1
|
Siqueira F, Rodrigues F, Ribeiro S, Veras H, Ferreira F, Siqueira R, dos Santos A, Havt A, Lima A. Induced acute hyperglycemia modifies the barrier function of the intestinal epithelium by tissue inflammation and tight junction disruption resulting in hydroelectrolytic secretion in an animal model. Braz J Med Biol Res 2024; 57:e13309. [PMID: 38656073 PMCID: PMC11027184 DOI: 10.1590/1414-431x2024e13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/21/2024] [Indexed: 04/26/2024] Open
Abstract
Diabetic-metabolic syndrome (MetS-D) has a high prevalence worldwide, in which an association with the rupture of the intestinal epithelium barrier function (IEBF) has been pointed out, but the functional and morphological properties are still not well understood. This study aimed to evaluate the impact of acute hyperglycemia diabetes on intestinal tight junction proteins, metabolic failure, intestinal ion and water transports, and IEBF parameters. Diabetes was induced in male Rattus norvegicus (200-310 g) with 0.5 mL of streptozotocin (70 mg/kg). Glycemic and clinical parameters were evaluated every 7 days, and intestinal parameters were evaluated on the 14th day. The MetS-D animals showed a clinical pattern of hyperglycemia, with increases in the area of villi and crypts, lactulose:mannitol ratio, myeloperoxidase (MPO) activity, and intestinal tissue concentrations of malondialdehyde (MDA), but showed a reduction in reduced glutathione (GSH) when these parameters were compared to the control. The MetS-D group had increased secretion of Na+, K+, Cl-, and water compared to the control group in ileal tissue. Furthermore, we observed a reduction in mRNA transcript of claudin-2, claudin-15, and NHE3 and increases of SGLT-1 and ZO-1 in the MetS-D group. These results showed that MetS-D triggered intestinal tissue inflammation, oxidative stress, complex alterations in gene regulatory protein transcriptions of intestinal transporters and tight junctions, damaging the IEBF and causing hydroelectrolyte secretion.
Collapse
Affiliation(s)
- F.J.W.S. Siqueira
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - F.A.P. Rodrigues
- Departamento de Educação Física e Esporte, Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Fortaleza, CE, Brasil
| | - S.A. Ribeiro
- Programa de Pós-Graduação em Ciências Médicas, Departamento de Patologia e Medicina Legal, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - H.N. Veras
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - F.C.S. Ferreira
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - R.C.L. Siqueira
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A.A. dos Santos
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A. Havt
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A.A.M. Lima
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
2
|
Knupp J, Pletan ML, Arvan P, Tsai B. Autophagy of the ER: the secretome finds the lysosome. FEBS J 2023; 290:5656-5673. [PMID: 37920925 PMCID: PMC11044768 DOI: 10.1111/febs.16986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Lysosomal degradation of the endoplasmic reticulum (ER) and its components through the autophagy pathway has emerged as a major regulator of ER proteostasis. Commonly referred to as ER-phagy and ER-to-lysosome-associated degradation (ERLAD), how the ER is targeted to the lysosome has been recently clarified by a growing number of studies. Here, we summarize the discoveries of the molecular components required for lysosomal degradation of the ER and their proposed mechanisms of action. Additionally, we discuss how cells employ these machineries to create the different routes of ER-lysosome-associated degradation. Further, we review the role of ER-phagy in viral infection pathways, as well as the implication of ER-phagy in human disease. In sum, we provide a comprehensive overview of the current field of ER-phagy.
Collapse
Affiliation(s)
- Jeffrey Knupp
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Madison L Pletan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Shin A, Connolly S, Kabytaev K. Protein glycation in diabetes mellitus. Adv Clin Chem 2023; 113:101-156. [PMID: 36858645 DOI: 10.1016/bs.acc.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Diabetes mellitus is the ninth leading cause of mortality worldwide. It is a complex disease that manifests as chronic hyperglycemia. Glucose exposure causes biochemical changes at the proteome level as reflected in accumulation of glycated proteins. A prominent example is hemoglobin A1c (HbA1c), a glycated protein widely accepted as a diabetic indicator. Another emerging biomarker is glycated albumin which has demonstrated utility in situations where HbA1c cannot be used. Other proteins undergo glycation as well thus impacting cellular function, transport and immune response. Accordingly, these glycated counterparts may serve as predictors for diabetic complications and thus warrant further inquiry. Fortunately, modern proteomics has provided unique analytic capability to enable improved and more comprehensive exploration of glycating agents and glycated proteins. This review broadly covers topics from epidemiology of diabetes to modern analytical tools such as mass spectrometry to facilitate a better understanding of diabetes pathophysiology. This serves as an attempt to connect clinically relevant questions with findings of recent proteomic studies to suggest future avenues of diabetes research.
Collapse
Affiliation(s)
- Aleks Shin
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Shawn Connolly
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Kuanysh Kabytaev
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
4
|
Weber DR, Long F, Zemel BS, Kindler JM. Glycemic Control and Bone in Diabetes. Curr Osteoporos Rep 2022; 20:379-388. [PMID: 36214991 PMCID: PMC9549036 DOI: 10.1007/s11914-022-00747-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW This review summarizes recent developments on the effects of glycemic control and diabetes on bone health. We discuss the foundational cellular mechanisms through which diabetes and impaired glucose control impact bone biology, and how these processes contribute to bone fragility in diabetes. RECENT FINDINGS Glucose is important for osteoblast differentiation and energy consumption of mature osteoblasts. The role of insulin is less clear, but insulin receptor deletion in mouse osteoblasts reduces bone formation. Epidemiologically, type 1 (T1D) and type 2 diabetes (T2D) associate with increased fracture risk, which is greater among people with T1D. Accumulation of cortical bone micro-pores, micro-vascular complications, and AGEs likely contribute to diabetes-related bone fragility. The effects of youth-onset T2D on peak bone mass attainment and subsequent skeletal fragility are of particular concern. Further research is needed to understand the effects of hyperglycemia on skeletal health through the lifecycle, including the related factors of inflammation and microvascular damage.
Collapse
Affiliation(s)
- David R Weber
- Division of Endocrinology and Diabetes, Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia,, PA, USA
| | - Fanxin Long
- Department of Orthopedic Surgery, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Babette S Zemel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Division of GI, Hepatology & Nutrition, Roberts Center for Pediatric Research, 2716 South Street, 14th Floor/Room 14471, Philadelphia, PA, 19146, USA.
| | - Joseph M Kindler
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA
| |
Collapse
|