1
|
Giedraitienė N, Kizlaitienė R, Kaubrys G. New autoimmune disorder development after immune reconstitution therapy for multiple sclerosis. Sci Rep 2024; 14:30991. [PMID: 39730657 DOI: 10.1038/s41598-024-82196-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024] Open
Abstract
Immune reconstitution therapy (IRT) is a relatively new and highly effective treatment option for multiple sclerosis (MS). Uncertainty regarding the development of autoimmune disorders (ADs) after some therapies remains. The aim of this study was to assess new AD development after IRT in MS patients and to describe the nature of those ADs and the time to onset. A total of 179 patients with relapsing multiple sclerosis (37 after autologous haematopoietic stem cell transplantation (AHSCT), 19 after alemtuzumab (ALE) and 123 after cladribine (CLA) treatment) over a ten year period were included in the study. ADs were observed in 6 patients (16.2%) after AHSCT, 8 patients (42.1%) after ALE and 2 patients (1.6%) after CLA treatment. ADs developed earlier after ALE infusions, but later after AHSCT except for cytopenias. Neurologists should be attentive to the development of secondary ADs after ALE and AHSCT in MS patients.
Collapse
Affiliation(s)
- Nataša Giedraitienė
- Clinic of Neurology and Neurosurgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.
| | - Rasa Kizlaitienė
- Clinic of Neurology and Neurosurgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Gintaras Kaubrys
- Clinic of Neurology and Neurosurgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
2
|
Xu Y, Wang X, Hu Z, Huang R, Yang G, Wang R, Yang S, Guo L, Song Q, Wei J, Zhang X. Advances in hematopoietic stem cell transplantation for autoimmune diseases. Heliyon 2024; 10:e39302. [PMID: 39492896 PMCID: PMC11530805 DOI: 10.1016/j.heliyon.2024.e39302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/14/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Autoimmune diseases (ADs) are a collection of immunological disorders in which the immune system responds to self-antigens by producing autoantibodies or self-sensitized cells. Current treatments are unable to cure ADs, and achieving long-term drug-free remission remains a challenging task. Hematopoietic stem cell transplantation (HSCT) stands out from other therapies by specifically targeting ADs that target various cell subpopulations, demonstrating notable therapeutic benefits and resulting in sustained drug-free remission. Since different ADs have distinct mechanisms of action, the comprehensive understanding of how HSCT works in treating ADs is crucial. This review provides a detailed overview of the latest research and clinical applications of HSCT in treating ADs, offering new insights for clinicians aiming to optimize its use for ADs management.
Collapse
Affiliation(s)
- Yuxi Xu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Sichuan, 637000, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Ziyi Hu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Sichuan, 637000, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Ruihao Huang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Guancui Yang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Rui Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Shijie Yang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Liyan Guo
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Qingxiao Song
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Jin Wei
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Sichuan, 637000, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| |
Collapse
|
3
|
Gent DG, Saif M, Dobson R, Wright DJ. Cardiovascular Disease After Hematopoietic Stem Cell Transplantation in Adults: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024; 6:475-495. [PMID: 39239331 PMCID: PMC11372032 DOI: 10.1016/j.jaccao.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 09/07/2024] Open
Abstract
The use of hematopoietic cell transplantation (HCT) has expanded in the last 4 decades to include an older and more comorbid population. These patients face an increased risk of cardiovascular disease after HCT. The risk varies depending on several factors, including the type of transplant (autologous or allogeneic). Many therapies used in HCT have the potential to be cardiotoxic. Cardiovascular complications after HCT include atrial arrhythmias, heart failure, myocardial infarction, and pericardial effusions. Before HCT, patients should undergo a comprehensive cardiovascular assessment, with ongoing surveillance tailored to their individual level of cardiovascular risk. In this review, we provide an overview of cardiotoxicity after HCT and outline our approach to risk assessment and ongoing care.
Collapse
Affiliation(s)
- David G Gent
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| | - Muhammad Saif
- The Clatterbridge Cancer Centre, Liverpool, United Kingdom
| | - Rebecca Dobson
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| | - David J Wright
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| |
Collapse
|
4
|
Ramírez-Valle F, Maranville JC, Roy S, Plenge RM. Sequential immunotherapy: towards cures for autoimmunity. Nat Rev Drug Discov 2024; 23:501-524. [PMID: 38839912 DOI: 10.1038/s41573-024-00959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 06/07/2024]
Abstract
Despite major progress in the treatment of autoimmune diseases in the past two decades, most therapies do not cure disease and can be associated with increased risk of infection through broad suppression of the immune system. However, advances in understanding the causes of autoimmune disease and clinical data from novel therapeutic modalities such as chimeric antigen receptor T cell therapies provide evidence that it may be possible to re-establish immune homeostasis and, potentially, prolong remission or even cure autoimmune diseases. Here, we propose a 'sequential immunotherapy' framework for immune system modulation to help achieve this ambitious goal. This framework encompasses three steps: controlling inflammation; resetting the immune system through elimination of pathogenic immune memory cells; and promoting and maintaining immune homeostasis via immune regulatory agents and tissue repair. We discuss existing drugs and those in development for each of the three steps. We also highlight the importance of causal human biology in identifying and prioritizing novel immunotherapeutic strategies as well as informing their application in specific patient subsets, enabling precision medicine approaches that have the potential to transform clinical care.
Collapse
|
5
|
Zare Moghaddam M, Mousavi MJ, Ghotloo S. Stem cell-based therapy for systemic lupus erythematous. J Transl Autoimmun 2024; 8:100241. [PMID: 38737817 PMCID: PMC11087996 DOI: 10.1016/j.jtauto.2024.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024] Open
Abstract
Systemic lupus erythematosus (SLE), an autoimmune disease, is among the most prevalent rheumatic autoimmune disorders. It affects autologous connective tissues caused by the breakdown of self-tolerance mechanisms. During the last two decades, stem cell therapy has been increasingly considered as a therapeutic option in various diseases, including parkinson's disease, alzheimer, stroke, spinal cord injury, multiple sclerosis, inflammatory bowel disease, liver disease, diabete, heart disease, bone disease, renal disease, respiratory diseases, and hematological abnormalities such as anemia. This is due to the unique properties of stem cells that divide and differentiate to the specialized cells in the damaged tissues. Moreover, they impose immunomodulatory properties affecting the diseases caused by immunological abnormalities such as rheumatic autoimmune disorders. In the present manuscript, efficacy of stem cell therapy with two main types of stem cells, including mesenchymal stem cell (MSC), and hematopoietic stem cells (HSC) in animal models or human patients of SLE, has been reviewed. Taken together, MSC and HSC therapies improved the disease activity, and severity in kidney, lung, liver, and bone (improvement in the clinical manifestation). In addition, a change in the immunological parameters occurred (improvement in immunological parameters). The level of autoantibodies, including antinuclear antibody (ANA), and anti-double-stranded deoxyribonucleic acid antibodies (dsDNA Abs) reduced. A conversion of Th1/Th2 ratio (in favor of Th2), and Th17/Treg (in favor of Treg) was also detected. In spite of many advantages of MSC and HSC transplantations, including efficacy, safety, and increased survival rate of SLE patients, some complications, including recurrence of the disease, occurrence of infections, and secondary autoimmune diseases (SAD) were observed after transplantation that should be addressed in the next studies.
Collapse
Affiliation(s)
- Maryam Zare Moghaddam
- Department of Immunology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Javad Mousavi
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Somayeh Ghotloo
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
6
|
Pignatti E, Maccaferri M, Pisciotta A, Carnevale G, Salvarani C. A comprehensive review on the role of mesenchymal stromal/stem cells in the management of rheumatoid arthritis. Expert Rev Clin Immunol 2024; 20:463-484. [PMID: 38163928 DOI: 10.1080/1744666x.2023.2299729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease with systemic manifestations. Although the success of immune modulatory drug therapy is considerable, about 40% of patients do not respond to treatment. Mesenchymal stromal/stem cells (MSCs) have been demonstrated to have therapeutic potential for inflammatory diseases. AREAS COVERED This review provides an update on RA disease and on pre-clinical and clinical studies using MSCs from bone marrow, umbilical cord, adipose tissue, and dental pulp, to regulate the immune response. Moreover, the clinical use, safety, limitations, and future perspective of MSCs in RA are discussed. Using the PubMed database and ClincalTrials.gov, peer-reviewed full-text papers, abstracts and clinical trials were identified from 1985 through to April 2023. EXPERT OPINION MSCs demonstrated a satisfactory safety profile and potential for clinical efficacy. However, it is mandatory to deepen the investigations on how MSCs affect the proinflammatory deregulated RA patients' cells. MSCs are potentially good candidates for severe RA patients not responding to conventional therapies but a long-term follow-up after stem cells treatment and standardized protocols are needed. Future research should focus on well-designed multicenter randomized clinical trials with adequate sample sizes and properly selected patients satisfying RA criteria for a valid efficacy evaluation.
