1
|
Shah JS, Burrascano JJ, Ramasamy R. Recombinant protein immunoblots for differential diagnosis of tick-borne relapsing fever and Lyme disease. J Vector Borne Dis 2023; 60:353-364. [PMID: 38174512 DOI: 10.4103/0972-9062.383641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Lyme disease (LD) is caused by a group of tick-borne bacteria of the genus Borrelia termed Lyme disease Borreliae (LDB). The detection of serum antibodies to specific LDB antigens is widely used to support diagnosis of LD. Recent findings highlight a need for serological tests that can differentiate LD from tick-borne relapsing fever (TBRF) caused by a separate group of Borrelia species termed relapsing fever Borreliae. This is because LD and TBRF share some clinical symptoms and can occur in overlapping locations. The development of serological tests for TBRF is at an early stage compared with LD. This article reviews the application of line immunoblots (IBs), where recombinant proteins applied as lines on nitrocellulose membrane strips are used to detect antibodies in patient sera, for the diagnosis and differentiation of LD and TBRF.
Collapse
Affiliation(s)
- Jyotsna S Shah
- IGeneX Inc. Milpitas; ID-FISH Technology Inc., California, USA
| | | | | |
Collapse
|
2
|
Lyu B, Li J, Niemeyer B, Anderson DM, Beerntsen B, Song Q. Integrative analysis highlights molecular and immune responses of tick Amblyomma americanum to Escherichia coli challenge. Front Cell Infect Microbiol 2023; 13:1236785. [PMID: 37583446 PMCID: PMC10424933 DOI: 10.3389/fcimb.2023.1236785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
Ticks are ectoparasites that can transmit various pathogens capable of causing life-threatening illnesses in people and animals, making them a severe public health threat. Understanding how ticks respond to bacterial infection is crucial for deciphering their immune defense mechanisms and identifying potential targets for controlling tick-borne diseases. In this study, an in-depth transcriptome analysis was used to investigate the molecular and immune responses of Amblyomma americanum to infection caused by the microinjection of Escherichia coli. With an abundance of differentially expressed genes discovered at different times, the analysis demonstrated significant changes in gene expression profiles in response to E. coli challenge. Notably, we found alterations in crucial immune markers, including the antimicrobial peptides defensin and microplusin, suggesting they may play an essential role in the innate immune response. Furthermore, KEGG analysis showed that following E. coli exposure, a number of key enzymes, including lysosomal alpha-glucosidase, fibroblast growth factor, legumain, apoptotic protease-activating factor, etc., were altered, impacting the activity of the lysosome, mitogen-activated protein kinase, antigen processing and presentation, bacterial invasion, apoptosis, and the Toll and immune deficiency pathways. In addition to the transcriptome analysis, we constructed protein interaction networks to elucidate the molecular interactions underlying the tick's response to E. coli challenge. Hub genes were identified, and their functional enrichment provided insights into the regulation of cytoskeleton rearrangement, apoptotic processes, and kinase activity that may occur in infected cells. Collectively, the findings shed light on the potential immune responses in A. americanum that control E. coli infection.
Collapse
Affiliation(s)
- Bo Lyu
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Jingjing Li
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Brigid Niemeyer
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Deborah M. Anderson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Brenda Beerntsen
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Qisheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
3
|
Ghosh P, Khandekar P. Infectious human diseases: Regions, habitats, threats, and mitigation strategies: The actors—Part I. MGM JOURNAL OF MEDICAL SCIENCES 2022. [DOI: 10.4103/mgmj.mgmj_176_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
4
|
Lephoto T, Mwambi H, Bodhlyera O, Gaff H. Spatio-temporal modelling of tick life-stage count data with spatially varying coefficients. GEOSPATIAL HEALTH 2021; 16:10.4081/gh.2021.1004. [PMID: 34672184 PMCID: PMC11512494 DOI: 10.4081/gh.2021.1004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
There is a vast amount of geo-referenced data in many fields of study including ecological studies. Geo-referencing is usually by point referencing; that is, latitudes and longitudes or by areal referencing, which includes districts, counties, states, provinces and other administrative units. The availability of large geo-referenced datasets for modelling has necessitated the development and application of spatial statistical methods. However, spatial varying coefficients models exploring the abundance of tick counts remain limited. In this study we used data that was collected and prepared by researchers in the Department of Biological Sciences from the Old Dominion University, Virginia, USA. We modelled tick life-stage counts and abundance variability from 12 sampling locations, with 5 different habitats (numbered 1-5), three habitat types; namely: woods, edges and grass; collected monthly from May 2009 through December 2018. Spatio-temporal Poisson and spatio-temporal negative binomial (NB) count data models were fitted to the data and compared using the deviance information criteria (DIC). The NB model outperformed the Poisson models with all its DIC values being smaller than those of the Poisson model. Results showed that the covariates varied spatially across counties. There was a decreasing time (in years) effect over the study period. However, even though the time effect was decreasing over the study period, space-time interaction effects were seen to be increasing over time in York County.
