1
|
Zhang N, Jiang N, Chen Q. Key Regulators of Parasite Biology Viewed Through a Post-Translational Modification Repertoire. Proteomics 2024:e202400120. [PMID: 39690890 DOI: 10.1002/pmic.202400120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Parasites are the leading causes of morbidity and mortality in both humans and animals, imposing substantial socioeconomic burdens worldwide. Controlling parasitic diseases has become one of the key issues in achieving "One Health". Most parasites have sophisticated life cycles exhibiting progressive developmental stages, morphologies, and host-switching, which are controlled by various regulatory machineries including protein post-translational modifications (PTMs). PTMs have emerged as a key mechanism by which parasites modulate their virulence, developmental transitions, and environmental adaptations. PTMs are enzyme-mediated additions or removals of chemical groups that dynamically regulate the stability and functions of proteins and confer novel properties, playing vital roles in a variety of biological processes and cellular functions. In this review, we circumscribe how parasites utilize various PTMs to regulate their intricate lives, with a focus on the biological role of PTMs in parasite biology and pathogenesis.
Collapse
Affiliation(s)
- Naiwen Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|
2
|
Ni X, Lu CP, Xu GQ, Ma JJ. Transcriptional regulation and post-translational modifications in the glycolytic pathway for targeted cancer therapy. Acta Pharmacol Sin 2024; 45:1533-1555. [PMID: 38622288 PMCID: PMC11272797 DOI: 10.1038/s41401-024-01264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/08/2024] [Indexed: 04/17/2024] Open
Abstract
Cancer cells largely rely on aerobic glycolysis or the Warburg effect to generate essential biomolecules and energy for their rapid growth. The key modulators in glycolysis including glucose transporters and enzymes, e.g. hexokinase 2, enolase 1, pyruvate kinase M2, lactate dehydrogenase A, play indispensable roles in glucose uptake, glucose consumption, ATP generation, lactate production, etc. Transcriptional regulation and post-translational modifications (PTMs) of these critical modulators are important for signal transduction and metabolic reprogramming in the glycolytic pathway, which can provide energy advantages to cancer cell growth. In this review we recapitulate the recent advances in research on glycolytic modulators of cancer cells and analyze the strategies targeting these vital modulators including small-molecule inhibitors and microRNAs (miRNAs) for targeted cancer therapy. We focus on the regulation of the glycolytic pathway at the transcription level (e.g., hypoxia-inducible factor 1, c-MYC, p53, sine oculis homeobox homolog 1, N6-methyladenosine modification) and PTMs (including phosphorylation, methylation, acetylation, ubiquitination, etc.) of the key regulators in these processes. This review will provide a comprehensive understanding of the regulation of the key modulators in the glycolytic pathway and might shed light on the targeted cancer therapy at different molecular levels.
Collapse
Affiliation(s)
- Xuan Ni
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China
| | - Cheng-Piao Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Guo-Qiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China.
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
| | - Jing-Jing Ma
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
3
|
Gan Q, Fan C. Orthogonal Translation for Site-Specific Installation of Post-translational Modifications. Chem Rev 2024; 124:2805-2838. [PMID: 38373737 PMCID: PMC11230630 DOI: 10.1021/acs.chemrev.3c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Post-translational modifications (PTMs) endow proteins with new properties to respond to environmental changes or growth needs. With the development of advanced proteomics techniques, hundreds of distinct types of PTMs have been observed in a wide range of proteins from bacteria, archaea, and eukarya. To identify the roles of these PTMs, scientists have applied various approaches. However, high dynamics, low stoichiometry, and crosstalk between PTMs make it almost impossible to obtain homogeneously modified proteins for characterization of the site-specific effect of individual PTM on target proteins. To solve this problem, the genetic code expansion (GCE) strategy has been introduced into the field of PTM studies. Instead of modifying proteins after translation, GCE incorporates modified amino acids into proteins during translation, thus generating site-specifically modified proteins at target positions. In this review, we summarize the development of GCE systems for orthogonal translation for site-specific installation of PTMs.
