1
|
Wang X, Yang Y, Zhao S, Wu D, Li L, Zhao Z. Chitosan-based biomaterial delivery strategies for hepatocellular carcinoma. Front Pharmacol 2024; 15:1446030. [PMID: 39161903 PMCID: PMC11330802 DOI: 10.3389/fphar.2024.1446030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
Background Hepatocellular carcinoma accounts for 80% of primary liver cancers, is the most common primary liver malignancy. Hepatocellular carcinoma is the third leading cause of tumor-related deaths worldwide, with a 5-year survival rate of approximately 18%. Chemotherapy, although commonly used for hepatocellular carcinoma treatment, is limited by systemic toxicity and drug resistance. Improving targeted delivery of chemotherapy drugs to tumor cells without causing systemic side effects is a current research focus. Chitosan, a biopolymer derived from chitin, possesses good biocompatibility and biodegradability, making it suitable for drug delivery. Enhanced chitosan formulations retain the anti-tumor properties while improving stability. Chitosan-based biomaterials promote hepatocellular carcinoma apoptosis, exhibit antioxidant and anti-inflammatory effects, inhibit tumor angiogenesis, and improve extracellular matrix remodeling for enhanced anti-tumor therapy. Methods We summarized published experimental papers by querying them. Results and Conclusions This review discusses the physicochemical properties of chitosan, its application in hepatocellular carcinoma treatment, and the challenges faced by chitosan-based biomaterials.
Collapse
Affiliation(s)
- Xianling Wang
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Yang
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuang Zhao
- Endoscopy Center, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Di Wu
- First Digestive Endoscopy Department, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Le Li
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhifeng Zhao
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Foroutan Z, Butler AE, Zengin G, Sahebkar A. Curcumin and Ferroptosis: a Promising Target for Disease Prevention and Treatment. Cell Biochem Biophys 2024; 82:343-349. [PMID: 38183601 DOI: 10.1007/s12013-023-01212-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/24/2023] [Indexed: 01/08/2024]
Abstract
Ferroptosis is a recently identified form of cell death characterized by iron accumulation and lipid peroxidation. Unlike apoptosis, necrosis, and autophagy, ferroptosis operates through a distinct molecular pathway. Curcumin, derived from turmeric rhizomes, is a natural compound with diverse therapeutic benefits, including neuroprotective, anti-metabolic syndrome, anti-inflammatory, and anti-cancer properties. Growing evidence suggests that curcumin possesses both pro-oxidant and antioxidant properties, which can vary depending on the cell type. In this review, we explore the relationship between the effects of curcumin and the molecular mechanisms underlying the ferroptosis signaling pathway, drawing from current in vivo and in vitro research. Curcumin has been found to induce ferroptosis in cancer cells while acting as an inhibitor of ferroptosis in tissue injuries. Notably, curcumin treatment leads to alterations in key ferroptosis markers, underscoring its significant impact on this process. Nonetheless, further research focused on elucidating this important attribute of turmeric is crucial for advancing disease treatment.
Collapse
Affiliation(s)
- Zahra Foroutan
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, PO Box 15503, Adliya, Bahrain
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, 42130, Turkey
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Agrawal A, Sharma AR, Rathod V, Bhatnagar A, Amol Khale P, Tidke P, Mehta D, Mazumder D. Assessment of the Efficiency of Tulsi Extract as a Locally Administered Medication Agent and Its Comparison With Curcumin in the Treatment of Periodontal Pockets. Cureus 2024; 16:e54619. [PMID: 38523946 PMCID: PMC10959213 DOI: 10.7759/cureus.54619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2024] [Indexed: 03/26/2024] Open
Abstract
INTRODUCTION The use of locally administered medication (LAM) agents such as minocycline, metronidazole, and tetracycline as antimicrobials has drawbacks, including the development of microorganism resistance, exorbitant pricing, and limited accessibility. Thus, there is a need for safer and more affordable alternatives. Numerous natural therapies have been found to be superior in this situation. In this study, the efficacy of tulsi extract as a LAM agent was assessed and it was compared with curcumin, which is currently used for the treatment of periodontal pockets. METHODS AND MATERIALS There were three categories: each category had 30 sites. Category 1 sites underwent scaling along with root planing (SRP) solely, Category 2 sites received curcumin extract as LAM in the periodontal pocket in addition to SRP, and Category 3 sites received tulsi extract as LAM in the periodontal pocket in addition to SRP. The stent was used to ensure consistent and unbiased measurements on the 30th day after treatment. Clinical attachment level (CAL) and probing pocket depth (PPD) were measured at six points around each tooth. Results: The reduction in values of periodontal parameters such as BAPNA (Nα-benzoyl-DL-arginine-p-nitroanilide) assays, modified sulcus bleeding index (mSBI), gingival index (GI), plaque index (PI), CAL, and PPD in sites within Category 1, Category 2, and Category 3 was statistically significant. The decrease in BAPNA assay results indicates that tulsi extract is more effective than curcumin gel at eradicating red-complex bacteria. Although not significantly different, the decrease in PI and GI was observed to be greater when curcumin jelly was used. This suggests that curcumin jelly has a stronger impact on reducing plaque, which in turn decreases gingival inflammation. CONCLUSION Based on the overall results of the study, it can be said that both tulsi and curcumin have similar effectiveness in reducing periodontal markers.