Collapse
Affiliation(s)
- Thabo Lephoto
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, KwaZulu-Natal Province.
| | - Henry Mwambi
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, KwaZulu-Natal Province.
| | - Oliver Bodhlyera
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, KwaZulu-Natal Province.
| | - Holly Gaff
- Department of Biological Sciences, Old Dominion University, Norfolk, VA.
| |
Collapse
|
5
|
Sayler K, Rowland J, Boyce C, Weeks E. Borrelia burgdorferi DNA absent, multiple Rickettsia spp. DNA present in ticks collected from a teaching forest in North Central Florida. Ticks Tick Borne Dis 2016; 8:53-59. [PMID: 27720381 DOI: 10.1016/j.ttbdis.2016.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 01/10/2023]
Abstract
Tick-borne diseases are an emerging public health threat in the United States. In Florida, there has been public attention directed towards the possibility of locally acquired Borrelia burgdorferi sensu stricto, the causative agent of Lyme disease, in association with the lone star tick. The aim of this study was to determine the prevalence of ticks and the pathogens they carry and potentially transmit, such as B. burgdorferi, in a highly utilized teaching and research forest in North Central Florida. Ticks were collected by dragging and flagging methods over a four month period in early 2014, identified, and tested by PCR for multiple pathogens including Anaplasma, Borrelia, Rickettsia, and Ehrlichia species. During the study period the following ticks were collected: 2506 (96.5%) Amblyomma americanum L., 64 (2.5%) Ixodes scapularis Say, 19 (0.7%) Dermacentor variabilis Say, and 5 (0.2%) Ixodes affinis Neuman. Neither Borrelia spp. (0/846) nor Anaplasma spp. (0/69; Ixodes spp. only) were detected by PCR in any of the ticks tested. However, Rickettsia DNA was present in 53.7% (86/160), 62.5% (40/64), 60.0% (3/5) and 31.6% (6/19) of A. americanum, I. scapularis, I. affinis and D. variabilis, respectively. Furthermore, E. chaffeensis and E. ewingii DNA were detected in 1.3% and 4.4% of adult A. americanum specimens tested, respectively. Although receiving an A. americanum bite is likely in wooded areas in North Central Florida due to the abundance of this tick, the risk of contracting a tick-borne pathogen in this specific area during the spring season appears to be low. The potential for pathogen prevalence to be highly variable exists, even within a single geographical site and longitudinal studies are needed to assess how tick-borne pathogen prevalence is changing over time in North Central Florida.
Collapse
Affiliation(s)
- Katherine Sayler
- College of Veterinary Medicine, 2015 SW 16th Avenue, Veterinary Academic Building, University of Florida, Gainesville, FL, 32611, USA
| | - Jessica Rowland
- Department of Entomology and Nematology, PO Box 110620, 1881 Natural Area Drive, University of Florida, Gainesville, FL, 32611, USA; Emerging Pathogens Institute, 2055 Mowry Rd, University of Florida, Gainesville, FL, 32611, USA
| | - Carisa Boyce
- College of Veterinary Medicine, 2015 SW 16th Avenue, Veterinary Academic Building, University of Florida, Gainesville, FL, 32611, USA; Department of Entomology and Nematology, PO Box 110620, 1881 Natural Area Drive, University of Florida, Gainesville, FL, 32611, USA
| | - Emma Weeks
- Department of Entomology and Nematology, PO Box 110620, 1881 Natural Area Drive, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
6
|
Ord RL, Lobo CA. Human Babesiosis: Pathogens, Prevalence, Diagnosis and Treatment. CURRENT CLINICAL MICROBIOLOGY REPORTS 2015; 2:173-181. [PMID: 26594611 DOI: 10.1007/s40588-015-0025-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human babesiosis is a zoonotic disease caused by protozoan parasites of the Babesia genus, primarily in the Northeastern and Midwest United States due to B. microti, and Western Europe due to B. divergens. Parasites are transmitted by the bite of the ixodid tick when the vector takes a blood meal from the vertebrate host, and the economic importance of bovine babesiosis is well understood. The pathology of human disease is a direct result of the parasite's ability to invade host's red blood cells. The current understanding of human babesiosis epidemiology is that many infections remain asymptomatic, especially in younger or immune competent individuals, and the burden of severe pathology resides within older or immunocompromised individuals. However, transfusion-transmitted babesiosis is an emerging threat to public health as asymptomatic carriers donate blood and there are as yet no licensed or regulated tests to screen blood products for this pathogen. Reports of tick-borne cases within new geographical regions such as the Pacific Northwest of the US, through Eastern Europe, and into China are also on the rise. Further, new Babesia spp. have been identified globally as agents of severe human babesiosis, suggesting that the epidemiology of this disease is rapidly changing, and it is clear that human babesiosis is a serious public health concern that requires close monitoring and effective intervention measure.
Collapse
Affiliation(s)
- Rosalynn Louise Ord
- Department of Blood-Borne Parasites, Lindsley Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA
| | - Cheryl A Lobo
- Department of Blood-Borne Parasites, Lindsley Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA
| |
Collapse
|