Collapse
Affiliation(s)
- Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
4
|
Piccionello AP, Sassaroli S, Pennasilico L, Rossi G, Di Cerbo A, Riccio V, Di Bella C, Laghi L, Angelini M, Marini C, Magi GE. Comparative study of 1H-NMR metabolomic profile of canine synovial fluid in patients affected by four progressive stages of spontaneous osteoarthritis. Sci Rep 2024; 14:3627. [PMID: 38351089 PMCID: PMC10864333 DOI: 10.1038/s41598-024-54144-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
The study aimed to assess the metabolomic profile of the synovial fluid (SF) of dogs affected by spontaneous osteoarthritis (OA) and compare any differences based on disease progression. Sixty client-owned dogs affected by spontaneous OA underwent clinical, radiographic, and cytologic evaluations to confirm the diagnosis. The affected joints were divided into four study groups based on the Kallgreen-Lawrence classification: OA1 (mild), OA2 (moderate), OA3 (severe), and OA4 (extremely severe/deforming). The osteoarthritic joint's SF was subjected to cytologic examination and 1H-NMR analysis. The metabolomic profiles of the study groups' SF samples were statistically compared using one-way ANOVA. Sixty osteoarthritic joints (45 stifles, 10 shoulders and 5 elbows) were included in the study. Fourteen, 28, and 18 joints were included in the OA1, OA2, and OA3 groups, respectively (0 joints in the OA4 group). Metabolomic analysis identified 48 metabolites, five of which were significantly different between study groups: Mannose and betaine were elevated in the OA1 group compared with the OA2 group, and the 2-hydroxyisobutyrate concentration decreased with OA progression; in contrast, isoleucine was less concentrated in mild vs. moderate OA, and lactate increased in severe OA. This study identified different 1H-NMR metabolomic profiles of canine SF in patients with progressive degrees of spontaneous OA, suggesting 1H-NMR metabolomic analysis as a potential alternative method for monitoring OA progression. In addition, the results suggest the therapeutic potentials of the metabolomic pathways that involve mannose, betaine, 2-hydroxyisobutyrate, isoleucine, and lactate.
Collapse
Affiliation(s)
| | - Sara Sassaroli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024, Matelica, Italy
| | - Luca Pennasilico
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024, Matelica, Italy.
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024, Matelica, Italy
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024, Matelica, Italy
| | - Valentina Riccio
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024, Matelica, Italy
| | - Caterina Di Bella
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024, Matelica, Italy
| | - Luca Laghi
- Department of Agro-Food Science and Technology, University of Bologna, 47023, Cesena, Italy
| | - Maddalena Angelini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024, Matelica, Italy
| | - Carlotta Marini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024, Matelica, Italy
| | - Gian Enrico Magi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024, Matelica, Italy
| |
Collapse
|
5
|
Zhang L, Shi X, Qiu H, Liu S, Yang T, Li X, Liu X. Protein modification by short-chain fatty acid metabolites in sepsis: a comprehensive review. Front Immunol 2023; 14:1171834. [PMID: 37869005 PMCID: PMC10587562 DOI: 10.3389/fimmu.2023.1171834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/15/2023] [Indexed: 10/24/2023] Open
Abstract
Sepsis is a major life-threatening syndrome of organ dysfunction caused by a dysregulated host response due to infection. Dysregulated immunometabolism is fundamental to the onset of sepsis. Particularly, short-chain fatty acids (SCFAs) are gut microbes derived metabolites serving to drive the communication between gut microbes and the immune system, thereby exerting a profound influence on the pathophysiology of sepsis. Protein post-translational modifications (PTMs) have emerged as key players in shaping protein function, offering novel insights into the intricate connections between metabolism and phenotype regulation that characterize sepsis. Accumulating evidence from recent studies suggests that SCFAs can mediate various PTM-dependent mechanisms, modulating protein activity and influencing cellular signaling events in sepsis. This comprehensive review discusses the roles of SCFAs metabolism in sepsis associated inflammatory and immunosuppressive disorders while highlights recent advancements in SCFAs-mediated lysine acylation modifications, such as substrate supplement and enzyme regulation, which may provide new pharmacological targets for the treatment of sepsis.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Xinhui Shi