Collapse
Affiliation(s)
- Ankita Agrawal
- Department of Conservative Dentistry and Endodontics, Buddha Institute of Dental Sciences and Hospital, Patna, IND
| | - Anant Ragav Sharma
- Department of Periodontics, Pacific Dental College and Hospital, Udaipur, IND
| | - Varsha Rathod
- Department of Periodontology, Dr. D. Y. (Dnyandeo Yashwantrao) Patil School of Dentistry, Navi Mumbai, IND
| | - Anand Bhatnagar
- Department of Periodontics, Jaipur Dental College, Jaipur, IND
| | - Pallavi Amol Khale
- Department of Dentistry, Rajiv Gandhi Medical College and Chhatrapati Shivaji Maharaj Hospital, Thane, IND
| | - Priyanka Tidke
- Department of Oral Medicine and Radiology, MGM (Mahatma Gandhi Mission) Dental College and Hospital, Navi Mumbai, IND
| | - Dhaval Mehta
- Department of Oral Medicine and Radiology, Narsinbhai Patel Dental College and Hospital, Sankalchand Patel University, Visnagar, IND
| | - Debojyoti Mazumder
- Department of Conservative Dentistry and Endodontics, Kusum Devi Sunderlal Dugar Jain Dental College and Hospital, Kolkata, IND
| |
Collapse
|
4
|
Sharma KK, Devi S, Kumar D, Ali Z, Fatma N, Misra R, Kumar G. Role of Natural Products against the Spread of SARS-CoV-2 by Inhibition of ACE-2 Receptor: A Review. Curr Pharm Des 2024; 30:2562-2573. [PMID: 39041269 DOI: 10.2174/0113816128320161240703092622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024]
Abstract
A unique extreme acute breathing syndrome emerged in China and spread rapidly globally due to a newly diagnosed human coronavirus and declared a pandemic. COVID-19 was formally named by WHO, and the Global Committee on Taxonomy referred to it as extreme Acute respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Currently there is no efficient method to control the extent of SARS-CoV-2 other than social distancing and hygiene activities. This study aims to present a simple medicinal strategy for combating fatal viral diseases like COVID-19 with minimum effort and intervention. Different Ayurveda medicines (Curcuma longa, green tea, and Piper nigrum) inhibit virus entrance and pathogen transmission while also enhancing immunity. Piperine (1-piperoylpiperidine), as well as curcumin, combine to create an intermolecular complex (π- π) that improves curcumin bioavailability by inhibiting glucuronidation of curcumin in the liver. The receptor- binding domains of the S-protein and also the angiotensin-converting enzyme 2 receptor of the recipient organism are directly occupied by curcumin and catechin, respectively, thereby preventing viruses from entering the cell. As a result, the infection will be tolerated by the animal host.
Collapse
Affiliation(s)
- Krishana Kumar Sharma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad 244001 (UP), India
| | - Shoma Devi
- Department of Zoology, Krishna College of Science & Information Technology, Bijnor 246701 (UP), India
| | - Dharmendra Kumar
- Science Branch, Pt. Deendayal Upadhyay Institute of Archaeology, Archaeological Survey of India, Greater Noida 201013, India
| | - Zeeshan Ali
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad 244001 (UP), India
| | - Nishat Fatma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad 244001 (UP), India
| | - Raghvendra Misra
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad 244001 (UP), India
| | - Gajendra Kumar
- Department of Chemistry, Constituent Government College, MJP Rohilkhand University, Bareilly, Hasanpur, Amroha 244241 (UP), India
| |
Collapse
|
5
|
Pardeshi S, Mohite P, Rajput T, Puri A. The Nanotech Potential of Curcumin in Pharmaceuticals: An Overview. Curr Drug Discov Technol 2024; 21:e260723219113. [PMID: 37493163 DOI: 10.2174/1570163820666230726125809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 07/27/2023]
Abstract
It is safe to use Curcumin as a cosmetic and therapeutic ingredient in pharmaceutical products. For the uses mentioned above and for fundamental research, it is essential to obtain pure Curcumin from plant sources. There is a requirement for effective extraction and purification techniques that adhere to green chemistry standards for efficiency improvement, process safety, and environmental friendliness. Several outstanding studies have looked into the extraction and purification of Curcumin. This review thoroughly covers the currently available curcumin extraction, synthesis, and transformation techniques. Additionally, Curcumin's poor solubility and low absorption in the human body have limited its potential for pharmaceutical use. However, recent developments in novel curcumin formulations utilizing nanotechnology delivery methods have provided new approaches to transport and maximize the human body's curcumin absorption efficiency. In this review, we explore the various curcumin nanoformulations and the potential medicinal uses of nano curcumin. Additionally, we review the necessary future research directions to recommend Curcumin as an excellent therapeutic candidate.