Collapse
Affiliation(s)
- Elisa Pignatti
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Monia Maccaferri
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Pisciotta
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Salvarani
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Rheumatology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
7
|
Yamout B, Al-Jumah M, Sahraian MA, Almalik Y, Khaburi JA, Shalaby N, Aljarallah S, Bohlega S, Dahdaleh M, Almahdawi A, Khoury SJ, Koussa S, Slassi E, Daoudi S, Aref H, Mrabet S, Zeineddine M, Zakaria M, Inshasi J, Gouider R, Alroughani R. Consensus recommendations for diagnosis and treatment of Multiple Sclerosis: 2023 revision of the MENACTRIMS guidelines. Mult Scler Relat Disord 2024; 83:105435. [PMID: 38245998 DOI: 10.1016/j.msard.2024.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024]
Abstract
With evolving diagnostic criteria and the advent of new oral and parenteral therapies for Multiple Sclerosis (MS), most current diagnostic and treatment algorithms need revision and updating. The diagnosis of MS relies on incorporating clinical and paraclinical findings to prove dissemination in space and time and exclude alternative diseases that can explain the findings at hand. The differential diagnostic workup should be guided by clinical and laboratory red flags to avoid unnecessary tests. Appropriate selection of MS therapies is critical to maximize patient benefit. The current guidelines review the current diagnostic criteria for MS and the scientific evidence supporting treatment of acute relapses, radiologically isolated syndrome, clinically isolated syndrome, relapsing remitting MS, progressive MS, pediatric cases and pregnant women. The purpose of these guidelines is to provide practical recommendations and algorithms for the diagnosis and treatment of MS based on current scientific evidence and clinical experience.
Collapse
Affiliation(s)
- B Yamout
- Neurology Institute and Multiple Sclerosis Center, Harley Street Medical Center, Abu Dhabi, United Arab Emirates.
| | - M Al-Jumah
- InterHealth hospital, Multiple Sclerosis Center, Riyadh, Saudi Arabia
| | - M A Sahraian
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Y Almalik
- Division of Neurology, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, National Guard Health Affairs, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - J Al Khaburi
- Department of Neurology, The Royal Hospital, Sultanate of Oman
| | - N Shalaby
- Neurology Department, Kasr Al-Ainy School of Medicine, Cairo University, Cairo, Egypt
| | | | - S Bohlega
- King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | | | - A Almahdawi
- Consultant Neurologist, Neurology Unit, Baghdad Teaching Hospital, Medical City Complex, Iraq
| | - S J Khoury
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon
| | - S Koussa
- Multiple Sclerosis Center, Geitaoui Lebanese University Hospital, Beirut, Lebanon
| | - E Slassi
- Hôpital Cheikh Khalifa Ibn Zaid, Casablanca, Morocco
| | - S Daoudi
- Hospital Center Nedir Mohamed, Faculty of Medicine, University Mouloud Mammeri Tizi-Ouzou, Algeria
| | - H Aref
- Neurology Department, Ain Shams University, Cairo, Egypt
| | - S Mrabet
- Department of Neurology, CIC, Razi Universitary Hospital, University of Tunis El Manar, Tunis, Tunisia
| | - M Zeineddine
- Middle East and North Africa Committee for Treatment and Research in Multiple Sclerosis (MENACTRIMS), Beirut, Lebanon
| | | | - J Inshasi
- Department of Neurology, Rashid Hospital and Dubai Medical College, Dubai Health Authority, Dubai, United Arab Emirates
| | - R Gouider
- Department of Neurology, CIC, Razi Universitary Hospital, University of Tunis El Manar, Tunis, Tunisia
| | - R Alroughani
- Amiri Hospital, Arabian Gulf Street, Sharq, Kuwait
| |
Collapse
|
8
|
Tassaneetrithep B, Phuphuakrat A, Pasomsub E, Bhukhai K, Wongkummool W, Priengprom T, Khamaikawin W, Chaisavaneeyakorn S, Anurathapan U, Apiwattanakul N, Hongeng S. HIV-1 proviral DNA in purified peripheral blood CD34 + stem and progenitor cells in individuals with long-term HAART; paving the way to HIV gene therapy. Heliyon 2024; 10:e26613. [PMID: 38434025 PMCID: PMC10906414 DOI: 10.1016/j.heliyon.2024.e26613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/03/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Human immunodeficiency virus (HIV)-1 infection is an important public health problem worldwide. After primary HIV-1 infection, transcribed HIV-1 DNA is integrated into the host genome, serving as a reservoir of the virus and hindering a definite cure. Although highly active antiretroviral therapy suppresses active viral replication, resulting in undetectable levels of HIV RNA in the blood, a viral rebound can be detected after a few weeks of treatment interruption. This supports the concept that there is a stable HIV-1 reservoir in people living with HIV-1. Recently, a few individuals with HIV infection were reported to be probably cured by hematopoietic stem transplantation (HSCT). The underlying mechanism for this success involved transfusion of uninfected hematopoietic stem and progenitor cells (HSPCs) from CCR5-mutated donors who were naturally resistant to HIV infection. Thus, gene editing technology to provide HIV-resistant HSPC has promise in the treatment of HIV infections by HSCT. In this study, we aimed to find HIV-infected individuals likely to achieve a definite cure via gene editing HSCT. We screened for total HIV proviral DNA by Alu PCR in peripheral blood mononuclear cells (PBMCs) of 20 HIV-infected individuals with prolonged viral suppression. We assessed the amount of intact proviral DNA via a modified intact proviral DNA assay (IPDA) in purified peripheral CD34+ HSPCs. PBMCs from all 20 individuals were positive for the gag gene in Alu PCR, and peripheral CD34+ HSPCs were IPDA-negative for six individuals. Our results suggested that these six HIV-infected individuals could be candidates for further studies into the ability of gene editing HSCT to lead to a definite HIV cure.
Collapse
Affiliation(s)
- Boonrat Tassaneetrithep
- Center of Research Excellence in Immunoregulation, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | - Angsana Phuphuakrat
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand
| | - Ekawat Pasomsub
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand
| | - Kanit Bhukhai
- Department of Physiology, Faculty of Science, Mahidol University, Thailand
| | | | - Thongkoon Priengprom
- Center of Research Excellence in Immunoregulation, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | - Wannisa Khamaikawin
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Thailand
| | | | - Usanarat Anurathapan
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand
| | - Nopporn Apiwattanakul
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand
| |
Collapse
|
9
|
Sai Santhosha Mrudula A, Avula NL, Ahmed SK, Salian RB, Alla D, Jagannath P, Polasu SS, Rudra P, Issaka Y, Khetan MS, Gupta T. Immunological outcomes of autologous hematopoietic stem cell transplantation for multiple sclerosis: a systematic review. Ann Med Surg (Lond) 2024; 86:421-432. [PMID: 38222726 PMCID: PMC10783339 DOI: 10.1097/ms9.0000000000001490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/30/2023] [Indexed: 01/16/2024] Open
Abstract
Background Autologous hematopoietic stem cell transplantation (AHSCT) is an extensive procedure that allows for the depletion of the immune system and its restoration from hemopoietic stem cells. The approach has been modified for the treatment of severe immune-mediated illnesses, including multiple sclerosis (MS), after being initially devised for the treatment of hematological malignancies. Objective This systematic review aims to determine and consolidate the information on the short-term and long-term immunological effects of AHSCT on the cellular level in MS patients. Methods The PubMed, Scopus, and Web of Science servers were used to conduct a systematic search in compliance with the PRISMA guidelines. The results were tabulated and analyzed. Results A total of 17 studies (10 clinical trials, 6 cohort studies, and 1 case-control study) were included in the final analysis, and 383 MS patients were analyzed. A significant decline in the cell count of CD4 T cells was reported when compared to the CD8 T cells, B cells, and NK cells. B cell count returned to baseline in 71.4% of the studies at the end of 6 months. The NK cell count was found to be above the baseline in 62.5% of studies. Conclusion AHSCT has been proven to be one of the most effective treatment modalities for MS in recent studies. However, debilitating complications due to immunological outcomes of the procedure have led to increased morbidity. Further research into this domain will help boost the success rate and efficacy of AHSCT.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Trisha Gupta
- Government Doon Medical College, Dehradun, Uttarakhand
| |
Collapse
|
10
|
Vaivade A, Wiberg A, Khoonsari PE, Carlsson H, Herman S, Al-Grety A, Freyhult E, Olsson-Strömberg U, Burman J, Kultima K. Autologous hematopoietic stem cell transplantation significantly alters circulating ceramides in peripheral blood of relapsing-remitting multiple sclerosis patients. Lipids Health Dis 2023; 22:97. [PMID: 37420217 DOI: 10.1186/s12944-023-01863-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/26/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND The common inflammatory disease multiple sclerosis (MS) is a disease of the central nervous system. For more than 25 years autologous hematopoietic stem cell transplantation (AHSCT) has been used to treat MS. It has been shown to be highly effective in suppressing inflammatory activity in relapsing-remitting MS (RRMS) patients. This treatment is thought to lead to an immune system reset, inducing a new, more tolerant system; however, the precise mechanism behind the treatment effect in MS patients is unknown. In this study, the effect of AHSCT on the metabolome and lipidome in peripheral blood from RRMS patients was investigated. METHODS Peripheral blood samples were collected from 16 patients with RRMS at ten-time points over the five months course of AHSCT and 16 MS patients not treated with AHSCT. Metabolomics and lipidomics analysis were performed using liquid-chromatography high-resolution mass spectrometry. Mixed linear models, differential expression analysis, and cluster analysis were used to identify differentially expressed features and groups of features that could be of interest. Finally, in-house and in-silico libraries were used for feature identification, and enrichment analysis was performed. RESULTS Differential expression analysis found 657 features in the lipidomics dataset and 34 in the metabolomics dataset to be differentially expressed throughout AHSCT. The administration of cyclophosphamide during mobilization and conditioning was associated with decreased concentrations in glycerophosphoinositol species. Thymoglobuline administration was associated with an increase in ceramide and glycerophosphoethanolamine species. After the conditioning regimen, a decrease in glycerosphingoidlipids concentration was observed, and following hematopoietic stem cell reinfusion glycerophosphocholine concentrations decreased for a short period of time. Ceramide concentrations were strongly associated with leukocyte levels during the procedure. The ceramides Cer(d19:1/14:0) and Cer(d20:1/12:0) were found to be increased (P < .05) in concentration at the three-month follow-up compared to baseline. C16 ceramide, Cer(D18:2/16:0), and CerPE(d16:2(4E,6E)/22:0) were found to be significantly increased in concentration after AHSCT compared to prior to treatment as well as compared to newly diagnosed RRMS patients. CONCLUSION AHSCT had a larger impact on the lipids in peripheral blood compared to metabolites. The variation in lipid concentration reflects the transient changes in the peripheral blood milieu during the treatment, rather than the changes in the immune system that are assumed to be the cause of clinical improvement within RRMS patients treated with AHSCT. Ceramide concentrations were affected by AHSCT and associated with leukocyte counts and were altered three months after treatment, suggesting a long-lasting effect.