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Hongmei Qiu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Sijia Liu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Ting Yang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
6
|
Yang D, Li X, Yu B, Peng H. Qualitative lysine crotonylation and 2-hydroxyisobutyrylation analysis in the ovarian tissue proteome of piglets. Front Cell Dev Biol 2023; 11:1176212. [PMID: 37255595 PMCID: PMC10225730 DOI: 10.3389/fcell.2023.1176212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023] Open
Abstract
Ovarian function influences diverse aspects of fertility and reproductive lifespan by regulating oocyte supply and hormone secretion. Lysine crotonylation (Kcr) and lysine 2-hydroxyisobutyryllysine (Khib) are newly identified post-translational modifications and function as regulators of transactivation in mammals. In this study, we investigated protein post-translational Kcr and 2-hydroxyisobutyrylation in the ovarian tissues of piglets. A total of 653 overlapping proteins among differentially modified proteins were identified for both crotonylation and 2-hydroxyisobutyrylation. Gene Ontology enrichment analysis indicated that 653 DMPs were significantly enriched in nucleosome organization, chromatin assembly, DNA packaging, peptide biosynthetic process and peptide metabolic process. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed enrichment in proteasome, ribosome, fatty acid elongation, pyruvate metabolism and pentose phosphate pathway. Fifteen DMPs were identified in the proteasome pathway, of which PSMC6 and PSMB7 were the core proteins. In addition, the significant changes in Kcr and Khib in the complex subunits of the proteasome may be involved in cell cycle processes during oocyte development. Forty-four DMPs with both Kcr and Khib modifications were related to the ribosome pathway. The regulated ribosome pathway may indicate that Kcr and Khib comodified proteins participate in protein synthesis during oocyte development. Western blot and immunofluorescence staining results supported the reliability of the sequencing results. Our results may provide a valuable resource to help illuminate the roles of Kcr and Khib in ovarian development and may serve as new tools to better control diseases.
Collapse
|
7
|
Zhao W, Ren TH, Zhou YZ, Liu SB, Huang XY, Ning TY, Li G. Proteomic analysis of protein lysine 2-hydroxyisobutyrylation (K hib) in soybean leaves. BMC PLANT BIOLOGY 2023; 23:23. [PMID: 36631736 PMCID: PMC9835227 DOI: 10.1186/s12870-022-04033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Protein lysine 2-hydroxyisobutyrylation (Khib) is a novel post-translational modification (PTM) discovered in cells or tissues of animals, microorganisms and plants in recent years. Proteome-wide identification of Khib-modified proteins has been performed in several plant species, suggesting that Khib-modified proteins are involved in a variety of biological processes and metabolic pathways. However, the protein Khib modification in soybean, a globally important legume crop that provides the rich source of plant protein and oil, remains unclear. RESULTS In this study, the Khib-modified proteins in soybean leaves were identified for the first time using affinity enrichment and high-resolution mass spectrometry-based proteomic techniques, and a systematic bioinformatics analysis of these Khib-modified proteins was performed. Our results showed that a total of 4251 Khib sites in 1532 proteins were identified as overlapping in three replicates (the raw mass spectrometry data are available via ProteomeXchange with the identifier of PXD03650). These Khib-modified proteins are involved in a wide range of cellular processes, particularly enriched in biosynthesis, central carbon metabolism and photosynthesis, and are widely distributed in subcellular locations, mainly in chloroplasts, cytoplasm and nucleus. In addition, a total of 12 sequence motifs were extracted from all identified Khib peptides, and a basic amino acid residue (K), an acidic amino acid residue (E) and three aliphatic amino acid residues with small side chains (G/A/V) were found to be more preferred around the Khib site. Furthermore, 16 highly-connected clusters of Khib proteins were retrieved from the global PPI network, which suggest that Khib modifications tend to occur in proteins associated with specific functional clusters. CONCLUSIONS These findings suggest that Khib modification is an abundant and conserved PTM in soybean and that this modification may play an important role in regulating physiological processes in soybean leaves. The Khib proteomic data obtained in this study will help to further elucidate the regulatory mechanisms of Khib modification in soybean in the future.