Collapse
Affiliation(s)
- Sagar Pardeshi
- Department of Pharmaceutics AET's St. John Institute of Pharmacy and Research, Manor Road, Palghar, Maharashtra- 401404, India
| | - Popat Mohite
- Department of Pharmaceutical Chemistry, AET's St. John Institute of Pharmacy and Research, Manor Road, Palghar, Maharashtra-401404, India
| | - Tanavirsing Rajput
- Department of Pharmaceutical Chemistry, AET's St. John Institute of Pharmacy and Research, Manor Road, Palghar, Maharashtra-401404, India
| | - Abhijeet Puri
- Department of Pharmacognosy, AET's St. John Institute of Pharmacy and Research, Manor Road, Palghar, Maharashtra-401404, India
| |
Collapse
|
6
|
Kim HW, Yong H, Shea GKH. Blood-spinal cord barrier disruption in degenerative cervical myelopathy. Fluids Barriers CNS 2023; 20:68. [PMID: 37743487 PMCID: PMC10519090 DOI: 10.1186/s12987-023-00463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/12/2023] [Indexed: 09/26/2023] Open
Abstract
Degenerative cervical myelopathy (DCM) is the most prevalent cause of spinal cord dysfunction in the aging population. Significant neurological deficits may result from a delayed diagnosis as well as inadequate neurological recovery following surgical decompression. Here, we review the pathophysiology of DCM with an emphasis on how blood-spinal cord barrier (BSCB) disruption is a critical yet neglected pathological feature affecting prognosis. In patients suffering from DCM, compromise of the BSCB is evidenced by elevated cerebrospinal fluid (CSF) to serum protein ratios and abnormal contrast-enhancement upon magnetic resonance imaging (MRI). In animal model correlates, there is histological evidence of increased extravasation of tissue dyes and serum contents, and pathological changes to the neurovascular unit. BSCB dysfunction is the likely culprit for ischemia-reperfusion injury following surgical decompression, which can result in devastating neurological sequelae. As there are currently no therapeutic approaches specifically targeting BSCB reconstitution, we conclude the review by discussing potential interventions harnessed for this purpose.
Collapse
Affiliation(s)
- Hyun Woo Kim
- Department of Orthopaedics and Traumatology, LKS Faulty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hu Yong
- Department of Orthopaedics and Traumatology, LKS Faulty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Graham Ka Hon Shea
- Department of Orthopaedics and Traumatology, LKS Faulty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Józsa L, Vasvári G, Sinka D, Nemes D, Ujhelyi Z, Vecsernyés M, Váradi J, Fenyvesi F, Lekli I, Gyöngyösi A, Bácskay I, Fehér P. Enhanced Antioxidant and Anti-Inflammatory Effects of Self-Nano and Microemulsifying Drug Delivery Systems Containing Curcumin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196652. [PMID: 36235189 PMCID: PMC9572020 DOI: 10.3390/molecules27196652] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
Turmeric has been used for decades for its antioxidant and anti-inflammatory effect, which is due to an active ingredient isolated from the plant, called curcumin. However, the extremely poor water-solubility of curcumin often limits the bioavailability of the drug. The aim of our experimental work was to improve the solubility and thus bioavailability of curcumin by developing self-nano/microemulsifying drug delivery systems (SN/MEDDS). Labrasol and Cremophor RH 40 as nonionic surfactants, Transcutol P as co-surfactant and isopropyl myristate as the oily phase were used during the formulation. The average droplet size of SN/MEDDS containing curcumin was between 32 and 405 nm. It was found that the higher oil content resulted in larger particle size. The drug loading efficiency was between 93.11% and 99.12% and all formulations were thermodynamically stable. The curcumin release was studied at pH 6.8, and the release efficiency ranged between 57.3% and 80.9% after 180 min. The results of the MTT cytotoxicity assay on human keratinocyte cells (HaCaT) and colorectal adenocarcinoma cells (Caco-2) showed that the curcumin-containing preparations were non-cytotoxic at 5 w/v%. According to the results of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide dismutase (SOD) assays, SNEDDS showed significantly higher antioxidant activity. The anti-inflammatory effect of the SN/MEDDS was screened by enzyme-linked immunosorbent assay (ELISA). SNEDDS formulated with Labrasol as surfactant, reduced tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) levels below 60% at a concentration of 10 w/w%. Our results verified the promising use of SN/MEDDS for the delivery of curcumin. This study demonstrates that the SN/MEDDS could be promising alternatives for the formulation of poorly soluble lipophilic compounds with low bioavailability.
Collapse
Affiliation(s)
- Liza Józsa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Gábor Vasvári
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Dávid Sinka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Dániel Nemes
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Zoltan Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Judit Váradi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - István Lekli
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Alexandra Gyöngyösi
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Correspondence:
| |
Collapse
|
8
|
Sun Q, Yin W, Ru X, Liu C, Song B, Qian Z. Dual role of injectable curcumin-loaded microgels for efficient repair of osteoarthritic cartilage injury. Front Bioeng Biotechnol 2022; 10:994816. [PMID: 36177180 PMCID: PMC9513030 DOI: 10.3389/fbioe.2022.994816] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Curcumin has been widely used for the treatment of age-associated diseases, and showed chondroprotective potential for post-traumatic osteoarthritis (OA). However, due to the irregular-shaped and large-sized defects on joint cartilage in degenerated OA, the in vivo delivery and therapeutic effect of curcumin for effective repair remain challenging. In this study, we first present a PEG-GelMA [Poly(Ethylene Glycol) Dimethacrylate-Gelatin Methacrylate, PGMs] hydrogel microgel-based curcumin delivery system for both improved anti-inflammatory and pro-regenerative effects in treatment for cartilage defects. The curcumin-loaded PGMs were produced by a microfluidic system based on light-induced gelation of gelatin methacrylate (GelMA). This PGMs embedding curcumin at a relative low dosage were demonstrated to promote the proliferation and chondrogenic differentiation of mesenchymal stem cells in vitro. More importantly, the PGMs were shown to attenuate the inflammatory response of chondrocytes under IL-1β stimulation. Lastly, the in vivo application of the injectable PGMs significantly promoted the repair of large-sized cartilage injury. These results confirmed that curcumin-loaded PGMs can not only enhance the chondroprotective efficacy under inflammatory conditions but also induce efficient cartilage regeneration. This study provides an advanced strategy with anti-inflammatory and pro-regenerative dual-role therapeutic for treatment of extensive cartilage injuries.
