellular carcinoma in females. Discov Oncol 2024; 15:812. [PMID: 39699604 DOI: 10.1007/s12672-024-01636-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND AND AIMS The onset of metabolic dysfunction-associated steatotic liver disease-associated hepatocellular carcinoma (MASLD-HCC) is insidious and exhibits sex-specific variations. Effective methods for monitoring MASLD-HCC progression in females have not yet been developed. METHODS Transcriptomic data of female liver tissue samples were obtained from multiple public databases. Differentially expressed genes (DEGs) in MASLD-HCC were identified using differential expression and robust rank aggregation analyses. Diagnostic prediction models for MASLD (DP.MASLD) and HCC (DP.HCC) were developed and validated using elastic net analysis, and diagnostic performance was evaluated using receiver operating characteristic (ROC) curve analysis. Bioinformatics was used to assess the pathogenesis of MASLD-HCC. RESULTS Seven overlapping DEGs were identified in female patients with MASLD and HCC: AKR1B10, CLEC1B, CYP2C19, FREM2, MT1H, NRG1, and THBS1). The area under the ROC curve (AUC) values for the training and validation groups of the DP.MASLD model were 0.864 and 0.782, 0.932 and 1.000, and 0.920 and 0.969 when differentiating between the steatosis and normal liver, steatohepatitis and steatosis, and steatohepatitis and normal liver groups, respectively. The AUCs for DP.HCC were 0.980 and 0.997 in the training and validation groups, respectively. The oncogenesis of female MASLD-HCC is associated with molecular pathways, including cytochrome P450-associated drug metabolism, tyrosine metabolism, fatty acid degradation, focal adhesion, extracellular matrix receptor interactions, and protein digestion and absorption. CONCLUSION A novel and effective method to quantitatively assess the risk of MASLD-HCC progression in female patients was developed, and this method will aid in the generation of precise diagnostic, preventive, and therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoning Gan
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Pan Fu Avenue 1, Guangzhou, 510180, Guangdong Province, China.
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| | - Yun Zhou
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Pan Fu Avenue 1, Guangzhou, 510180, Guangdong Province, China
- Department of Oncology, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Yonghao Li
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Pan Fu Avenue 1, Guangzhou, 510180, Guangdong Province, China
| | - Lin Xu
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Pan Fu Avenue 1, Guangzhou, 510180, Guangdong Province, China
| | - Guolong Liu
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Pan Fu Avenue 1, Guangzhou, 510180, Guangdong Province, China.
| |
Collapse
|
10
|
AbouSamra MM. Liposomal nano-carriers mediated targeting of liver disorders: mechanisms and applications. J Liposome Res 2024; 34:728-743. [PMID: 38988127 DOI: 10.1080/08982104.2024.2377085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Liver disorders present a significant global health challenge, necessitating the exploration of innovative treatment modalities. Liposomal nanocarriers have emerged as promising candidates for targeted drug delivery to the liver. This review offers a comprehensive examination of the mechanisms and applications of liposomal nanocarriers in addressing various liver disorders. Firstly discussing the liver disorders and the conventional treatment approaches, the review delves into the liposomal structure and composition. Moreover, it tackles the different mechanisms of liposomal targeting including both passive and active strategies. After that, the review moves on to explore the therapeutic potentials of liposomal nanocarriers in treating liver cirrhosis, fibrosis, viral hepatitis, and hepatocellular carcinoma. Through discussing recent advancements and envisioning future perspectives, this review highlights the role of liposomal nanocarriers in enhancing the effectiveness and the safety of liver disorders and consequently improving patient outcomes and enhances life quality.
Collapse
Affiliation(s)
- Mona M AbouSamra
- Pharmaceutical Technology Department, National Research Centre, Giza, Egypt
| |
Collapse
|
11
|
Baden KER, McClain H, Craig E, Gibson N, Draime JA, Chen AMH. S-Adenosylmethionine (SAMe) for Liver Health: A Systematic Review. Nutrients 2024; 16:3668. [PMID: 39519500 PMCID: PMC11547595 DOI: 10.3390/nu16213668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES S-adenosylmethionine (SAMe) is a natural compound implicated in the treatment of liver dysfunction. In this systematic review, our objective was to determine the efficacy, safety, and optimal dose of SAMe in liver diseases. METHODS Using the PRISMA methodology, we searched PubMed, CINAHL, and Web of Science using key MeSH search terms. For title/abstract screening, full-text review, and data extraction, two independent researchers reviewed articles, and a third researcher resolved conflicts. Data extraction also included a quality assessment of included articles. RESULTS Of the 1881 non-duplicated studies, 15 articles focusing on SAMe use in the liver were included. All included studies (n = 15) scored a 4 or 5 out of 5 points on the quality assessment, which indicated high study quality. Overall, SAMe was effective in improving liver-related parameters with few adverse events, which were primarily mild, transient gastrointestinal complaints. CONCLUSIONS The most common doses were SAMe 1000 mg or 1200 mg per day with or without another treatment or natural supplement. Future studies are needed to assess long-term efficacy and safety data of SAMe and the optimal route of administration in liver diseases.