Collapse
Affiliation(s)
- Aina Vaivade
- Department of Medical Science, Clinical Chemistry, Uppsala University, Uppsala, Swede, Sweden
| | - Anna Wiberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Payam Emami Khoonsari
- Department of Biochemistry and Biophysics, Science for Life Laboratory, National Bioinformatics Infrastructure Sweden, Stockholm University, Solna, Sweden
| | - Henrik Carlsson
- Department of Medical Science, Clinical Chemistry, Uppsala University, Uppsala, Swede, Sweden
| | - Stephanie Herman
- Department of Medical Science, Clinical Chemistry, Uppsala University, Uppsala, Swede, Sweden
| | - Asma Al-Grety
- Department of Medical Science, Clinical Chemistry, Uppsala University, Uppsala, Swede, Sweden
| | - Eva Freyhult
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Ulla Olsson-Strömberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Division of Hematology, Uppsala University Hospital, Uppsala, Sweden
| | - Joachim Burman
- Department of Medical Science, Neuroscience, Uppsala University, Uppsala, Sweden
| | - Kim Kultima
- Department of Medical Science, Clinical Chemistry, Uppsala University, Uppsala, Swede, Sweden
| |
Collapse
|
11
|
Alizadehasl A, Ghadimi N, Hosseinifard H, Roudini K, Emami AH, Ghavamzadeh A, Khoda-Amorzideh D. Cardiovascular diseases in patients after hematopoietic stem cell transplantation: Systematic review and Meta-analysis. Curr Res Transl Med 2023; 71:103363. [PMID: 36427416 DOI: 10.1016/j.retram.2022.103363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/02/2022] [Accepted: 08/27/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Hematopoietic Stem Cell Transplantation (HSCT), is performed to treat many malignancies such as autologous or allogenic. Despite the success of this method in treating patients, - sometimes some HSCT recipients face problems such as cardiovascular complications. Therefore, this systematic review and meta-analysis aimed to evaluate the prevalence of cardiovascular complications in post-transplant patients. METHOD In order to review the published studies, we examined PubMed, MEDLINE, Cochrane Library, Scopus, and web of science databases from the beginning to the end of January 2022, and we used tools by the Newcastle-Ottawa Scale to evaluate the quality of the studies. RESULT In this study, 37 articles were included in the meta-analysis and 30,957 patients were examined. Also, the mean age of patients was 35.37 years. Based on the results of the meta-analysis, the prevalence of cardiovascular disease (CVD), was 16.84%. In addition, other complications related to CVD which include Arrhythmias, Congestive Heart Failure (CHF), Hypertension, stroke, and mortality were examined in patients who had hematopoietic stem cell transplantation and the resulting amounts were 3.91%, 3.66, 17.71, 0.22%, and 1.53%, respectively. CONCLUSION This study showed that the prevalence of cardiovascular disease after hematopoietic stem cell transplantation is high and needs special attention.
Collapse
Affiliation(s)
- Azin Alizadehasl
- Cardio-Oncology Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nashmil Ghadimi
- Cardio-Oncology Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Hosseinifard
- Research Center for evidence-based medicine (rcebm), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Roudini
- Department of internal medicine, Hematology and Medical oncology ward, Cancer research center, cancer institute, Imam Khomeini hospital complex, Tehran University of medical sciences, Tehran, Iran, Islamic republic of Iran
| | - Amir Hossein Emami
- Department of internal Medicine, school of medicine cancer institute, Imam Khomeini Hospital Tehran University of Medical Sciences
| | - Ardeshir Ghavamzadeh
- Cancer & cell Therapy Research Center, Tehran University of medical Scinces Tehran
| | - Davood Khoda-Amorzideh
- Cardio-Oncology Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Zayed MA, Sultan S, Alsaab HO, Yousof SM, Alrefaei GI, Alsubhi NH, Alkarim S, Al Ghamdi KS, Bagabir SA, Jana A, Alghamdi BS, Atta HM, Ashraf GM. Stem-Cell-Based Therapy: The Celestial Weapon against Neurological Disorders. Cells 2022; 11:3476. [PMID: 36359871 PMCID: PMC9655836 DOI: 10.3390/cells11213476] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 09/01/2023] Open
Abstract
Stem cells are a versatile source for cell therapy. Their use is particularly significant for the treatment of neurological disorders for which no definitive conventional medical treatment is available. Neurological disorders are of diverse etiology and pathogenesis. Alzheimer's disease (AD) is caused by abnormal protein deposits, leading to progressive dementia. Parkinson's disease (PD) is due to the specific degeneration of the dopaminergic neurons causing motor and sensory impairment. Huntington's disease (HD) includes a transmittable gene mutation, and any treatment should involve gene modulation of the transplanted cells. Multiple sclerosis (MS) is an autoimmune disorder affecting multiple neurons sporadically but induces progressive neuronal dysfunction. Amyotrophic lateral sclerosis (ALS) impacts upper and lower motor neurons, leading to progressive muscle degeneration. This shows the need to try to tailor different types of cells to repair the specific defect characteristic of each disease. In recent years, several types of stem cells were used in different animal models, including transgenic animals of various neurologic disorders. Based on some of the successful animal studies, some clinical trials were designed and approved. Some studies were successful, others were terminated and, still, a few are ongoing. In this manuscript, we aim to review the current information on both the experimental and clinical trials of stem cell therapy in neurological disorders of various disease mechanisms. The different types of cells used, their mode of transplantation and the molecular and physiologic effects are discussed. Recommendations for future use and hopes are highlighted.