Collapse
Affiliation(s)
- Wei Zhao
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong 271018 People’s Republic of China
| | - Ting-Hu Ren
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong 271018 People’s Republic of China
| | - Yan-Zheng Zhou
- Jining Academy of Agricultural Sciences, Jining, Shandong 272075 People’s Republic of China
| | - Sheng-Bo Liu
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong 271018 People’s Republic of China
| | - Xin-Yang Huang
- Jining Academy of Agricultural Sciences, Jining, Shandong 272075 People’s Republic of China
| | - Tang-Yuan Ning
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong 271018 People’s Republic of China
| | - Geng Li
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong 271018 People’s Republic of China
| |
Collapse
|
8
|
Wu R, Du J. Computational investigation on the effect of the lysine 2-hydroxyisobutyrylation on argininosuccinate synthetase 1 conformational dynamics in Botrytis cinerea. J Mol Model 2022; 29:8. [PMID: 36512256 DOI: 10.1007/s00894-022-05408-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/04/2022] [Indexed: 12/15/2022]
Abstract
Lysine 2-hydroxyisobutyrylation (Khib) is a newly discovered post-translational modification in recent years, which has been identified in several species and is associated with diverse cellular functions. Botrytis cinerea, as a broad host pathogen, is very destructive and causes serious losses to agricultural economy. Argininosuccinate synthetase (ASS, citrulline-aspartate ligase) is the rate-limiting enzyme in the catalytic arginine synthesis pathway. Arginine deficiency can affect the growth of Botrytis cinerea. The Khib site Lys120 was found in functional domain of argininosuccinate synthetase 1 from Botrytis cinerea (Bcass1), which is located in conserved loop. It is worth exploring how K120hib affects the conformation of Bcass1. In this study, molecular dynamics (MD) simulations, binding free energy calculation, principal component analysis (PCA), and dynamic cross-correlation analysis were used to explore the influence of K120hib on the conformation of Bcass1. The increase of root-mean-square fluctuation (RMSF) value of related residues and PCA results suggests that K120hib increases the flexibility of some regions of Bcass1. Moreover, K120hib weakens the binding free energy between Bcass1 and the two substrates. These results will help to understand the effects of K120hib on Bcass1 and provide new ideas for regulating the pathogenicity of Botrytis cinerea.
Collapse
Affiliation(s)
- Ruihan Wu
- Shandong Province Key Laboratory of Applied Mycology, College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Juan Du
- Shandong Province Key Laboratory of Applied Mycology, College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
9
|
Li Z, Wu Q, Zhang Y, Zhou X, Peng X. Systematic analysis of lysine malonylation in Streptococcus mutans. Front Cell Infect Microbiol 2022; 12:1078572. [PMID: 36519128 PMCID: PMC9742479 DOI: 10.3389/fcimb.2022.1078572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
Protein lysine malonylation (Kmal) is a novel post-translational modification (PTM) that regulates various biological pathways such as energy metabolism and translation. Malonylation in prokaryotes, however, is still poorly understood. In this study, we performed a global Kmal analysis of the cariogenic organism Streptococcus mutans by combining antibody-based affinity enrichment and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis. Altogether, 392 malonyllysine sites in 159 proteins were identified. Subsequent bioinformatic analysis revealed that Kmal occurs in proteins involved in various metabolic pathways including translation machinery, energy metabolism, RNA degradation, and biosynthesis of various secondary metabolites. Quantitative analysis demonstrated that Kmal substrates were globally altered in the biofilm growth state compared to the planktonic growth state. Furthermore, a comparative analysis of the lysine malonylome of our study with previously determined lysine acetylome in S. mutans revealed that a small proportion of Kmal sites overlapped with acetylated sites, whereby suggesting that these two acylations have distinct functional implications. These results expand our knowledge of Kmal in prokaryotes, providing a resource for researching metabolic regulation of bacterial virulence and physiological functions by PTM.