Collapse
Affiliation(s)
- Qicai Sun
- Department of Orthopaedic Surgery, Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei Yin
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuanliang Ru
- Department of Orthopaedic Surgery, Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chun Liu
- Department of Orthopaedic Surgery, Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Baishan Song
- Department of Orthopaedic Surgery, Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- *Correspondence: Baishan Song, ; Zhigang Qian,
| | - Zhigang Qian
- Department of Orthopaedic Surgery, Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- *Correspondence: Baishan Song, ; Zhigang Qian,
| |
Collapse
|
9
|
Trendafilova I, Chimshirova R, Momekova D, Petkov H, Koseva N, Petrova P, Popova M. Curcumin and Capsaicin-Loaded Ag-Modified Mesoporous Silica Carriers: A New Alternative in Skin Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3075. [PMID: 36080112 PMCID: PMC9458240 DOI: 10.3390/nano12173075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Biologically active substances of natural origin offer a promising alternative in skin disease treatment in comparison to synthetic medications. The limiting factors for the efficient application of natural compounds, such as low water solubility and low bioavailability, can be easily overcome by the development of suitable delivery systems. In this study, the exchange with the template procedure was used for the preparation ofa spherical silver-modified mesoporous silica nanocarrier. The initial and drug-loaded formulations are fully characterized by different physico-chemical methods. The incipient wetness impregnation method used to load health-promoting agents, curcumin, and capsaicin in Ag-modified carriers separately or in combinationresulted in high loading efficiency (up to 33 wt.%). The interaction between drugs and carriers was studied by ATR-FTIR spectroscopy. The release experiments of both active substances from the developed formulations were studied in buffers with pH 5.5, and showed improved solubility. Radical scavenging activity and ferric-reducing antioxidant power assays were successfully used for the evaluation of the antiradical and antioxidant capacity of the curcumin or/and capsaicin loaded on mesoporous carriers. Formulations containing a mixture of curcumin and capsaicin were characterized bypotentiation of their antiproliferative effect against maligning cells, and it was confirmed that the system for simultaneous delivery of both drugs has lower IC50 values than the free substances.The antibacterial tests showed better activity of the obtained delivery systems in comparison with the pure curcumin and capsaicin. Considering the obtained results, it can be concluded that the obtained delivery systems are promising for potential dermal treatment.
Collapse
Affiliation(s)
- Ivalina Trendafilova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ralitsa Chimshirova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Denitsa Momekova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Hristo Petkov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Neli Koseva
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Margarita Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
10
|
Adhikari S, Rimal J, Maharjan IK, Shrestha A. Efficacy of Curcumin in Combination with Intralesional Dexamethasone with Hyaluronidase in the Treatment of Oral Submucous Fibrosis: A Randomized Controlled Trial. Asian Pac J Cancer Prev 2022; 23:3125-3132. [PMID: 36172675 DOI: 10.31557/apjcp.2022.23.9.3125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE The objective of this study was to determine the efficacy of curcumin in combination with intralesional dexamethasone with hyaluronidase in the treatment of oral submucous fibrosis (OSF). METHODS This randomized, double blind, parallel design, clinical trial was conducted at B.P. Koirala Institute of Health Sciences, Nepal. Thirty-four patients with clinically diagnosed OSF were randomized into two groups (17 participants in each) with baseline treatment of intralesional dexamethasone with hyaluronidase for 6 weeks for the both. Curcumin (2gm/day) was provided to Group A (Test) and Group B (Control) received placebo. Interincisal mouth opening, tongue protrusion, cheek flexibility and visual analogue scale (VAS) scoring of burning sensation of oral mucosa was recorded at baseline, 6, 8 and 12 weeks follow-up and independent t-test was used to compare the improvements in two groups. RESULTS On comparing the 6 weeks and baseline values, in Group A and B the mean difference in mouth opening was 8.82±1.33 mm and 5.53±1.17 mm respectively (p<0.001), in cheek flexibility was 2.94±1.02 mm and 1.94±1.24 mm respectively (p=0.02) and in tongue protrusion was 6.23±1.48 and 3.65±1.37 mm respectively (p<0.001). The findings were consistent in the 8 weeks follow-up. In 12 weeks follow-up, on comparing with the baseline values, in Group A and B, the mean difference in mouth opening was 8.71±1.16 mm and 5.35±1.22 mm respectively (<0.001), ), in cheek flexibility was 2.81±1.01 mm and 1.76±1.35 mm respectively (p=0.02) and in tongue protrusion was 6.06±1.48 and 3.35±1.50 mm respectively (p<0.001). Both the arms showed 100% improvement in burning sensation in 6, 8 and 12 weeks follow-up. CONCLUSION Curcumin in combination with intralesional dexamethasone with hyaluronidase is efficacious in the treatment of OSF.