Collapse
Affiliation(s)
- Mohamed A. Zayed
- Physiology Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Physiology Department, Faculty of Medicine, Menoufia University, Menoufia 32511, Egypt
| | - Samar Sultan
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Shimaa Mohammad Yousof
- Physiology Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Medical Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ghadeer I. Alrefaei
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Nouf H. Alsubhi
- Department of Biological Sciences, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Saleh Alkarim
- Embryonic and Cancer Stem Cell Research Group, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Biology Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Embryonic Stem Cells Research Unit, Biology Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kholoud S. Al Ghamdi
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Sali Abubaker Bagabir
- Genetic Unit, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Ankit Jana
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Campus-11, Patia, Bhubaneswar 751024, Odisha, India
| | - Badrah S. Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hazem M. Atta
- Clinical Biochemistry Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| |
Collapse
|
13
|
Nabizadeh F, Masrouri S, Sharifkazemi H, Azami M, Nikfarjam M, Moghadasi AN. Autologous hematopoietic stem cell transplantation in neuromyelitis optica spectrum disorder: A systematic review and meta-analysis. J Clin Neurosci 2022; 105:37-44. [PMID: 36075186 DOI: 10.1016/j.jocn.2022.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Treatment options for neuromyelitis optica spectrum disorder (NMOSD) are corticosteroids, immunosuppressive drugs, emerging monoclonal antibodies, rituximab, eculizumab, satralizumab, and inebilizumab. Due to disabling and deadly nature of NMOSD, there is a great motivation among physicians for finding new treatment options. Recently, several studies have been conducted on the therapeutic effects of autologous hematopoietic stem cell transplantation (AHSCT) on NMOSD patients. METHODS Several databases including PubMed, Scopus, Web of Science, and Google scholar were searched for studies on AHSCT in NMOSD patients. RESULTS After screening titles and abstracts, and reviewing full texts, nine studies with 39 severe cases of NMOSD met the criteria of our study. The pooled standardized mean difference (SMD) for EDSS score before and after treatment was -0.81 (95 %CI:-1.07, -0.15; Q = 1.99, P = 0.58, I2 = 0 %). Also, the PFS and RFS were 69 % and 53 % respectively (PFS: 69 %, 95 %CI 42 %, 96 %; Q = 8.63, P = 0.01, I2 = 73.07 %; RFS: 53 %, 95 %CI 27 %, 79 %; Q = 12.33, P = 0.01, I2 = 71.87 %). Also, there were three cases with secondary autoimmune diseases including myasthenia gravis, hyperthyroidism, and thyroiditis. CONCLUSION According to the present study, AHSCT could be an alternative therapy for NMOSD in severe cases instead of conventional immunotherapies. However, physicians should pay attention to its serious complications. The diversity of results from the published trials on the efficacy and safety of AHSCT calls for further investigations on determining the ideal AHSCT conditioning and the characteristics of patients.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- Neuroscience Research Group (NRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Soroush Masrouri
- School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | | | - Mobin Azami
- Student Research Committee School of Medicine, Kurdistan University of Medical Science, Sanandaj, Iran
| | - Mahsa Nikfarjam
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Santiago P, Braga-Neto MB, Loftus EV. Novel Therapies for Patients With Inflammatory Bowel Disease. Gastroenterol Hepatol (N Y) 2022; 18:453-465. [PMID: 36397817 PMCID: PMC9666808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The implementation of biologic therapy has improved the treatment and clinical course of patients with inflammatory bowel disease since the initial approval of infliximab for Crohn's disease in 1998. However, the efficacy and safety profiles of currently available therapies are still less than optimal in several ways, highlighting the need for novel therapeutic targets. Several new drug classes (Janus kinase inhibitors, anti-integrins, sphingosine-1-phosphate receptor modulators, anti-interleukin-23 antibodies, and stem cell therapies) are currently being studied in Crohn's disease and ulcerative colitis with promising results. This article reviews the current literature and provides an updated overview of the emerging therapies.
Collapse
Affiliation(s)
- Priscila Santiago
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Manuel B Braga-Neto
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Edward V Loftus
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| |
Collapse
|
15
|
Nikoonezhad M, Lasemi MV, Alamdari S, Mohammadian M, Tabarraee M, Ghadyani M, Hamidpour M, Roshandel E. Treatment of insulin-dependent diabetes by hematopoietic stem cell transplantation. Transpl Immunol 2022; 75:101682. [PMID: 35926800 DOI: 10.1016/j.trim.2022.101682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 10/16/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease resulting from the demolition of β-cells that are responsible for producing insulin in the pancreas. Treatment with insulin (lifelong applying) and islet transplantation (in rare cases and severe diseases), are standards of care for T1D. Pancreas or islet transplantation have some limitations, such as lack of sufficient donors and longtime immune suppression for preventing allograft rejection. Recent studies demonstrate that autologous hematopoietic stem cells (HSC) can regenerate immune tolerance against auto-antigens. Taking advantage of this feature, autologous HSC transplantation (auto-HSCT) is likely the only treatment for T1D that is associated with lasting and complete remission. None of the other evaluated immunotherapies worldwide had the clinical efficacy of auto-HSCT. Therapy with auto-HSCT is insulin-independent rather than reducing insulin needs or delaying loss of insulin production. This review provided the latest findings in auto-HSCT for treatment of T1D.
Collapse
Affiliation(s)
- Maryam Nikoonezhad
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Vahdat Lasemi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Alamdari
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhdeh Mohammadian
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Tabarraee
- Department of Hematology and Medical Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Ghadyani
- Department of Hematology and Medical Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Hamidpour
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Chen X, Wang D, Zheng F, Zhu L, Huang Y, Zhu Y, Huang Y, Xu H, Li Z. Effects of Posaconazole on Tacrolimus Population Pharmacokinetics and Initial Dose in Children With Crohn’s Disease Undergoing Hematopoietic Stem Cell Transplantation. Front Pharmacol 2022; 13:758524. [PMID: 35496296 PMCID: PMC9043134 DOI: 10.3389/fphar.2022.758524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
The present study explored the effects of posaconazole on tacrolimus population pharmacokinetics (PPK) in children with Crohn’s disease (CD) undergoing hematopoietic stem cell transplantation (HSCT). Tacrolimus concentrations, physiological and biochemical factors, and concomitant medications from 51 CD children undergoing HSCT were used to establish a PPK model based on a nonlinear mixed-effect model. Steady-state concentrations of tacrolimus for children weighing less than 20 kg treated with different dose regimens were simulated by the Monte Carlo method. Weight and concomitant medications were included as covariates. At the same weight, the relative tacrolimus clearance was 1:0.43 in children without or with posaconazole. Compared to children not receiving posaconazole, the simulated tacrolimus steady-state concentrations at different doses for different body weights were all higher in children receiving posaconazole (p < 0.01). Furthermore, in children not receiving posaconazole, the dosage regimen with the best probability of achieving the target concentration was 0.6 mg/kg/day for children weighing 5–8.2 kg and 0.5 mg/kg/day for children weighing 8.2–20 kg, while for children receiving posaconazole, the best probability of reaching the target concentration of tacrolimus was a dosage regimen of 0.5 mg/kg/day for children weighing 5–20 kg. In conclusion, the PPK for tacrolimus was determined in children with CD undergoing HSCT for the first time. Co-treatment with posaconazole significantly increased tacrolimus concentrations, and we recommend a specific initial dose regimen for tacrolimus.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Pharmacy, Children’s Hospital of Fudan University, Shanghai, China
| | - Dongdong Wang
- Department of Pharmacy, Children’s Hospital of Fudan University, Shanghai, China
| | - Feng Zheng
- Department of Pharmacy, Children’s Hospital of Fudan University, Shanghai, China
| | - Lin Zhu
- Department of Pharmacy, Children’s Hospital of Fudan University, Shanghai, China
| | - Yidie Huang
- Department of Pharmacy, Children’s Hospital of Fudan University, Shanghai, China
| | - Yiqing Zhu
- Department of Pharmacy, Children’s Hospital of Fudan University, Shanghai, China
| | - Ying Huang
- Department of Gastroenterology, Children’s Hospital of Fudan University, Shanghai, China
- *Correspondence: Ying Huang, ; Hong Xu, ; Zhiping Li,
| | - Hong Xu
- Department of Nephrology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- *Correspondence: Ying Huang, ; Hong Xu, ; Zhiping Li,
| | - Zhiping Li
- Department of Pharmacy, Children’s Hospital of Fudan University, Shanghai, China
- *Correspondence: Ying Huang, ; Hong Xu, ; Zhiping Li,
| |
Collapse
|
17
|
Rahman MM, Islam MR, Islam MT, Harun-Or-Rashid M, Islam M, Abdullah S, Uddin MB, Das S, Rahaman MS, Ahmed M, Alhumaydhi FA, Emran TB, Mohamed AAR, Faruque MRI, Khandaker MU, Mostafa-Hedeab G. Stem Cell Transplantation Therapy and Neurological Disorders: Current Status and Future Perspectives. BIOLOGY 2022; 11:147. [PMID: 35053145 PMCID: PMC8772847 DOI: 10.3390/biology11010147] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases are a global health issue with inadequate therapeutic options and an inability to restore the damaged nervous system. With advances in technology, health scientists continue to identify new approaches to the treatment of neurodegenerative diseases. Lost or injured neurons and glial cells can lead to the development of several neurological diseases, including Parkinson's disease, stroke, and multiple sclerosis. In recent years, neurons and glial cells have successfully been generated from stem cells in the laboratory utilizing cell culture technologies, fueling efforts to develop stem cell-based transplantation therapies for human patients. When a stem cell divides, each new cell has the potential to either remain a stem cell or differentiate into a germ cell with specialized characteristics, such as muscle cells, red blood cells, or brain cells. Although several obstacles remain before stem cells can be used for clinical applications, including some potential disadvantages that must be overcome, this cellular development represents a potential pathway through which patients may eventually achieve the ability to live more normal lives. In this review, we summarize the stem cell-based therapies that have been explored for various neurological disorders, discuss the potential advantages and drawbacks of these therapies, and examine future directions for this field.
