1
|
Savoldi IR, Ibelli AMG, Cantão ME, Peixoto JDO, Pires MP, Mores MAZ, Lagos EB, Lopes JS, Zanella R, Ledur MC. A joint analysis using exome and transcriptome data identifiescandidate polymorphisms and genes involved with umbilical hernia in pigs. BMC Genomics 2021; 22:818. [PMID: 34773987 PMCID: PMC8590244 DOI: 10.1186/s12864-021-08138-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/29/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Umbilical Hernia (UH) is characterized by the passage of part of the intestine through the umbilical canal forming the herniary sac. There are several potential causes that can lead to the umbilical hernia such as bacterial infections, management conditions and genetic factors. Since the genetic components involved with UH are poorly understood, this study aimed to identify polymorphisms and genes associated with the manifestation of umbilical hernia in pigs using exome and transcriptome sequencing in a case and control design. RESULTS In the exome sequencing, 119 variants located in 58 genes were identified differing between normal and UH-affected pigs, and in the umbilical ring transcriptome, 46 variants were identified, located in 27 genes. Comparing the two methodologies, we obtained 34 concordant variants between the exome and transcriptome analyses, which were located in 17 genes, distributed in 64 biological processes (BP). Among the BP involved with UH it is possible to highlight cell adhesion, cell junction regulation, embryonic morphogenesis, ion transport, muscle contraction, within others. CONCLUSIONS We have generated the first exome sequencing related to normal and umbilical hernia-affected pigs, which allowed us to identify several variants possibly involved with this disorder. Many of those variants present in the DNA were confirmed with the RNA-Seq results. The combination of both exome and transcriptome sequencing approaches allowed us to better understand the complex molecular mechanisms underlying UH in pigs and possibly in other mammals, including humans. Some variants found in genes and other regulatory regions are highlighted as strong candidates to the development of UH in pigs and should be further investigated.
Collapse
Affiliation(s)
- Igor Ricardo Savoldi
- Programa de Pós-Graduação em Zootecnia, Universidade do Estado de Santa Catarina, UDESC-Oeste, Chapecó, SC 89815-630 Brazil
| | - Adriana Mércia Guaratini Ibelli
- Embrapa Suínos e Aves, 321, Concórdia, SC 89715-899 Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, PR 85040-167 Brazil
| | | | - Jane de Oliveira Peixoto
- Embrapa Suínos e Aves, 321, Concórdia, SC 89715-899 Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, PR 85040-167 Brazil
| | - Michele Porto Pires
- Instituto Catarinense de Sanidade Agropecuária, Florianópolis, SC 88034001 Brazil
| | | | - Essamai Brizola Lagos
- Programa de Pós-Graduação em Zootecnia, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR Brazil 84030-900
| | | | - Ricardo Zanella
- Universidade de Passo Fundo, Passo Fundo, RS 99052-900 Brazil
- Programa de Mestrado em BioExperimentação, Universidade de Passo Fundo, Passo Fundo, RS 99052-900 Brazil
| | - Mônica Corrêa Ledur
- Programa de Pós-Graduação em Zootecnia, Universidade do Estado de Santa Catarina, UDESC-Oeste, Chapecó, SC 89815-630 Brazil
- Embrapa Suínos e Aves, 321, Concórdia, SC 89715-899 Brazil
| |
Collapse
|
2
|
Rodrigues AFG, Ibelli AMG, Peixoto JDO, Cantão ME, de Oliveira HC, Savoldi IR, Souza MR, Mores MAZ, Carreño LOD, Ledur MC. Genes and SNPs Involved with Scrotal and Umbilical Hernia in Pigs. Genes (Basel) 2021; 12:genes12020166. [PMID: 33513662 PMCID: PMC7912685 DOI: 10.3390/genes12020166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/27/2022] Open
Abstract
Hernia is one of the most common defects in pigs. The most prevalent are the scrotal (SH), inguinal (IH) and umbilical (UH) hernias. We compared the inguinal ring transcriptome of normal and SH-affected pigs with the umbilical ring transcriptome of normal and UH-affected pigs to discover genes and pathways involved with the development of both types of hernia. A total of 13,307 transcripts was expressed in the inguinal and 13,302 in the umbilical ring tissues with 94.91% of them present in both tissues. From those, 35 genes were differentially expressed in both groups, participating in 108 biological processes. A total of 67 polymorphisms was identified in the inguinal ring and 76 in the umbilical ring tissue, of which 11 and 14 were novel, respectively. A single nucleotide polymorphism (SNP) with deleterious function was identified in the integrin α M (ITGAM) gene. The microtubule associated protein 1 light chain 3 γ (MAP1LC3C), vitrin (VIT), aggrecan (ACAN), alkaline ceramidase 2 (ACER2), potassium calcium-activated channel subfamily M α 1 (KCNMA1) and synaptopodin 2 (SYNPO2) genes are highlighted as candidates to trigger both types of hernia. We generated the first comparative study of the pig umbilical and inguinal ring transcriptomes, contributing to the understanding of the genetic mechanism involved with these two types of hernia in pigs and probably in other mammals.