Collapse
Affiliation(s)
- Zhengyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qinrui Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yixin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Sobolev VV, Soboleva AG, Denisova EV, Pechatnikova EA, Dvoryankova E, Korsunskaya IM, Mezentsev A. Proteomic Studies of Psoriasis. Biomedicines 2022; 10:biomedicines10030619. [PMID: 35327421 PMCID: PMC8945259 DOI: 10.3390/biomedicines10030619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
In this review paper, we discuss the contribution of proteomic studies to the discovery of disease-specific biomarkers to monitor the disease and evaluate available treatment options for psoriasis. Psoriasis is one of the most prevalent skin disorders driven by a Th17-specific immune response. Although potential patients have a genetic predisposition to psoriasis, the etiology of the disease remains unknown. During the last two decades, proteomics became deeply integrated with psoriatic research. The data obtained in proteomic studies facilitated the discovery of novel mechanisms and the verification of many experimental hypotheses of the disease pathogenesis. The detailed data analysis revealed multiple differentially expressed proteins and significant changes in proteome associated with the disease and drug efficacy. In this respect, there is a need for proteomic studies to characterize the role of the disease-specific biomarkers in the pathogenesis of psoriasis, develop clinical applications to choose the most efficient treatment options and monitor the therapeutic response.
Collapse
Affiliation(s)
- Vladimir V. Sobolev
- Centre of Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.G.S.); (E.V.D.); (E.D.); (I.M.K.)
- Correspondence: (V.V.S.); (A.M.)
| | - Anna G. Soboleva
- Centre of Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.G.S.); (E.V.D.); (E.D.); (I.M.K.)
- Scientific Research Institute of Human Morphology, 117418 Moscow, Russia
| | - Elena V. Denisova
- Centre of Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.G.S.); (E.V.D.); (E.D.); (I.M.K.)
- Moscow Scientific and Practical Center of Dermatovenereology and Cosmetology, 119071 Moscow, Russia
| | - Eva A. Pechatnikova
- Department of Dermatology and Cosmetology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Eugenia Dvoryankova
- Centre of Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.G.S.); (E.V.D.); (E.D.); (I.M.K.)
| | - Irina M. Korsunskaya
- Centre of Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.G.S.); (E.V.D.); (E.D.); (I.M.K.)
| | - Alexandre Mezentsev
- Centre of Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.G.S.); (E.V.D.); (E.D.); (I.M.K.)
- Correspondence: (V.V.S.); (A.M.)
| |
Collapse
|
11
|
Blasl AT, Schulze S, Qin C, Graf LG, Vogt R, Lammers M. Post-translational lysine ac(et)ylation in health, ageing and disease. Biol Chem 2021; 403:151-194. [PMID: 34433238 DOI: 10.1515/hsz-2021-0139] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
The acetylation/acylation (ac(et)ylation) of lysine side chains is a dynamic post-translational modification (PTM) regulating fundamental cellular processes with implications on the organisms' ageing process: metabolism, transcription, translation, cell proliferation, regulation of the cytoskeleton and DNA damage repair. First identified to occur on histones, later studies revealed the presence of lysine ac(et)ylation in organisms of all kingdoms of life, in proteins covering all essential cellular processes. A remarkable finding showed that the NAD+-dependent sirtuin deacetylase Sir2 has an impact on replicative lifespan in Saccharomyces cerevisiae suggesting that lysine acetylation has a direct role in the ageing process. Later studies identified sirtuins as mediators for beneficial effects of caloric/dietary restriction on the organisms' health- or lifespan. However, the molecular mechanisms underlying these effects are only incompletely understood. Progress in mass-spectrometry, structural biology, synthetic and semi-synthetic biology deepened our understanding of this PTM. This review summarizes recent developments in the research field. It shows how lysine ac(et)ylation regulates protein function, how it is regulated enzymatically and non-enzymatically, how a dysfunction in this post-translational machinery contributes to disease development. A focus is set on sirtuins and lysine acyltransferases as these are direct sensors and mediators of the cellular metabolic state. Finally, this review highlights technological advances to study lysine ac(et)ylation.
Collapse
Affiliation(s)
- Anna-Theresa Blasl
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Sabrina Schulze
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Chuan Qin
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Leonie G Graf
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Robert Vogt
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Michael Lammers
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| |
Collapse
|