Collapse
Affiliation(s)
- Mohammad Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Touhidul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Harun-Or-Rashid
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mahfuzul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Sabirin Abdullah
- Space Science Center, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Mohammad Borhan Uddin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Sumit Das
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | | | | | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway 47500, Selangor, Malaysia;
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department & Health Sciences Research Unit, Medical College, Jouf University, Sakaka 72446, Saudi Arabia;
- Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62521, Egypt
| |
Collapse
|
18
|
Zanin-Silva DC, Santana-Gonçalves M, Kawashima-Vasconcelos MY, Oliveira MC. Management of Endothelial Dysfunction in Systemic Sclerosis: Current and Developing Strategies. Front Med (Lausanne) 2021; 8:788250. [PMID: 35004754 PMCID: PMC8727451 DOI: 10.3389/fmed.2021.788250] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic Sclerosis (SSc) is an autoimmune disease marked by dysregulation of the immune system, tissue fibrosis and dysfunction of the vasculature. Vascular damage, remodeling and inadequate endothelial repair are hallmarks of the disease. Since early stages of SSc, damage and apoptosis of endothelial cells (ECs) can lead to perivascular inflammation, oxidative stress and tissue hypoxia, resulting in multiple clinical manifestations. Raynaud's phenomenon, edematous puffy hands, digital ulcers, pulmonary artery hypertension, erectile dysfunction, scleroderma renal crisis and heart involvement severely affect quality of life and survival. Understanding pathogenic aspects and biomarkers that reflect endothelial damage in SSc is essential to guide therapeutic interventions. Treatment approaches described for SSc-associated vasculopathy include pharmacological options to improve blood flow and tissue perfusion and, more recently, cellular therapy to enhance endothelial repair, promote angiogenesis and heal injuries. This mini-review examines the current knowledge on cellular and molecular aspects of SSc vasculopathy, as well as established and developing therapeutic approaches for improving the vascular compartment.
Collapse
Affiliation(s)
- Djúlio César Zanin-Silva
- Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Basic and Applied Immunology Graduate Program, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maynara Santana-Gonçalves
- Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Oncology, Stem Cell and Cell-Therapy Graduate Program, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Marianna Yumi Kawashima-Vasconcelos
- Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Internal Medicine Graduate Program, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria Carolina Oliveira
- Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
19
|
Moraes DA, Oliveira MC. Life after Autologous Hematopoietic Stem Cell Transplantation for Systemic Sclerosis. J Blood Med 2021; 12:951-964. [PMID: 34785969 PMCID: PMC8590726 DOI: 10.2147/jbm.s338077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/26/2021] [Indexed: 12/29/2022] Open
Abstract
Stem cell transplantation has been investigated as treatment for severe and progressive systemic sclerosis (SSc) for the past 25 years. To date, more than 1000 SSc patients have been transplanted worldwide. Overall and event-free survival have increased over the years, reflecting stricter patient selection criteria and better clinical management strategies. This review addresses long-term outcomes of transplanted SSc patients, considering phase I/II and randomized clinical trials, as well as observational studies and those assessing specific aspects of the disease. Clinical outcomes are discussed comparatively between studies, highlighting advances, drawbacks and controversies in the field. Areas for future development are also discussed.
Collapse
Affiliation(s)
- Daniela A Moraes
- Division of Clinical Immunology, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria Carolina Oliveira
- Center for Cell-Based Therapy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
20
|
Puyade M, Patel A, Lim YJ, Blank N, Badoglio M, Gualandi F, Ma DD, Maximova N, Greco R, Alexander T, Snowden JA. Autologous Hematopoietic Stem Cell Transplantation for Behçet's Disease: A Retrospective Survey of Patients Treated in Europe, on Behalf of the Autoimmune Diseases Working Party of the European Society for Blood and Marrow Transplantation. Front Immunol 2021; 12:638709. [PMID: 34025648 PMCID: PMC8136432 DOI: 10.3389/fimmu.2021.638709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/26/2021] [Indexed: 12/29/2022] Open
Abstract
Background Behçet’s Disease (BD) is an autoimmune disease mostly presenting with recurrent oral and genital aphthosis, and uveitis. Patients are rarely refractory to immunosuppressive treatments. Autologous hematopoietic stem cell transplantation (aHSCT) is a standard of care in other autoimmune diseases. Some patients with BD have been treated with aHSCT based on compassionate use. Objectives Evaluate the outcome of aHSCT in adult patients with BD treated in member centers of the European Society for Blood and Marrow Transplantation (EBMT). Methods Adults who received aHSCT primarily for BD were identified retrospectively in the EBMT registry and/or in published literature. Data were extracted from either medical records of the patient or from publications. Results Eight out of 9 cases reported to the registry and extracted data of 2 further patients from literature were analyzed. Four were female, median age at onset of BD was 24y (range 9-50). Median age at aHSCT was 32y (27-51). Patients had received median 4 (2-11) previous lines of therapy (89% corticosteroids, 50% methotrexate, anti-TNFα therapy or cyclophosphamide). All patients had active disease before mobilization. Conditioning regimen was heterogeneous. Median follow-up was 48 months (range 6-240). No treatment-related mortality was reported. This procedure induced complete remission (CR) in 80%, partial remission in 10% and lack of response in 10% of the patients. Relapse rate was 30% (2 relapses in patients in CR and 1 relapse in the patient in PR) with panuveitis (n=1), aphthosis (n=2) and arthralgia (n=1). Six patients were in CR. No late complications were reported. Conclusion aHSCT has an acceptable safety profile and represents a feasible and relatively effective procedure in severe and conventional treatment-resistant cases of BD and has the potential to stabilize BD in patients with life-threatening involvements.
Collapse
Affiliation(s)
- Mathieu Puyade
- CHU de Poitiers, Service de Médecine Interne et Maladies Infectieuses, Poitiers, France.,CHU de Poitiers, CIC-1402 Poitiers, France
| | - Amit Patel
- Haematology and Transplant Unit, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Yeong Jer Lim
- Haemato-Oncology Department, Clatterbridge Cancer Centre, University of Liverpool, Liverpool, United Kingdom
| | - Norbert Blank
- Department of Hematology, Oncology and Rheumatology, Internal Medicine V, University Hospital of Heidelberg, Heidelberg, Germany
| | | | - Francesca Gualandi
- U.O. Ematologia Centro Trapianti Midollo - Ospedale Policlinico San Martino, Genova, Italy
| | - David D Ma
- Department of Haematology and BM Transplantation, St Vincent's Hospital Sydney and St Vincent's Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Natalia Maximova
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | - Raffaella Greco
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Tobias Alexander
- Department of Rheumatology and Clinical Immunology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - John A Snowden
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| |
Collapse
|
21
|
Circulatory miR-155 correlation with platelet and neutrophil recovery after autologous hematopoietic stem cell transplantation, a multivariate analysis. Int J Hematol 2021; 114:235-245. [PMID: 33895969 DOI: 10.1007/s12185-021-03154-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
The involvement of microRNAs in the regulation of hematopoietic stem cells paves the way for their use in the management of autologous HSC transplantation (AHSCT). We aimed to evaluate the predictive value of circulatory microRNAs in extracellular vesicles (EVs) and plasma in platelet and neutrophil engraftment. Circulatory miR-125b, mir-126, miR-150, and miR-155 expression was assessed in isolated EVs and plasma in samples collected from AHSCT candidates. Multivariate analysis, COX models, and ROC assessment were performed to evaluate the predictive values of these microRNAs in platelet and neutrophil engraftment. miR-155 expression following conditioning with other clinical factors such as chemotherapy courses after diagnosis was the most significant predictors of platelet/neutrophil engraftment. A CD34+ cell count ≥ 3.5 × 106/kg combined with miR-155 could be used as an engraftment predictor; however, in cases where the CD34+ cell count was < 3.5 × 106/kg, this parameter lost its predictive value for engraftment and could be replaced by miR-155. The correlation between miR-155 and platelet/neutrophil engraftment even with lower numbers of CD34+ cells suggests the importance of this microRNA in the prediction of AHSCT outcome. Moreover, miR-155 could be utilized in therapeutic approaches to provide a better outcome for patients undergoing AHSCT.
Collapse
|
22
|
Henrique-Neto Á, Vasconcelos MYK, Dias JBE, de Moraes DA, Gonçalves MS, Zanin-Silva DC, Zucoloto TG, de Oliveira MDFC, Dotoli GM, Weffort LF, Leopoldo VC, Oliveira MC. Hematopoietic stem cell transplantation for systemic sclerosis: Brazilian experience. Adv Rheumatol 2021; 61:9. [PMID: 33549135 DOI: 10.1186/s42358-021-00166-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In the past 20 years, hematopoietic stem cell transplantation (HSCT) has been investigated as treatment for systemic sclerosis (SSc). The goal of HSCT is to eradicate the autoreactive immune system, which is replaced by a new immune repertoire with long-lasting regulation and tolerance to autoantigens. Here, we describe the clinical outcomes of severe and refractory SSc patients that underwent HSCT at a single Brazilian center. PATIENTS AND METHODS This is a longitudinal and retrospective study, including 70 adult SSc patients, with an established diagnosis of SSc, and who underwent autologous HSCT from 2009 to 2016. The procedure included harvesting and cryopreservation of autologous hematopoietic progenitor cells, followed by administration of an immunoablative regimen and subsequent infusion of the previously collected cells. Patients were evaluated immediately before transplantation, at 6 months and then yearly until at least 5-years of post-transplantation follow-up. At each evaluation time point, patients underwent clinical examination, including modified Rodnan's skin score (mRSS) assessment, echocardiography, high-resolution computed tomography of the lungs and pulmonary function. RESULTS Median (range) age was 35.9 (19-59), with 57 (81.4%) female and median (range) non-Raynaud's disease duration of 2 (1-7) years. Before transplantation, 96% of the patients had diffuse skin involvement, 84.2%, interstitial lung disease and 67%, positive anti-topoisomerase I antibodies. Skin involvement significantly improved, with a decline in mRSS at all post-transplantation time points until at least 5-years of follow-up. When patients with pre-HSCT interstitial lung disease were analyzed, there was an improvement in pulmonary function (forced vital capacity and diffusing capacity of lung for carbon monoxide) over the 5-year follow-up. Overall survival was 81% and progression-free survival was 70.5% at 8-years after HSCT. Three patients died due to transplant-related toxicity, 9 patients died over follow-up due to disease reactivation and one patient died due to thrombotic thrombocytopenic purpura. CONCLUSIONS Autologous hematopoietic progenitor cell transplantation improves skin and interstitial lung involvement. These results are in line with the international experience and support HSCT as a viable therapeutic alternative for patients with severe and progressive systemic sclerosis.