Collapse
Affiliation(s)
| | - Halley McClain
- School of Pharmacy, Cedarville University, Cedarville, OH 45314, USA
| | - Eliya Craig
- School of Pharmacy, Cedarville University, Cedarville, OH 45314, USA
| | - Nathan Gibson
- School of Pharmacy, Cedarville University, Cedarville, OH 45314, USA
| | - Juanita A Draime
- School of Pharmacy, Cedarville University, Cedarville, OH 45314, USA
| | - Aleda M H Chen
- School of Pharmacy, Cedarville University, Cedarville, OH 45314, USA
| |
Collapse
|
12
|
Zheng S, Xue C, Li S, Zao X, Li X, Liu Q, Cao X, Wang W, Qi W, Du H, Zhang P, Ye Y. Liver cirrhosis: current status and treatment options using western or traditional Chinese medicine. Front Pharmacol 2024; 15:1381476. [PMID: 39081955 PMCID: PMC11286405 DOI: 10.3389/fphar.2024.1381476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Liver cirrhosis arises from liver fibrosis and necroinflammation caused by various mechanisms of hepatic injury. It is a prevalent condition in clinical practice characterized by hepatocellular dysfunction, portal hypertension, and associated complications. Despite its common occurrence, the etiology and pathogenesis of liver cirrhosis remain incompletely understood, posing a significant health threat. Effective prevention of its onset and progression is paramount in medical research. Symptoms often include discomfort in the liver area, while complications such as sarcopenia, hepatic encephalopathy, ascites, upper gastrointestinal bleeding, and infection can arise. While the efficacy of Western medicine in treating liver cirrhosis is uncertain, Chinese medicine offers distinct advantages. This review explores advancements in liver cirrhosis treatment encompassing non-pharmacological and pharmacological modalities. Chinese medicine interventions, including Chinese medicine decoctions, Chinese patent medicines, and acupuncture, exhibit notable efficacy in cirrhosis reversal and offer improved prognoses. Nowadays, the combination of Chinese and Western medicine in the treatment of liver cirrhosis also has considerable advantages, which is worthy of further research and clinical promotion. Standardized treatment protocols based on these findings hold significant clinical implications.
Collapse
Affiliation(s)
- Shihao Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Chengyuan Xue
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Size Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoke Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyao Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Xu Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Wenying Qi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Hongbo Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Peng Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yongan Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Shivnitwar SK, Gilada I, Rajkondawar AV, Ojha SK, Katiyar S, Arya N, Babu UV, Kumawat R. Safety and Effectiveness of Liv.52 DS in Patients With Varied Hepatic Disorders: An Open-Label, Multi-centre, Phase IV Study. Cureus 2024; 16:e60898. [PMID: 38784689 PMCID: PMC11112526 DOI: 10.7759/cureus.60898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 05/25/2024] Open
Abstract
Background The hepatoprotective function of polyherbal formulation Liv.52 in chronic liver diseases is well recognized in published literature. The objective of this open-label, phase IV study was to further strengthen and validate its safety and effectiveness using a large patient pool in a real-world scenario and provide scientific data on symptomatic improvement and supportive treatment in liver function with improvement in quality of life. Methods Adult patients of either sex with one or more clinical symptoms like fatigue, nausea, anorexia, abdominal pain or discomfort, muscle cramps, jaundice, or any other signs and symptoms with a history suggestive of mild-to-moderate hepatic disorders like alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), drug-induced hepatotoxicity, or hepatitis were treated with two Liv.52 DS tablets (oral) twice daily for 12 weeks. Results Out of the 1000 enrolled patients, 962 (96%) completed the study with the following subgroups ALD: 375 (38.9%), NAFLD: 379 (39.3%), drug-induced hepatotoxicity: 78 (8.1%), hepatitis: 130 (13.5%). The mean age of enrolled patients was 37.7 years, and the majority of them, 785 (78.5%) were men. The common adverse events observed (with >1.5% incidence) in the study were abdominal pain: 26 (2.6%) and headache: 17 (1.7%). Liv.52 showed statistically significant improvement (P<0.0001) in various clinical signs and symptoms in the majority of patients namely, fatigue: 357/723 (49%), anorexia: 485/620 (78.2%), jaundice: 48/52 (92%). Majority of the patients showed significant improvements from baseline to end of 12 weeks in the liver function test parameters namely, aspartate aminotransferase: 633/840 (75.36%), alanine aminotransferase: 592/729 (81.21%), serum bilirubin: 244/347 (70.32%), alkaline phosphatase: 279/355 (78.59%) with P<0.0001 for all parameters. Statistically significant improvement (P<0.005) was also seen in all the components of the chronic liver disease questionnaire (CLDQ) scores from baseline to 12 weeks. Conclusions The study demonstrated that Liv.52 was hepatoprotective and well tolerated in the study population after treatment for 12 weeks. Significant improvements were seen in clinical signs and symptoms, laboratory parameters of liver function, and CLDQ scores from baseline to 12 weeks. No significant or new safety signals emerged from this study.
Collapse
Affiliation(s)
| | - Ishwar Gilada
- Skin and Sexually Transmitted Diseases, Unison Medicare and Research Centre, Mumbai, IND
| | | | - Sandeep K Ojha
- Hyperbaric Medicine and Woundcare, Jayyush Hospital, Ahmedabad, IND
| | - Sandeep Katiyar
- Pulmonology Department, Apollo Spectra Hospital, Kanpur, IND
| | - Navneet Arya
- Ayurveda, Sri Sai Institute of Ayurvedic Research and Medicine, Bhopal, IND
| | - U V Babu
- Research and Development, Himalaya Wellness Company, Bengaluru, IND
| | - Rajesh Kumawat
- Medical Services and Clinical Development, Himalaya Wellness Company, Bengaluru, IND
| |
Collapse
|