Collapse
Affiliation(s)
- Sagar Adhikari
- Department of Oral Medicine and Radiology, College of Dental Surgery, B.P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Jyotsna Rimal
- Department of Oral Medicine and Radiology, College of Dental Surgery, B.P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Iccha Kumar Maharjan
- Department of Oral Medicine and Radiology, College of Dental Surgery, B.P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Ashish Shrestha
- Department of Public Health Dentistry, College of Dental Surgery, B.P. Koirala Institute of Health Sciences, Dharan, Nepal
| |
Collapse
|
11
|
Sakamuru S, Huang R, Xia M. Use of Tox21 Screening Data to Evaluate the COVID-19 Drug Candidates for Their Potential Toxic Effects and Related Pathways. Front Pharmacol 2022; 13:935399. [PMID: 35910344 PMCID: PMC9333127 DOI: 10.3389/fphar.2022.935399] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/16/2022] [Indexed: 12/15/2022] Open
Abstract
Currently, various potential therapeutic agents for coronavirus disease-2019 (COVID-19), a global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are being investigated worldwide mainly through the drug repurposing approach. Several anti-viral, anti-bacterial, anti-malarial, and anti-inflammatory drugs were employed in randomized trials and observational studies for developing new therapeutics for COVID-19. Although an increasing number of repurposed drugs have shown anti-SARS-CoV-2 activities in vitro, so far only remdesivir has been approved by the US FDA to treat COVID-19, and several other drugs approved for Emergency Use Authorization, including sotrovimab, tocilizumab, baricitinib, paxlovid, molnupiravir, and other potential strategies to develop safe and effective therapeutics for SARS-CoV-2 infection are still underway. Many drugs employed as anti-viral may exert unwanted side effects (i.e., toxicity) via unknown mechanisms. To quickly assess these drugs for their potential toxicological effects and mechanisms, we used the Tox21 in vitro assay datasets generated from screening ∼10,000 compounds consisting of approved drugs and environmental chemicals against multiple cellular targets and pathways. Here we summarize the toxicological profiles of small molecule drugs that are currently under clinical trials for the treatment of COVID-19 based on their in vitro activities against various targets and cellular signaling pathways.
Collapse
|
12
|
Umapathy VR, Swamikannu B, Jones S, Kiran M, Lell T, Mayasa V, Govindaraj J. Effects of turmeric (Curcuma longa) on oral health. Bioinformation 2022; 18:538-542. [PMID: 37168791 PMCID: PMC10165051 DOI: 10.6026/97320630018538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
The turmeric plant was used in ancient medicine to cure a wide range of diseases, including cough, diabetes, and liver disease. Data shows that the principal chemical component of turmeric, curcumin, has a variety of beneficial effects on the body. Therefore, it is of interest to document data on the therapeutic activities of turmeric, including its extracts and possible medical uses, as well as its oral and dental uses and a safety assessment of those uses. Curcumin, the most pure form of turmeric, has shown promise in dentistry.
Collapse
Affiliation(s)
| | | | - Sumathi Jones
- Sree Balaji Medical College and Hospital, Chromepet, Chennai 600044, India
| | - M Kiran
- Sree Balaji Medical College and Hospital, Chromepet, Chennai 600044, India
| | - Tanuja Lell
- Sree Balaji Medical College and Hospital, Chromepet, Chennai 600044, India
| | - Vinyas Mayasa
- Sree Balaji Medical College and Hospital, Chromepet, Chennai 600044, India
| | | |
Collapse
|
13
|
Xiong JM, Liu H, Chen J, Zou QQ, Wang YYJ, Bi GS. Curcumin nicotinate suppresses abdominal aortic aneurysm pyroptosis via lncRNA PVT1/miR-26a/KLF4 axis through regulating the PI3K/AKT signaling pathway. Toxicol Res (Camb) 2021; 10:651-661. [PMID: 34141179 DOI: 10.1093/toxres/tfab041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/19/2021] [Accepted: 04/08/2021] [Indexed: 11/15/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a chronic dilated disease of the aorta that is characterized by chronic inflammation. Curcumin (Cur) is previously showed to attenuate AAA by inhibiting inflammatory response in ApoE -/- mice. Since Cur has the limitations of aqueous solubility and instability. Here, we focus on the role of curcumin nicotinate (CurTn), a Cur derivative is derived from Cur and nicotinate. An in vitro model of AAA was established by treating vascular smooth muscle cells (VSMCs) with II (Ang-II). Gene and protein expressions were examined by quantitative real-time PCR (qPCR) or western blotting. Cell migration and pyroptosis were determined by transwell assay and flow cytometry. The interaction between plasmacytoma variant translocation 1 (PVT1), miR-26a and krüppel-like factor 4 (KLF4) was predicted by online prediction tool and confirmed by luciferase reporter assay. CurTn reduced Ang-II-induced AAA-associated proteins, inflammatory cytokine expressions, and attenuated pyroptosis in VSMCs. PVT1 overexpression suppressed the inhibitory effect of CurTn on AngII-induced pyroptosis and inflammatory in VSMCs by sponging miR-26a. miR-26a directly targeted KLF4 and suppressed its expression, which eventually led to the deactivation of the PI3K/AKT signaling pathway. Besides, the regulatory effect of CurTn on pyroptosis of VSMCs induced by Ang-II was reversed through the PVT1/miR-26a/KLF4 pathway. In short, CurTn suppressed VSMCs pyroptosis and inflammation though mediation PVT1/miR-26a/KLF4 axis by regulating the PI3K/AKT signaling pathway, CurTn might consider as a potential therapeutic target in the treatment of AAA.