Collapse
Affiliation(s)
- Álvaro Henrique-Neto
- Graduate Program in Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Marianna Yumi Kawashima Vasconcelos
- Graduate Program in Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Juliana Bernardes Elias Dias
- Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniela Aparecida de Moraes
- Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maynara Santana Gonçalves
- Center for Cell-Based Therapy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Graduate Program in Oncology, Stem Cells and Cell Therapy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Djúlio César Zanin-Silva
- Center for Cell-Based Therapy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Graduate Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Talita Graminha Zucoloto
- Graduate Program in Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Marília de Fátima Cirioli de Oliveira
- Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Ribeirão Preto School of Nursing, University of São Paulo, Ribeirão Preto, Brazil
| | - Giuliana Martinelli Dotoli
- Graduate Program in Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Fernando Weffort
- Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Vanessa Cristina Leopoldo
- Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Ribeirão Preto School of Nursing, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria Carolina Oliveira
- Center for Cell-Based Therapy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil. .,Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes 3900, Ribeirão Preto, SP, 14048-900, Brazil.
| |
Collapse
|
23
|
Roberts F, Hobbs H, Jessop H, Bozzolini C, Burman J, Greco R, Ismail A, Kazmi M, Kirgizov K, Mancardi G, Mawson S, Muraro PA, Puyade M, Saccardi R, Withers B, Verhoeven B, Sharrack B, Snowden JA. Rehabilitation Before and After Autologous Haematopoietic Stem Cell Transplantation (AHSCT) for Patients With Multiple Sclerosis (MS): Consensus Guidelines and Recommendations for Best Clinical Practice on Behalf of the Autoimmune Diseases Working Party, Nurses Group, and Patient Advocacy Committee of the European Society for Blood and Marrow Transplantation (EBMT). Front Neurol 2020; 11:556141. [PMID: 33362684 PMCID: PMC7759663 DOI: 10.3389/fneur.2020.556141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/06/2020] [Indexed: 12/29/2022] Open
Abstract
Autologous haematopoietic stem cell transplantation (AHSCT) is increasingly used to treat people with multiple sclerosis (MS). Supported by an evolving evidence base, AHSCT can suppress active inflammation in the central nervous system and induce long-term changes in immune cell populations, thereby stabilizing, and, in some cases, reversing disability in carefully selected MS patients. However, AHSCT is an intensive chemotherapy-based procedure associated with intrinsic risks, including profound cytopenia, infection, and organ toxicity, accompanied by an on-going degree of immuno-compromise and general deconditioning, which can be associated with a transient increase in functional impairment in the early stages after transplantation. Although international guidelines and recommendations have been published for clinical and technical aspects of AHSCT in MS, there has been no detailed appraisal of the rehabilitation needed following treatment nor any specific guidelines as to how this is best delivered by hospital and community-based therapists and wider multidisciplinary teams in order to maximize functional recovery and quality of life. These expert consensus guidelines aim to address this unmet need by summarizing the evidence-base for AHSCT in MS and providing recommendations for current rehabilitation practice along with identifying areas for future research and development.
Collapse
Affiliation(s)
| | - Helen Hobbs
- Hobbs Rehabilitation, Winchester, United Kingdom
| | - Helen Jessop
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | | | - Joachim Burman
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Raffaella Greco
- Hematology and Bone Marrow Transplantation Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Hospital, Milan, Italy
| | - Azza Ismail
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Majid Kazmi
- Kings Health Partners, Department of Haematology, Guys Hospital, London, United Kingdom
| | - Kirill Kirgizov
- Institute of Paediatric Oncology and Haematology, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Gianluigi Mancardi
- Department of Neuroscience, University of Genova and Clinical Scientific Institutes Maugeri, Genoa, Italy
| | - Susan Mawson
- School of Health and Related Research, University of Sheffield, Sheffield, United Kingdom
| | - Paolo A Muraro
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Mathieu Puyade
- CHU de Poitiers, Service de Médecine Interne et Maladies Infectieuses, Poitiers, France.,CHU de Poitiers, CIC-1402, Poitiers, France
| | | | - Barbara Withers
- Department of Haematology and Blood Stem Cell Transplantation, St Vincent's Health Network Sydney and Senior Lecturer, St Vincent's Clinical School, University of New South Wales Medicine, Sydney, NSW, Australia
| | - Bregje Verhoeven
- Patient Advocacy Committee, EBMT Executive Office, Barcelona, Spain
| | - Basil Sharrack
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom.,School of Health and Related Research, University of Sheffield, Sheffield, United Kingdom
| | - John A Snowden
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| |
Collapse
|
24
|
Selective cognitive dysfunction and physical disability improvement after autologous hematopoietic stem cell transplantation in highly active multiple sclerosis. Sci Rep 2020; 10:21286. [PMID: 33277590 PMCID: PMC7718237 DOI: 10.1038/s41598-020-78160-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/18/2020] [Indexed: 12/29/2022] Open
Abstract
The aim was to assess the cognitive dysfunction and physical disability after autologous hematopoietic stem cell transplantation (AHSCT), to explore the potential factors influencing disability regression after AHSCT and to estimate the safety of low-dose immunosuppressive therapy in highly active Multiple Sclerosis (MS) patients. In single-center prospective study patients who failed to conventional therapies for highly active relapsing MS underwent the AHSCT. The disability was followed up with Expanded Disability Status Scale and cognition with Brief International Cognitive Assessment for Multiple Sclerosis. Twenty four patients [18 (72.0%) female] underwent AHSCT. Two patients of 13 had one relapse during the first year and three patients-during the second year after AHSCT. Disability regression was found in 84.6% of patients. The scores of information processing speed and verbal learning were significantly higher at month 12 after AHSCT. The clinical variable that explained the disability regression at months 6 and 12 after AHSCT was the disability progression over 6 months before AHSCT. No transplant related-deaths were observed. Selective cognitive improvement was found after AHSCT in MS patients. The disability may be temporarily reversible after AHSCT in a significant proportion of highly active RMS patients if AHSCT is well-timed performed.
Collapse
|
25
|
Ruiz MA, Junior RLK, Piron-Ruiz L, Saran PS, Castiglioni L, Quadros LGD, Pinho TS, Burt RK. Medical, ethical, and legal aspects of hematopoietic stem cell transplantation for Crohn’s disease in Brazil. World J Stem Cells 2020; 12:1113-1123. [PMID: 33178395 PMCID: PMC7596442 DOI: 10.4252/wjsc.v12.i10.1113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/08/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory bowel disease that can affect any part of the gastrointestinal tract. The etiology of CD is unknown; however, genetic, epigenetic, environmental, and lifestyle factors could play an essential role in the onset and establishment of the disease. CD results from immune dysregulation due to loss of the healthy symbiotic relationship between host and intestinal flora and or its antigens. It affects both sexes equally with a male to female ratio of 1.0, and its onset can occur at any age, but the diagnosis is most commonly observed in the range of 20 to 40 years of age. CD diminishes quality of life, interferes with social activities, traumatizes due to the stigma of incontinence, fistulae, strictures, and colostomies, and in severe cases, affects survival when compared to the general population. Symptoms fluctuate between periods of remission and activity in which complications such as fistulas, strictures, and the need for bowel resection, surgery, and colostomy implantation make up the most severe aspects of the disease. CD can be progressive and the complications recurrent despite treatment with anti-inflammatory drugs, corticosteroids, immunosuppressants, and biological agents. However, over time many patients become refractory without treatment alternatives, and in this scenario, hematopoietic stem cell transplantation (HSCT) has emerged as a potential treatment option. The rationale for the use of HSCT for CD is anchored in animal studies and human clinical trials where HSCT could reset a patient's immune system by eliminating disease-causing effector cells and upon immune recovery increase regulatory and suppressive immune cells. Autologous HSCT using a non-myeloablative regimen of cyclophosphamide and anti-thymocyte globulin without CD34+ selection has been to date the most common transplant conditioning regimen adopted. In this review we will address the current situation regarding CD treatment with HSCT and emphasize the medical, ethical, and legal aspects that permeate the procedure in Brazil.