Collapse
Affiliation(s)
- Ariene Fernanda Grando Rodrigues
- Programa de Pós-Graduação em Zootecnia, Departamento de Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, 89815-630 Chapecó, Brazil; (A.F.G.R.); (I.R.S.); (M.R.S.)
| | - Adriana Mércia Guaratini Ibelli
- Embrapa Suínos e Aves, Distrito de Tamanduá, 89715-899 Concórdia, Brazil; (A.M.G.I.); (J.d.O.P.); (M.E.C.); (M.A.Z.M.)
- Programa de Pós-Graduação em Ciências Veterinárias, Departamento de Ciências Veterinárias, Universidade Estadual do Centro-Oeste, 85015-430 Guarapuava, Brazil
| | - Jane de Oliveira Peixoto
- Embrapa Suínos e Aves, Distrito de Tamanduá, 89715-899 Concórdia, Brazil; (A.M.G.I.); (J.d.O.P.); (M.E.C.); (M.A.Z.M.)
- Programa de Pós-Graduação em Ciências Veterinárias, Departamento de Ciências Veterinárias, Universidade Estadual do Centro-Oeste, 85015-430 Guarapuava, Brazil
| | - Maurício Egídio Cantão
- Embrapa Suínos e Aves, Distrito de Tamanduá, 89715-899 Concórdia, Brazil; (A.M.G.I.); (J.d.O.P.); (M.E.C.); (M.A.Z.M.)
| | | | - Igor Ricardo Savoldi
- Programa de Pós-Graduação em Zootecnia, Departamento de Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, 89815-630 Chapecó, Brazil; (A.F.G.R.); (I.R.S.); (M.R.S.)
| | - Mayla Regina Souza
- Programa de Pós-Graduação em Zootecnia, Departamento de Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, 89815-630 Chapecó, Brazil; (A.F.G.R.); (I.R.S.); (M.R.S.)
- Programa de Pós-Graduação em Zootecnia, Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, UFRGS, 91540-000 Porto Alegre, Brazil
| | - Marcos Antônio Zanella Mores
- Embrapa Suínos e Aves, Distrito de Tamanduá, 89715-899 Concórdia, Brazil; (A.M.G.I.); (J.d.O.P.); (M.E.C.); (M.A.Z.M.)
| | | | - Mônica Corrêa Ledur
- Programa de Pós-Graduação em Zootecnia, Departamento de Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, 89815-630 Chapecó, Brazil; (A.F.G.R.); (I.R.S.); (M.R.S.)
- Embrapa Suínos e Aves, Distrito de Tamanduá, 89715-899 Concórdia, Brazil; (A.M.G.I.); (J.d.O.P.); (M.E.C.); (M.A.Z.M.)
- Correspondence: or ; Tel.: +55-49-3441-0411
| |
Collapse
|
3
|
Gebhardt JT, Tokach MD, Dritz SS, DeRouchey JM, Woodworth JC, Goodband RD, Henry SC. Postweaning mortality in commercial swine production. I: review of non-infectious contributing factors. Transl Anim Sci 2020; 4:txaa068. [PMID: 32705063 PMCID: PMC7277695 DOI: 10.1093/tas/txaa068] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/15/2020] [Indexed: 12/26/2022] Open
Abstract
Postweaning mortality is a complex causal matrix involving animal, environment, and infectious etiologic factors. Despite advances in swine productivity such as total pigs born, growth rate, feed intake, and efficiency, there have been modest to no improvements in postweaning mortality rates over the last several years. Industry averages for postweaning mortality range from four to eight percent for each the nursery, grow-finish, or wean-finish stages. Retrospective mortality causal analyses of individual databases have been performed. However, little information derived from meta-analysis, systematic review, or comprehensive literature reviews are available. In order to develop and evaluate strategies to comprehensively manage and reduce postweaning mortality, addressing the complexity and range of impact that factors have on mortality is necessary to identify and prioritize such contributing factors. Our objective is to describe the current state of knowledge regarding non-infectious causes of postweaning mortality, focusing on estimates of frequency and magnitude of effect where available. Postweaning mortality can be generalized into non-infectious and infectious causes, with non-infectious factors further classified into anatomic abnormalities, toxicity, animal factors, facility factors, nutritional inadequacies, season, and management factors. Important non-infectious factors that have been identified through review of literature include birth weight, pre-weaning management, weaning age and weight, and season. Additionally, reasons for mortality with a low incidence but a high magnitude include abdominal organ torsion/volvulus, sodium ion or ionophore toxicosis, or dietary imbalance due to feed formulation or manufacture error. Many interactive effects are present between and among infectious and non-infectious factors, but an important trend is the impact that non-infectious factors have on the incidence, severity, and resolution of infectious disease. Strategies to reduce postweaning mortality must consider the dynamic, complex state that forms the causal web. Control of postweaning mortality through understanding of the complexity, evaluation of mortality reduction strategies through rigorous scientific evaluation, and implementation remains an area of opportunity for continued growth and development in the global swine industry.
