1
|
Liu J, Liu Y, Li Q, Lu Y. Heat shock protein 70 and Cathepsin B genes are involved in the thermal tolerance of Aphis gossypii. PEST MANAGEMENT SCIENCE 2023; 79:2075-2086. [PMID: 36700477 DOI: 10.1002/ps.7384] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Elevated temperature can directly affect the insect pest population dynamics. Many experimental studies have indicated that high temperatures affect the biological and ecological characteristics of the widely distributed crop pest Aphis gossypii, but the molecular mechanisms underlying its response to heat stress remain unstudied. Here, we used transcriptomic analysis to explore the key genes and metabolic pathways involved in the regulation of thermotolerance in A. gossypii at 29 °C, 32 °C, and 35 °C. RESULTS The results of bioinformatics analysis show that few genes were consistently differentially expressed among the higher temperature treatments compared to 29 °C, and a moderate temperature increase of 3 °C can elicit gene expression changes that help A. gossypii adapt to warmer temperatures. Based on KEGG pathway enrichment analysis, we found that genes encoding four heat shock protein 70 s (Hsp70s) and nine cathepsin B (CathB) proteins were significantly upregulated at 35 °C compared with 32 °C. Genes related to glutathione production were also highly enriched between 32 °C and 29 °C. Silencing of two Hsp70s (ApHsp70A1-1 and ApHsp68) and two CathBs (ApCathB01 and ApCathB02) with RNA interference using a nanocarrier-based transdermal dsRNA delivery system significantly increased sensitivity of A. gossypii to high temperatures. CONCLUSION A. gossypii is able to fine-tune its response across a range of temperatures, and Hsp70 and CathB genes are essential for adaption of A. gossypii to warmer temperatures. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinping Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Farooq T, Lin Q, She X, Chen T, Tang Y, He Z. Comparative transcriptome profiling reveals a network of differentially expressed genes in Asia II 7 and MEAM1 whitefly cryptic species in response to early infection of Cotton leaf curl Multan virus. Front Microbiol 2022; 13:1004513. [PMID: 36267190 PMCID: PMC9577181 DOI: 10.3389/fmicb.2022.1004513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Cotton leaf curl Multan virus (CLCuMuV) is a whitefly-vectored begomovirus that poses ramping threat to several economically important crops worldwide. The differential transmission of CLCuMuV by its vector Bemisia tabaci mainly relies on the type of whitefly cryptic species. However, the molecular responses among different whitefly cryptic species in response to early CLCuMuV infection remain elusive. Here, we compared early-stage transcriptomic profiles of Asia II 7 and MEAM1 cryptic species infected by CLCuMuV. Results of Illumina sequencing revealed that after 6 and 12 h of CLCuMuV acquisition, 153 and 141 genes among viruliferous (VF) Asia II 7, while 445 and 347 genes among VF MEAM 1 whiteflies were differentially expressed compared with aviruliferous (AVF) whiteflies. The most abundant groups of differentially expressed genes (DEGs) among Asia II 7 and MEAM1 were associated with HTH-1 and zf-C2H2 classes of transcription factors (TFs), respectively. Notably, in contrast to Asia II 7, MEAM1 cryptic species displayed higher transcriptional variations with elevated immune-related responses following CLCuMuV infection. Among both cryptic species, we identified several highly responsive candidate DEGs associated with antiviral innate immunity (alpha glucosidase, LSM14-like protein B and phosphoenolpyruvate carboxykinase), lysosome (GPI-anchored protein 58) and autophagy/phagosome pathways (sequestosome-1, cathepsin F-like protease), spliceosome (heat shock protein 70), detoxification (cytochrome P450 4C1), cGMP-PKG signaling pathway (myosin heavy chain), carbohydrate metabolism (alpha-glucosidase), biological transport (mitochondrial phosphate carrier) and protein absorption and digestion (cuticle protein 8). Further validation of RNA-seq results showed that 23 of 28 selected genes exhibited concordant expression both in RT-qPCR and RNA-seq. Our findings provide vital mechanistic insights into begomovirus-whitefly interactions to understand the dynamics of differential begomovirus transmission by different whitefly cryptic species and reveal novel molecular targets for sustainable management of insect-transmitted plant viruses.