Collapse
Affiliation(s)
- Jian-Ming Xiong
- Department of Vascular Surgery, Yiyang Central Hospital, Yiyang 413000, Hunan Province, P.R. China
| | - Hui Liu
- Department of Vascular Surgery, Yiyang Central Hospital, Yiyang 413000, Hunan Province, P.R. China
| | - Jie Chen
- Department of Vascular Surgery, The Second Affiliated Hospital, University of South China, Hengyang 421000, Hunan Province, P.R. China
| | - Qing-Qing Zou
- Department of Vascular Surgery, The Second Affiliated Hospital, University of South China, Hengyang 421000, Hunan Province, P.R. China
| | - Yang-Yi-Jing Wang
- Department of Vascular Surgery, The Second Affiliated Hospital, University of South China, Hengyang 421000, Hunan Province, P.R. China
| | - Guo-Shan Bi
- Department of Vascular Surgery, The Second Affiliated Hospital, University of South China, Hengyang 421000, Hunan Province, P.R. China
| |
Collapse
|
14
|
Laser Induced Method to Produce Curcuminoid-Silanol Thin Films for Transdermal Patches Using Irradiation of Turmeric Target. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A new possible method to produce a transdermal patch is proposed in this paper. The study refers to the pulsed laser deposition method (PLD) applied on turmeric target in order to obtain thin layers. Under high power laser irradiation of 532 nm wavelength, thin films containing curcuminoids were obtained on different substrates such as glass and quartz (laboratory investigation) and hemp fabric (practical application). Compared FTIR, SEM-EDS and LIF analyses proved that the obtained thin film chemical composition is mainly demethoxycurcumin and bisdemethoxycurcumin which is evidence that most of the curcumin from turmeric has been demethixylated during laser ablation. Silanol groups with known role into dermal reconstruction are evidenced in both turmeric target and curcuminoid thin films. UV–VIS reflection spectra show the same characteristics for all the curcuminoid thin films, indicating that the method is reproducible. The method proves to be successful for producing a composite material, namely curcuminoid transdermal patch with silanol groups, using directly turmeric as target in the thin film deposited by pulsed laser technique. Double layered patch curcuminoid—silver was produced under this study, proving compatibility between the two deposited layers. The silver layer added on curcuminoid-silanol layer aimed to increase antiseptic properties to the transdermal patch.
Collapse
|
15
|
Girisa S, Kumar A, Rana V, Parama D, Daimary UD, Warnakulasuriya S, Kumar AP, Kunnumakkara AB. From Simple Mouth Cavities to Complex Oral Mucosal Disorders-Curcuminoids as a Promising Therapeutic Approach. ACS Pharmacol Transl Sci 2021; 4:647-665. [PMID: 33860191 PMCID: PMC8033761 DOI: 10.1021/acsptsci.1c00017] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Indexed: 02/08/2023]
Abstract
Oral diseases are among the most common encountered health issues worldwide, which are usually associated with anomalies of the oral cavity, jaws, and salivary glands. Despite the availability of numerous treatment modalities for oral disorders, a limited clinical response has been observed because of the inefficacy of the drugs and countless adverse side effects. Therefore, the development of safe, efficacious, and wide-spectrum therapeutics is imperative in the battle against oral diseases. Curcumin, extracted from the golden spice turmeric, is a well-known natural polyphenol that has been extensively studied for its broad pleiotropic attributes and its ability to modulate multiple biological processes. It is well-documented to target pro-inflammatory mediators like NF-κB, ROS, COX-2, IL-1, IL-2, TGF-β, growth factors, apoptotic proteins, receptors, and various kinases. These properties make curcumin a promising nutraceutical in the treatment of many oral diseases like oral submucous fibrosis, oral mucositis, oral leukoplakia, oral erythroplakia, oral candidiasis, aphthous stomatitis, oral lichen planus, dental caries, periodontitis, and gingivitis. Numerous in vitro and in vivo studies have shown that curcumin alleviates the symptoms of most of the oral complications, including the inhibition of the progression of oral cancer. In this regard, many clinical trials have been completed, and many are ongoing to investigate the "curcumin effect" in oral maladies. Therefore, the current review delineates the mechanistic framework of curcumin's propensity in curbing oral diseases and present outcomes of the clinical trials of curcumin-based therapeutics that can provide a breakthrough in the clinical management of these diseases.
Collapse
Affiliation(s)
- Sosmitha Girisa
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Aviral Kumar
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Varsha Rana
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Dey Parama
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Uzini Devi Daimary
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Saman Warnakulasuriya
- Department
of Oral Medicine, King’s College
London and WHO Collaborating Centre for Oral Cancer and Precancer, London WC2R 2LS, United Kingdom
| | - Alan Prem Kumar
- Medical
Science Cluster, Cancer Translational Research Programme, Yong Loo
Lin School of Medicine, National University
of Singapore, Singapore 117600, Singapore
- Cancer
Science Institute of Singapore, National
University of Singapore, Singapore 117600, Singapore
- National
University Cancer Institute, National University
Health Systems, Singapore 117600, Singapore
| | - Ajaikumar B. Kunnumakkara
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
16
|
Three-Dimensional Printing of Curcumin-Loaded Biodegradable and Flexible Scaffold for Intracranial Therapy of Glioblastoma Multiforme. Pharmaceutics 2021; 13:pharmaceutics13040471. [PMID: 33807243 PMCID: PMC8065414 DOI: 10.3390/pharmaceutics13040471] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
A novel drug delivery system preventing Glioblastoma multiforme (GBM) recurrence after resection surgery is imperatively required to overcome the mechanical limitation of the current local drug delivery system and to offer personalised treatment options for GBM patients. In this study, 3D printed biodegradable flexible porous scaffolds were developed via Fused Deposition Modelling (FDM) three-dimensional (3D) printing technology for the local delivery of curcumin. The flexible porous scaffolds were 3D printed with various geometries containing 1, 3, 5, and 7% (w/w) of curcumin, respectively, using curcumin-loaded polycaprolactone (PCL) filaments. The scaffolds were characterised by a series of characterisation studies and in vitro studies were also performed including drug release study, scaffold degradation study, and cytotoxicity study. The curcumin-loaded PCL scaffolds displayed versatile spatiotemporal characteristics. The polymeric scaffolds obtained great mechanical flexibility with a low tensile modulus of less than 2 MPa, and 4 to 7-fold ultimate tensile strain, which can avoid the mechanical mismatch problem of commercially available GLIADEL wafer with a further improvement in surgical margin coverage. In vitro release profiles have demonstrated the sustained release patterns of curcumin with adjustable release amounts and durations up to 77 h. MTT study has demonstrated the great cytotoxic effect of curcumin-loaded scaffolds against the U87 human GBM cell line. Therefore, 3D printed curcumin-loaded scaffold has great promise to provide better GBM treatment options with its mechanical flexibility and customisability to match individual needs, preventing post-surgery GBM recurrence and eventually prolonging the life expectancy of GBM patients.