Collapse
Affiliation(s)
- Milton Artur Ruiz
- Department of Bone Marrow Transplant, Beneficência Portuguesa Hospital, São José do Rio Preto 15090 470, Brazil
| | | | - Lilian Piron-Ruiz
- Department of Bone Marrow Transplantation, Beneficência Portuguesa Hospital, São José do Rio Preto 15090 470, Brazil
| | - Priscila Samara Saran
- Department of Bone Marrow Transplantation, Beneficência Portuguesa Hospital, São José do Rio Preto 15090 470, Brazil
| | - Lilian Castiglioni
- Genetics and Molecular Biology, FAMERP- Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090 470 Brazil
| | - Luiz Gustavo de Quadros
- Department of Endoscopy, Beneficência Portuguesa Hospital, ABC Medical School, São Bernardo 15015 110, Brazil
| | - Tainara Souza Pinho
- Department of Bone Marrow Transplantation, Beneficência Portuguesa Hospital, São José do Rio Preto 15090 470, Brazil
| | - Richard K Burt
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| |
Collapse
|
26
|
Das J, Sharrack B, Snowden JA. Autologous hematopoietic stem-cell transplantation in neurological disorders: current approach and future directions. Expert Rev Neurother 2020; 20:1299-1313. [PMID: 32893698 DOI: 10.1080/14737175.2020.1820325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Autologous hematopoietic stem-cell transplantation (AHSCT) has become increasingly popular in recent years as an effective treatment of immune-mediated neurological diseases. Treatment-related mortality has significantly reduced primarily through better patient selection, optimization of transplant technique, and increased center experience. AREA COVERED Multiple sclerosis is the main indication, but people with neuromyelitis optica spectrum disorder, stiff-person spectrum disorder, chronic inflammatory demyelinating polyneuropathy, myasthenia gravis, and other immune-mediated neurological disorders also have been treated. The review herein discusses the use of AHSCT in these neurological disorders, the importance of patient selection and transplant technique optimization and future directions. EXPERT OPINION Phase II and III clinical trials have confirmed the safety and efficacy of AHSCT in multiple sclerosis and recent phase II clinical trials have also suggested its safety and efficacy in chronic inflammatory demyelinating polyneuropathy and neuromyelitis optica spectrum disorder, with the evidence in other neurological disorders limited to individual case reports, small case series, and registry data. Therefore, further randomized controlled clinical trials are required to assess its safety and efficacy in other neurological conditions. However, in rare neurological conditions, pragmatic treatment trials or registry-based studies may be more realistic options for gathering efficacy and safety data.
Collapse
Affiliation(s)
- Joyutpal Das
- Clinical Neurosciences, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust , Salford, UK.,Cardiovascular medicine, University of Manchester , Manchester, UK.,Department of Neuroscience, NIHR Translational Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust, University of Sheffield , Sheffield, UK
| | - Basil Sharrack
- Department of Neuroscience, NIHR Translational Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust, University of Sheffield , Sheffield, UK
| | - John A Snowden
- Department of Hematology, Sheffield Teaching Hospitals NHS Foundation Trust , Sheffield, UK
| |
Collapse
|
27
|
Autologous Haematopoietic Stem Cell Transplantation in Multiple Sclerosis: a Review of Current Literature and Future Directions for Transplant Haematologists and Oncologists. Curr Hematol Malig Rep 2020; 14:127-135. [PMID: 30828772 PMCID: PMC6510794 DOI: 10.1007/s11899-019-00505-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose of Review We summarise the current development of autologous haematopoietic stem cell transplantation (AHSCT) in treating multiple sclerosis (MS) and discuss future directions for the general neurologist, transplant haematologist and oncologist. Recent Findings AHSCT was initially performed to treat MS over 20 years ago. Over recent years, the evidence base has grown, especially in relapsing-remitting MS (RRMS), with significant improvements in safety and efficacy through better patient selection, choice of transplant technique and increase in centre experience. Summary AHSCT is now a treatment option in very carefully selected patients with severe, treatment-resistant RRMS. However, it is important for transplant haematologists and oncologists to work closely with specialist MS neurologists in patient selection, during transplant and in long-term follow-up of patients. Data should be registered into international transplant registries and, ideally, patients should be enrolled on prospective clinical trials in order to build the evidence base and refine transplant techniques.
Collapse
|
28
|
AlJumah M, Alkhawajah MM, Qureshi S, Al-Thubaiti I, Ayoub O, Bohlega SA, Bushnag A, Cupler E, Daif A, El Boghdady A, Hassan A, Al Malik Y, Saeedi J, Al-Shamrany F, Shosha E, Rieckmann P. Cladribine Tablets and Relapsing-Remitting Multiple Sclerosis: A Pragmatic, Narrative Review of What Physicians Need to Know. Neurol Ther 2020; 9:11-23. [PMID: 32056129 PMCID: PMC7229040 DOI: 10.1007/s40120-020-00177-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Indexed: 12/21/2022] Open
Abstract
Immune reconstitution therapy (IRT) is an emerging management concept for multiple sclerosis, whereby a short course of treatment provides long-lasting suppression of disease activity. "Cladribine tablets 10 mg" refers to a total cumulative dose of cladribine given over 2 years (henceforth referred to as cladribine tablets 3.5 mg/kg); it is a relatively new treatment option that is hypothesised to act as an IRT acting preferentially on the adaptive immune system. A randomised, 2-year, placebo-controlled trial (CLARITY) showed that treatment with cladribine tablets reduced indices of disease activity (relapses, lesions on magnetic resonance images, disability progression) and that this effect outlasted the pharmacologic effect of the treatment on the immune system (mainly a reduction in circulating B and T cells, with little effect on components of the innate immune system such as monocytes). CLARITY Extension, a 2-year extension to this trial, demonstrated durable efficacy, also in patients who received the standard 2-year course of cladribine tablets 3.5 mg/kg and were re-randomised to placebo for a further 2 years. Relative risk reductions for relapse rate with cladribine tablets 3.5 mg/kg were similar for patients with or without prior high disease activity. Reductions in disability progression with cladribine tablets 3.5 mg/kg were higher in patients with prior high relapse rates with or without prior treatment non-response. In this review, we describe the therapeutic profile of cladribine tablets 3.5 mg/kg and provide practical information on initiating this treatment option in the most appropriate patients.
Collapse
Affiliation(s)
- Mohamed AlJumah
- King Fahad Medical City, Ministry of Health, Riyadh, Kingdom of Saudi Arabia.
| | | | - Shireen Qureshi
- Johns Hopkins Aramco Healthcare, Dhahran, Kingdom of Saudi Arabia
| | | | - Omar Ayoub
- King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Saeed A Bohlega
- King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Areej Bushnag
- International Medical Center, Jeddah, Kingdom of Saudi Arabia
| | - Edward Cupler
- King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
| | - Abdulkader Daif
- King Khaled University Hospital, Riyadh, Kingdom of Saudi Arabia
| | | | - Ahmed Hassan
- King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
| | - Yaser Al Malik
- King Saud Bin Abdulaziz University for Health Sciences (KSBU-HS), King Abdulaziz Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Jameelah Saeedi
- King Abdullah Bin Abdulaziz University Hospital, KAAUH, Riyadh, Kingdom of Saudi Arabia
| | | | - Eslam Shosha
- King Khaled Hospital, Al-Majmaah, Kingdom of Saudi Arabia
| | - Peter Rieckmann
- Bamberg Hospital and University of Erlangen, Bamberg, Germany
| |
Collapse
|
29
|
Sharrack B, Saccardi R, Alexander T, Badoglio M, Burman J, Farge D, Greco R, Jessop H, Kazmi M, Kirgizov K, Labopin M, Mancardi G, Martin R, Moore J, Muraro PA, Rovira M, Sormani MP, Snowden JA. Autologous haematopoietic stem cell transplantation and other cellular therapy in multiple sclerosis and immune-mediated neurological diseases: updated guidelines and recommendations from the EBMT Autoimmune Diseases Working Party (ADWP) and the Joint Accreditation Committee of EBMT and ISCT (JACIE). Bone Marrow Transplant 2020; 55:283-306. [PMID: 31558790 PMCID: PMC6995781 DOI: 10.1038/s41409-019-0684-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 08/17/2019] [Indexed: 12/18/2022]
Abstract
These updated EBMT guidelines review the clinical evidence, registry activity and mechanisms of action of haematopoietic stem cell transplantation (HSCT) in multiple sclerosis (MS) and other immune-mediated neurological diseases and provide recommendations for patient selection, transplant technique, follow-up and future development. The major focus is on autologous HSCT (aHSCT), used in MS for over two decades and currently the fastest growing indication for this treatment in Europe, with increasing evidence to support its use in highly active relapsing remitting MS failing to respond to disease modifying therapies. aHSCT may have a potential role in the treatment of the progressive forms of MS with a significant inflammatory component and other immune-mediated neurological diseases, including chronic inflammatory demyelinating polyneuropathy, neuromyelitis optica, myasthenia gravis and stiff person syndrome. Allogeneic HSCT should only be considered where potential risks are justified. Compared with other immunomodulatory treatments, HSCT is associated with greater short-term risks and requires close interspeciality collaboration between transplant physicians and neurologists with a special interest in these neurological conditions before, during and after treatment in accredited HSCT centres. Other experimental cell therapies are developmental for these diseases and patients should only be treated on clinical trials.