Collapse
Affiliation(s)
| | | | | | | | - Yafei Tang
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zifu He
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
3
|
Sun YX, Chen C, Xu WJ, Abbas MN, Mu FF, Ding WJ, Zhang HJ, Li J. Functions of Bombyx mori cathepsin L-like in innate immune response and anti-microbial autophagy. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103927. [PMID: 33197480 DOI: 10.1016/j.dci.2020.103927] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
Cathepsins belongs to the cysteine protease family, which are activated by an acidic environment. They play essential biological roles in the innate immunity and development of animals. Here, we identified a 62 kDa cathepsin L-like protease from the silkworm Bombyx mori. It contained putative conserved domains, including an I29 inhibitor domain and a peptidase C1A domain. The expression analysis revealed that cathepsin L-like was highly produced in the fat body, and 20-hydroxyecdysone (20 E) induced its expression. After challenge with three different types of heat-killed pathogens (Escherichia coli, Beauveria bassiana, and Bacillus cereus), the mRNA levels of cathepsin L-like significantly increased and displayed variable expression patterns in the immune tissues, suggesting its potential role in the innate immune response. The suppression of cathepsin L-like altered the expression of immune-related genes associated with the Toll and IMD pathway. Besides, autophagy-related genes such as Atg6, Atg8, VAMP2, Vps4, and syntaxin expression were also altered, indicating that cathepsin L-like regulates innate immunity and autophagy. Fluorescence microscopic analysis exhibited that cathepsin L-like was localized in the cytoplasm, and it was activated and dispersed throughout the cytoplasm and nucleus following the induction of anti-microbial autophagy. Altogether, our data suggest that cathepsin L-like may regulate the innate immune response and anti-microbial autophagy in the silkworm, B. mori.
Collapse
Affiliation(s)
- Yu-Xuan Sun
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Chen Chen
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Wen-Jie Xu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Fang-Fang Mu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Wen-Jing Ding
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Hai-Jun Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China.
| | - Jun Li
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China.
| |
Collapse
|
4
|
Roesel CL, Rosengaus RB, Smith W, Vollmer SV. Transcriptomics reveals specific molecular mechanisms underlying transgenerational immunity in Manduca sexta. Ecol Evol 2020; 10:11251-11261. [PMID: 33144962 PMCID: PMC7593158 DOI: 10.1002/ece3.6764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 01/08/2023] Open
Abstract
The traditional view of innate immunity in insects is that every exposure to a pathogen triggers an identical and appropriate immune response and that prior exposures to pathogens do not confer any protective (i.e., adaptive) effect against subsequent exposure to the same pathogen. This view has been challenged by experiments demonstrating that encounters with sublethal doses of a pathogen can prime the insect's immune system and, thus, have protective effects against future lethal doses. Immune priming has been reported across several insect species, including the red flour beetle, the honeycomb moth, the bumblebee, and the European honeybee, among others. Immune priming can also be transgenerational where the parent's pathogenic history influences the immune response of its offspring. Phenotypic evidence of transgenerational immune priming (TGIP) exists in the tobacco moth Manduca sexta where first-instar progeny of mothers injected with the bacterium Serratia marcescens exhibited a significant increase of in vivo bacterial clearance. To identify the gene expression changes underlying TGIP in M. sexta, we performed transcriptome-wide, transgenerational differential gene expression analysis on mothers and their offspring after mothers were exposed to S. marcescens. We are the first to perform transcriptome-wide analysis of the gene expression changes associated with TGIP in this ecologically relevant model organism. We show that maternal exposure to both heat-killed and live S. marcescens has strong and significant transgenerational impacts on gene expression patterns in their offspring, including upregulation of peptidoglycan recognition protein, toll-like receptor 9, and the antimicrobial peptide cecropin.
Collapse
Affiliation(s)
| | | | - Wendy Smith
- Marine Science CenterNortheastern UniversityNahantMAUSA
| | | |
Collapse
|
5
|
Guo SY, Wu WM, Li SY, Liu Y, Ruan ZF, Ye MQ, Xiao Y, Zhong YJ, Cao Y, Li K, Tian L. 20-Hydroxyecdysone-upregulated proteases involved in Bombyx larval fat body destruction. INSECT MOLECULAR BIOLOGY 2018; 27:724-738. [PMID: 29888823 DOI: 10.1111/imb.12511] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
During insect larval-pupal metamorphosis, the obsolete larval organs and tissues undergo histolysis and programmed cell death to recycle cellular materials. It has been demonstrated that some cathepsins are essential for histolysis in larval tissues, but the process of tissue destruction is not well documented. Fat body, the homologous organ to mammalian liver and adipose tissue, goes through a distinct destruction process during larval-pupal transition. Herein, we found that most of the Bombyx proteases - including Bombyx cathepsin B (BmCatB) (BmCatLL-2), Bombyx cathepsin D (BmCatD), Bombyx cathepsin L like-1 (BmCatLL-1) and -2(BmCatLL-2), Bombyx fibroinase (BmBcp), Bombyx matrix metalloprotease (BmMmp), Bombyx A disintegrin and metalloproteinase with thrombospondin motifs 1 (BmAdamTS-1), Bombyx A disintegrin and metalloproteinase with thrombospondin motifs like (BmAdamTS L) and Bombyx cysteine protease inhibitor (Bmbcpi)- were expressed highly in fat body during feeding and metamorphosis, with a peak occurring during the nonfeeding moulting or prepupal stage, as well as being responsive to 20-hydroxyecdysone (20E). The aforementioned protease genes expression was upregulated by injection of 20E into the feeding larvae, while blocking 20E signalling transduction led to downregulation. Western blotting and immunofluorescent staining of BmCatB and BmBcp confirmed the coincident variation of their messenger RNA (mRNA) and protein level during the development and after the treatments. Moreover, BmCatB, BmBcp, BmMmp and BmAdamTS-1 RNA interference all led to blockage of larval fat body destruction. Taken together, we conclude that 20E regulates larval fat body destruction by upregulating related protease gene expression and protein levels during larval-pupal transition.