Collapse
|
17
|
Khodarahmi A, Javidmehr D, Eshaghian A, Ghoreshi ZAS, Karimollah A, Yousefi H, Moradi A. Curcumin exerts hepatoprotection via overexpression of Paraoxonase-1 and its regulatory genes in rats undergone bile duct ligation. J Basic Clin Physiol Pharmacol 2020; 32:969-977. [PMID: 34592082 DOI: 10.1515/jbcpp-2020-0067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/14/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Curcumin is described as an antioxidant, hepato-protective and antifibrotic in liver fibrosis, although its mechanism is still not known. One of the models of the chronic liver disease stemming from oxidative stress and the generation of free radical has been considered to be bile duct ligation (BDL). Paraoxonase 1 (PON1) is a prominent antioxidant enzyme. Therefore, the objective of the present research is to assess the effects of curcumin on upregulation of PON1 in BDL rats. METHODS As predicted, the rats have been divided into the four groups of Sham, Sham + Cur (curcumin), BDL and BDL + Cur. We evaluated the efficacy of curcumin (100 mg/kg/day) on protein and gene expression of PON1 and regulatory genes contributed to the gene expression PON1 such as Sp1, PKCα, SREBP-2, AhR, JNK and regulation PON1 activity gene expression of Apo A1. RESULTS Curcumin attenuated alterations in liver histology, hepatic enzymes and the mRNA expression of fibrotic markers (p<0.05). In addition, curcumin increased significantly mRNA, protein expression of PON1 and mRNA of the genes that are contributed to the expression of PON1 such as Sp1, PKCα, SREBP-2, AhR, JNK and increased PON1 activity through upregulation of Apo A1 (p<0.05). CONCLUSIONS Cirrhosis progression may be inhibited by treatment with curcumin through the increased influence the expression and activity of PON1.
Collapse
Affiliation(s)
- Ameneh Khodarahmi
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Davoud Javidmehr
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Azam Eshaghian
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Zohreh-Al-Sadat Ghoreshi
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Alireza Karimollah
- Department of Pharmacology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamidreza Yousefi
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Ali Moradi
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| |
Collapse
|
18
|
Kong ZL, Kuo HP, Johnson A, Wu LC, Chang KLB. Curcumin-Loaded Mesoporous Silica Nanoparticles Markedly Enhanced Cytotoxicity in Hepatocellular Carcinoma Cells. Int J Mol Sci 2019; 20:ijms20122918. [PMID: 31207976 PMCID: PMC6628080 DOI: 10.3390/ijms20122918] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023] Open
Abstract
Curcumin, a natural polyphenol extracted from a perennial herb Curcuma longa has been verified for many physiological activities such as anti-oxidant, anti-inflammatory, and anti-tumor properties. The direct use of curcumin cytotoxicity studies are limited due to its unstable chemical structure, low bioavailability, easy oxidation, and degradation by ultraviolet (UV) light etc. Trying to overcome this problem, silica-encapsulated curcumin nanoparticles (SCNP) and chitosan with silica co-encapsulated curcumin nanoparticles (CSCNP) were prepared by silicification and biosilicification methods, respectively, and encapsulated curcumin within it. We investigated the antitumor properties of SCNP and CSCNP on different tumor cell lines. Scanning electron microscopy (SEM) analysis revealed that both SCNP and CSCNP were almost spherical in shape and the average particle size of CSCNP was 75.0 ± 14.62 nm, and SCNP was 61.7 ± 23.04 nm. The results show that CSCNP has more anti-oxidant activity as compared to curcumin and SCNP. The higher cytotoxicity towards different cancerous cell lines was also observed in CSCNP treated tumor cells. It was noted that the SCNP and CSCNP has a high percentage of IC50 values in Hep G2 cells. The encapsulation of curcumin improved instability, antioxidant activity, and antitumor activity. Our results demonstrated that nanoencapsulation of curcumin with silica and chitosan not only increase curcumin stability but also enhance its cytotoxic activity on hepatocellular carcinoma cells. On the basis of these primary studies, the curcumin-loaded nanoparticles appear to be promising as an innovative therapeutic material for the treatment of tumors.