Collapse
Affiliation(s)
- Jordan T Gebhardt
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Steve S Dritz
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | | |
Collapse
|
4
|
Souza MR, Ibelli AMG, Savoldi IR, Cantão ME, Peixoto JDO, Mores MAZ, Lopes JS, Coutinho LL, Ledur MC. Transcriptome analysis identifies genes involved with the development of umbilical hernias in pigs. PLoS One 2020; 15:e0232542. [PMID: 32379844 PMCID: PMC7205231 DOI: 10.1371/journal.pone.0232542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
Umbilical hernia (UH) is one of the most frequent defects affecting pig production, however, it also affects humans and other mammals. UH is characterized as an abnormal protrusion of the abdominal contents to the umbilical region, causing pain, discomfort and reduced performance in pigs. Some genomic regions associated to UH have already been identified, however, no study involving RNA sequencing was performed when umbilical tissue is considered. Therefore, here, we have sequenced the umbilical ring transcriptome of five normal and five UH-affected pigs to uncover genes and pathways involved with UH development. A total of 13,216 transcripts were expressed in the umbilical ring tissue. From those, 230 genes were differentially expressed (DE) between normal and UH-affected pigs (FDR <0.05), being 145 downregulated and 85 upregulated in the affected compared to the normal pigs. A total of 68 significant biological processes were identified and the most relevant were extracellular matrix, immune system, anatomical development, cell adhesion, membrane components, receptor activation, calcium binding and immune synapse. The results pointed out ACAN, MMPs, COLs, EPYC, VIT, CCBE1 and LGALS3 as strong candidates to trigger umbilical hernias in pigs since they act in the extracellular matrix remodeling and in the production, integrity and resistance of the collagen. We have generated the first transcriptome of the pig umbilical ring tissue, which allowed the identification of genes that had not yet been related to umbilical hernias in pigs. Nevertheless, further studies are needed to identify the causal mutations, SNPs and CNVs in these genes to improve our understanding of the mechanisms of gene regulation.
Collapse
Affiliation(s)
- Mayla Regina Souza
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste, Universidade do Estado de Santa Catarina, UDESC, Chapecó, Santa Catarina, Brazil
| | | | - Igor Ricardo Savoldi
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste, Universidade do Estado de Santa Catarina, UDESC, Chapecó, Santa Catarina, Brazil
| | | | | | | | | | - Luiz Lehmann Coutinho
- Laboratório de Biotecnologia Animal, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Mônica Corrêa Ledur
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste, Universidade do Estado de Santa Catarina, UDESC, Chapecó, Santa Catarina, Brazil
- Embrapa Suínos e Aves, Concórdia, Santa Catarina, Brazil
| |
Collapse
|
5
|
Genome-wide association study reveals a QTL and strong candidate genes for umbilical hernia in pigs on SSC14. BMC Genomics 2018; 19:412. [PMID: 29843603 PMCID: PMC5975507 DOI: 10.1186/s12864-018-4812-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 05/22/2018] [Indexed: 11/22/2022] Open
Abstract
Background Umbilical hernia is one of the most prevalent congenital defect in pigs, causing economic losses and substantial animal welfare problems. Identification and implementation of genomic regions controlling umbilical hernia in breeding is of great interest to reduce incidences of hernia in commercial pig production. The aim of this study was to identify such regions and possibly identify causative variation affecting umbilical hernia in pigs. A case/control material consisting of 739 Norwegian Landrace pigs was collected and applied in a GWAS study with a genome-wide distributed panel of 60 K SNPs. Additionally candidate genes were sequenced to detect additional polymorphisms that were used for single SNP and haplotype association analyses in 453 of the pigs. Results The GWAS in this report detected a highly significant region affecting umbilical hernia around 50 Mb on SSC14 (P < 0.0001) explaining up to 8.6% of the phenotypic variance of the trait. The region is rather broad and includes 62 significant SNPs in high linkage disequilibrium with each other. Targeted sequencing of candidate genes within the region revealed polymorphisms within the Leukemia inhibitory factor (LIF) and Oncostatin M (OSM) that were significantly associated with umbilical hernia (P < 0.001). Conclusions A highly significant QTL for umbilical hernia in Norwegian Landrace pigs was detected around 50 Mb on SSC14. Resequencing of candidate genes within the region revealed SNPs within LIF and OSM highly associated with the trait. However, because of extended LD within the region, studies in other populations and functional studies are needed to determine whether these variants are causal or not. Still without this knowledge, SNPs within the region can be used as genetic markers to reduce incidences of umbilical hernia in Norwegian Landrace pigs.
Collapse
|