Collapse
Affiliation(s)
- S-Y Guo
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - W-M Wu
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - S-Y Li
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Y Liu
- Shanghai Generay Biotech Co. Ltd, Shanghai, China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Z F Ruan
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - M-Q Ye
- The Sericultural and Agri-Food Research Institute of the Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Y Xiao
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Y-J Zhong
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Y Cao
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - K Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - L Tian
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Saikhedkar N, Summanwar A, Joshi R, Giri A. Cathepsins of lepidopteran insects: Aspects and prospects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 64:51-59. [PMID: 26210259 DOI: 10.1016/j.ibmb.2015.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/20/2015] [Accepted: 07/06/2015] [Indexed: 05/21/2023]
Abstract
Molecular understanding of lepidopteran physiology has revealed that proteases consist of one of the central regulatory/reacting system for insect growth and survival. Among the various proteases, cathepsins are the most crucial cellular proteases, which play vital roles during insect development. In the present review, we have discussed various aspects of the lepidopteran insect cathepsins, emphasizing their roles in processes like development, growth, metamorphosis, apoptosis and immunity. Cathepsins are categorized into different types on the basis of their sequence diversification, leading to variation in structure and catalytic function. Cathepsins exhibit tissue and stage specific expression pattern which is fine-tuned by a delicate balance of expression, compartmentalization, zymogen activation, inhibition by protein inhibitors and degradation. The indispensability of cathepsins as cellular proteases in the above mentioned processes proposes them as novel targets for designing effective and specific insect controlling strategies.
Collapse
Affiliation(s)
- Nidhi Saikhedkar
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, MS, India
| | - Aarohi Summanwar
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Rakesh Joshi
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, MS, India.
| | - Ashok Giri
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, MS, India.
| |
Collapse
|
7
|
Cai XY, Yu J, Yu HY, Liu YW, Fang Y, Ren ZX, Jia JQ, Zhang GZ, Guo XJ, Jin BR, Gui ZZ. Core promoter regulates the expression of cathepsin B gene in the fat body of Bombyx mori. Gene 2014; 542:232-9. [PMID: 24630970 DOI: 10.1016/j.gene.2014.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/06/2014] [Indexed: 01/08/2023]
Abstract
Bombyx mori cathepsin B (BmCatB) is involved in the programmed cell death of the fat body during B. mori metamorphosis. For a better understanding of the functional regulatory mechanism, the promoter region of BmCatB in the transcriptional regulation has been identified and analyzed in the present study. BmCatB promoter region performed by the 5' truncation or mutagenesis of EcREs was inserted in the pFA3Luc-A3RL double fluorescence expression vector to activate the fireflies luciferase (FLuc) gene. The results indicated that the dual-luciferase activity of BmCatB gene in the silkworm larval fat body is regulated by the length of promoter. Site-directed mutagenesis of EcRE experiment has shown that the EcREs are up-regulated significantly in the regulation of the BmCatB promoter. A 142bp region (-1165 to -1023) and EcREs are the mainly fat-body tissue-specificity related region and could function as a core promoter element.
Collapse
Affiliation(s)
- Xiang-Yun Cai
- Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Jie Yu
- Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Hai-Yan Yu
- Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Yan-Wei Liu
- Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Yin Fang
- Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Zi-Xu Ren
- Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Jun-Qiang Jia
- Jiangsu University of Science and Technology, Zhenjiang 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Guo-Zheng Zhang
- Jiangsu University of Science and Technology, Zhenjiang 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Xi-Jie Guo
- Jiangsu University of Science and Technology, Zhenjiang 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Byung-Rae Jin
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Republic of Korea
| | - Zhong-Zheng Gui
- Jiangsu University of Science and Technology, Zhenjiang 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China.
| |
Collapse
|
8
|
Yu J, Wu FY, Zou FM, Cai XY, Yu HY, Liu YW, Fang Y, Ren ZX, Jia JQ, Zhang GZ, Guo XJ, Jin BR, Gui ZZ. Identification and functional analysis of the cathepsin D gene promoter of Bombyx mori. Mol Biol Rep 2014; 41:1623-30. [DOI: 10.1007/s11033-013-3009-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 12/30/2013] [Indexed: 10/25/2022]
|
9
|
Yu J, Wu FY, Zou FM, Jia JQ, Wang SP, Zhang GZ, Guo XJ, Gui ZZ. Identification of ecdysone response elements (EcREs) in the Bombyx mori cathepsin D promoter. Biochem Biophys Res Commun 2012; 425:113-8. [DOI: 10.1016/j.bbrc.2012.07.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 07/15/2012] [Indexed: 11/16/2022]
|