Collapse
Affiliation(s)
- Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Hsiang-Ping Kuo
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Athira Johnson
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Li-Cyuan Wu
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Ke Liang B Chang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan.
| |
Collapse
|
19
|
Chaudhary M, Kumar N, Baldi A, Chandra R, Arockia Babu M, Madan J. Chloro and bromo-pyrazole curcumin Knoevenagel condensates augmented anticancer activity against human cervical cancer cells: design, synthesis, in silico docking and in vitro cytotoxicity analysis. J Biomol Struct Dyn 2019; 38:200-218. [DOI: 10.1080/07391102.2019.1578264] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Monika Chaudhary
- I. K. Gujral Punjab Technical University, Jalandhar, India
- Department of Medicinal Chemistry, Hindu College of Pharmacy, Sonepat, India
| | - Neeraj Kumar
- Department of Chemistry, University of Delhi, Delhi, India
| | - Ashish Baldi
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi, India
- Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - M. Arockia Babu
- Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali, India
| | - Jitender Madan
- Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali, India
| |
Collapse
|
20
|
Sundar Dhilip Kumar S, Houreld NN, Abrahamse H. Therapeutic Potential and Recent Advances of Curcumin in the Treatment of Aging-Associated Diseases. Molecules 2018; 23:molecules23040835. [PMID: 29621160 PMCID: PMC6017430 DOI: 10.3390/molecules23040835] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 02/01/2023] Open
Abstract
Curcumin, a low molecular weight, lipophilic, major yellow natural polyphenolic, and the most well-known plant-derived compound, is extracted from the rhizomes of the turmeric (Curcuma longa) plant. Curcumin has been demonstrated as an effective therapeutic agent in traditional medicine for the treatment and prevention of different diseases. It has also shown a wide range of biological and pharmacological effects in drug delivery, and has actively been used for the treatment of aging-associated diseases, including cardiovascular diseases, atherosclerosis, neurodegenerative diseases, cancer, rheumatoid arthritis, ocular diseases, osteoporosis, diabetes, hypertension, chronic kidney diseases, chronic inflammation and infection. The functional application and therapeutic potential of curcumin in the treatment of aging-associated diseases is well documented in the literature. This review article focuses mainly on the potential role of plant-derived natural compounds such as curcumin, their mechanism of action and recent advances in the treatment of aging-associated diseases. Moreover, the review briefly recaps on the recent progress made in the preparation of nanocurcumins and their therapeutic potential in clinical research for the treatment of aging-associated diseases.
Collapse
Affiliation(s)
- Sathish Sundar Dhilip Kumar
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg-2028, South Africa.
| | - Nicolette Nadene Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg-2028, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg-2028, South Africa.
| |
Collapse
|
21
|
Sardi JDCO, Polaquini CR, Freires IA, Galvão LCDC, Lazarini JG, Torrezan GS, Regasini LO, Rosalen PL. Antibacterial activity of diacetylcurcumin against Staphylococcus aureus results in decreased biofilm and cellular adhesion. J Med Microbiol 2017; 66:816-824. [DOI: 10.1099/jmm.0.000494] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Janaina de Cássia Orlandi Sardi
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, 13414 903 Piracicaba, São Paulo, Brazil
| | - Carlos Roberto Polaquini
- Department of Chemistry and Environmental Sciences, São Paulo State University Júlio de Mesquita Filho, São Jose do Rio Preto, São Paulo, Brazil
| | - Irlan Almeida Freires
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, 13414 903 Piracicaba, São Paulo, Brazil
| | - Livia Câmara de Carvalho Galvão
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, 13414 903 Piracicaba, São Paulo, Brazil
| | - Josy Goldoni Lazarini
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, 13414 903 Piracicaba, São Paulo, Brazil
| | - Guilherme Silva Torrezan
- Department of Chemistry and Environmental Sciences, São Paulo State University Júlio de Mesquita Filho, São Jose do Rio Preto, São Paulo, Brazil
| | - Luis Octávio Regasini
- Department of Chemistry and Environmental Sciences, São Paulo State University Júlio de Mesquita Filho, São Jose do Rio Preto, São Paulo, Brazil
| | - Pedro Luiz Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, 13414 903 Piracicaba, São Paulo, Brazil
| |
Collapse
|
22
|
Irani S. Metastasis to the Jawbones: A review of 453 cases. J Int Soc Prev Community Dent 2017; 7:71-81. [PMID: 28462174 PMCID: PMC5390582 DOI: 10.4103/jispcd.jispcd_512_16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/05/2017] [Indexed: 12/16/2022] Open
Abstract
The purpose of the present article was to review the characteristics of the jawbone metastases to analyze all variables. A relevant English Literature search in PubMed, Scopus, and Google Scholar was performed. All variables such as age, gender, primary and secondary tumor sites were analyzed. There were 453 metastatic cases. The male-to-female ratio was 1.2:1, and the mean age of the patients was 53.4 years. The lung was the most common primary site in men, and breast in women. The most common metastatic site was the mandible, and adenocarcinoma was the most frequent histological diagnosis. Metastases to the jaw bones occur in the advanced stages of a malignancy hence; a careful examination of patients with jaw bone lesions is strongly suggested. Dentists, as well as general physicians, should take into consideration the possible presence of jaw metastases in cases which present atypical symptoms, especially in patients with known malignant disease.
Collapse
Affiliation(s)
- Soussan Irani
- Department of Oral Pathology, Dental Research Centre, Dental Faculty, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|