Collapse
Affiliation(s)
- Basil Sharrack
- Department of Neurology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- NIHR Neurosciences Biomedical Research Centre, University of Sheffield, Sheffield, UK
| | - Riccardo Saccardi
- Cell Therapy and Transfusion Medicine Unit, Careggi University Hospital, Firenze, Italy
| | - Tobias Alexander
- Klinik fur Rheumatologie und Klinische Immunologie, Charite-Universitatsmedizin, Berlin, Germany
| | - Manuela Badoglio
- EBMT Paris study office, Department of Haematology, Saint Antoine Hospital, INSERM UMR 938, Sorbonne University, Paris, France
| | - Joachim Burman
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Dominique Farge
- Unité de Médecine Interne, Maladies Auto-immunes et Pathologie Vasculaire (UF 04), Hôpital St-Louis, AP-HP, Paris, France
- Centre de Référence des Maladies Auto-Immunes Systémiques Rares d'Ile-de-France, Filière, FAI2R, Paris, France
- EA 3518, Université Denis Diderot, Paris, France
- Department of Internal Medicine, McGill University, Montreal, QC, Canada
| | - Raffaella Greco
- Hematology and Bone Marrow Transplantation Unit, Istituto di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| | - Helen Jessop
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Majid Kazmi
- Kings Health Partners, Department of Haematology, Guys Hospital, London, UK
| | - Kirill Kirgizov
- N.N. Blokhin National Medical Center of Oncology, Institute of Pediatric Oncology and Hematology, Moscow, Russia
| | - Myriam Labopin
- EBMT Paris study office, Department of Haematology, Saint Antoine Hospital, INSERM UMR 938, Sorbonne University, Paris, France
| | - Gianluigi Mancardi
- Department of Neuroscience, University of Genova and Clinical Scientific Institutes Maugeri, Genoa, Italy
| | - Roland Martin
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital, Zurich, Switzerland
| | - John Moore
- Haematology Department, St. Vincent's Health Network, Darlinghurst, NSW, Australia
| | - Paolo A Muraro
- Department of Brain Sciences, Imperial College London, London, UK
| | - Montserrat Rovira
- BMT Unit, Department of Hematology, IDIBAPS, Hospital Clinic, Institut Josep Carreras, Barcelona, Spain
| | - Maria Pia Sormani
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - John A Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK.
| |
Collapse
|
30
|
Dunn-Pirio AM, Heyman BM, Kaufman DS, Kinkel RP. Outcomes and Cost-Effectiveness of Autologous Hematopoietic Cell Transplant for Multiple Sclerosis. Curr Treat Options Neurol 2019; 21:53. [PMID: 31624926 DOI: 10.1007/s11940-019-0588-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW This review presents a critical appraisal of the use of autologous hematopoietic cell transplant (AHCT) for the treatment of multiple sclerosis. We present the reader with a brief review on the AHCT procedure, its immunomodulatory mechanism of action in MS, the most recent evidence in support of its use in patients with relapsing-remitting multiple sclerosis (RRMS), as well as its cost considerations. RECENT FINDINGS The first meta-analysis of clinical trials of AHCT for patients with MS demonstrated durable 5-year progression-free survival rates and low treatment-related mortality. Recently, the first randomized controlled phase III clinical trial demonstrated AHCT to be superior to best available therapy for a subset of patients with RRMS. This led to the American society for transplant and cellular therapies (ASTCT) to recommend AHCT "for patients with relapsing forms of MS who have prognostic factors that indicate a high risk of future disability." AHCT should be considered for patients with RRMS with evidence of clinical activity who have failed 2 lines of therapy or at least one highly active disease-modifying therapy.
Collapse
Affiliation(s)
- Anastasie M Dunn-Pirio
- Division of Neuroimmunology, Department of Neurosciences, UC San Diego, La Jolla, CA, 92093, USA
| | - Benjamin M Heyman
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, UC San Diego, MC 0695, La Jolla, CA, 92093, USA.
| | - Dan S Kaufman
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, UC San Diego, MC 0695, La Jolla, CA, 92093, USA
| | - Revere P Kinkel
- Division of Neuroimmunology, Department of Neurosciences, UC San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
31
|
Autologous haematopoietic stem cell therapy for multiple sclerosis: a review for supportive care clinicians on behalf of the Autoimmune Diseases Working Party of the European Society for Blood and Marrow Transplantation. Curr Opin Support Palliat Care 2019; 13:394-401. [PMID: 31599815 PMCID: PMC6867671 DOI: 10.1097/spc.0000000000000466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW In this review, we summarize the recently published literature that demonstrates the efficacy and safety of autologous haematopoietic stem cell therapy (AHSCT) in multiple sclerosis (MS) and highlight the importance of supportive care required for the safe and well-tolerated delivery of AHSCT. RECENT FINDINGS MS is an autoimmune inflammatory and degenerative disorder of the central nervous system (CNS). In the majority of patients, the illness runs a relapsing remitting course (RRMS), culminating in a secondary progressive phase with gradual accumulation of fixed disabilities. Currently available disease-modifying therapies suppress CNS inflammation but have a limited effect on preventing disease progression for which there remains no effective therapy. Over the last two decades, there has been increasing evidence that AHSCT is a highly effective therapeutic strategy for treatment-resistant inflammatory types of MS, especially RRMS. Concerns about the safety of AHSCT in MS, usually a nonlife-threatening disease, have previously limited its use. However, AHSCT can now be delivered safely with major long-term benefits because of increasing transplant centre experience, judicious patient selection and good supportive care. SUMMARY MS is currently the fastest growing indication for AHSCT in Europe. Supportive care before, during and after the transplant period is key to the successful delivery of AHSCT.
Collapse
|
32
|
Is it time to use hematopoietic stem cell transplantation for severe and refractory crohn's disease? Hematol Transfus Cell Ther 2019; 42:190-191. [PMID: 31601485 PMCID: PMC7248492 DOI: 10.1016/j.htct.2019.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/23/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022] Open
|
33
|
Is There a Place for Hematopoietic Stem Cell Transplantation in Rheumatology? Rheum Dis Clin North Am 2019; 45:399-416. [DOI: 10.1016/j.rdc.2019.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Autologous Hematopoietic Cell Transplantation in Multiple Sclerosis: Changing Paradigms in the Era of Novel Agents. Stem Cells Int 2019; 2019:5840286. [PMID: 31341484 PMCID: PMC6612973 DOI: 10.1155/2019/5840286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 04/22/2019] [Accepted: 06/13/2019] [Indexed: 12/29/2022] Open
Abstract
Autologous hematopoietic stem cell transplantation (AHSCT) is established as a standard of care for diseases ranging from hematological malignancies to other neoplastic pathologies and severe immunological deficiencies. In April 1995, our group performed the first AHSCT in progressive multiple sclerosis (MS). Since then, a plethora of studies have been published with encouraging but controversial results. Major challenges in the field include appropriate patient selection, improvements in AHSCT procedure, and timing of this treatment modality. Beyond AHSCT, several new intravenous or oral agents have been developed and approved over the last 20 years in MS. The emergence of multiple effective therapies for MS has created a challenging scenario for both treating physicians and patients. Novel cell-based therapies other than AHSCT are also currently investigated in MS patients with promising results. Our review is aimed at summarizing state-of-the-art knowledge on basic principles and results of AHSCT in MS and its role compared to novel agents.
Collapse
|
35
|
General information for patients and carers considering haematopoietic stem cell transplantation (HSCT) for severe autoimmune diseases (ADs): A position statement from the EBMT Autoimmune Diseases Working Party (ADWP), the EBMT Nurses Group, the EBMT Patient, Family and Donor Committee and the Joint Accreditation Committee of ISCT and EBMT (JACIE). Bone Marrow Transplant 2019; 54:933-942. [PMID: 30705338 PMCID: PMC6760538 DOI: 10.1038/s41409-019-0430-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022]
Abstract
Over the last 20 years, haematopoietic stem cell transplantation (HSCT) has been used to treat patients with severe autoimmune and inflammatory diseases whose response to standard treatment options has been limited, resulting in a poor long-term prognosis in terms of survival or disability. The vast majority of patients have received autologous HSCT where an increasing evidence-base supports its use in a wide range of autoimmune diseases, particularly relapsing remitting MS, systemic sclerosis and Crohn’s disease. Compared with standard treatments for autoimmune diseases, HSCT is associated with greater short-term risks, including a risk of treatment-related mortality and long-term complications. There is a need for a careful appraisal of potential benefits and risks by disease and transplant specialists working closely together with patients and carers to determine individual suitability for HSCT. HSCT should be conducted in accredited transplant centres with robust arrangements for long-term follow-up with both disease and transplant specialists. The aim of this open-access position statement is to provide plainly worded guidance for patients and non-specialist clinicians considering HSCT for an autoimmune disease, especially when treatment abroad is being considered. Recent technical publications in the field have been referenced to support the statement and provide more detail for clinicians advising patients.
Collapse
|
36
|
Nicol E. The past, the present, and the future: reflecting on -medical history as we welcome new leaders. Clin Med (Lond) 2018; 18:273. [PMID: 30072547 PMCID: PMC6334050 DOI: 10.7861/clinmedicine.18-4-273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|