1
|
Li T, Sakai Y, Ami Y, Suzaki Y, Isogawa M. Strain- and Subtype-Specific Replication of Genotype 3 Hepatitis E Viruses in Mongolian Gerbils. Viruses 2024; 16:1605. [PMID: 39459937 PMCID: PMC11512239 DOI: 10.3390/v16101605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Since Mongolian gerbils are broadly susceptible to hepatitis E virus (HEV), including genotypes 1, 4, 5, and 8 (HEV-1, HEV-5, HEV-5, and HEV-8) and rat HEV, they are a useful small animal model for HEV. However, we have observed that the subtypes HEV-3k and HEV-3ra in genotype 3 HEV (HEV-3) were not infected efficiently in the gerbils. A small-animal model for HEV-3 is also needed since HEV-3 is responsible for major zoonotic HEV infections. To investigate whether gerbils can be used as animal models for other subtypes of HEV-3, we injected gerbils with five HEV-3 subtypes (HEV-3b, -3e, -3f, -3k, and -3ra) and compared the infectivity of the subtypes. We detected viral RNA in the gerbils' feces. High titers of anti-HEV IgG antibodies in serum were induced in all HEV-3b/ch-, HEV-3f-, and HEV-3e-injected gerbils. Especially, the HEV-3e-injected animals released high levels of viruses into their feces for an extended period. The virus replication was limited in the HEV-3b/wb-injected and HEV-3k-injected groups. Although viral RNA was detected in HEV-3ra-injected gerbils, the copy numbers in fecal specimens were low; no antibodies were detected in the sera. These results indicate that although HEV-3's infectivity in gerbils depends on the subtype and strain, Mongolian gerbils have potential as a small-animal model for HEV-3. A further comparison of HEV-3e with different genotype strains (HEV-4i and HEV-5) and different genera (rat HEV) revealed different ALT elevations among the strains, and liver damage occurred in HEV-4i- and HEV-5-infected but not HEV-3e- or rat HEV-infected gerbils, demonstrating variable pathogenicity across HEVs from different genera and genotypes in Mongolian gerbils. HEV-4i- and HEV-5-infected Mongolian gerbils might be candidate animal models to examine HEV's pathogenicity.
Collapse
Affiliation(s)
- Tiancheng Li
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan;
| | - Yusuke Sakai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 208-0011, Japan;
| | - Yasushi Ami
- Division of Experimental Animals Research, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (Y.A.); (Y.S.)
| | - Yuriko Suzaki
- Division of Experimental Animals Research, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (Y.A.); (Y.S.)
| | - Masanori Isogawa
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan;
| |
Collapse
|
2
|
Bai H, Ami Y, Suzaki Y, Doan YH, Muramatsu M, Li TC. Open Reading Frame 4 Is Not Essential in the Replication and Infection of Genotype 1 Hepatitis E Virus. Viruses 2023; 15:v15030784. [PMID: 36992492 PMCID: PMC10052008 DOI: 10.3390/v15030784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
Genotype 1 hepatitis E virus (HEV-1), unlike other genotypes of HEV, has a unique small open reading frame known as ORF4 whose function is not yet known. ORF4 is located in an out-framed manner in the middle of ORF1, which encodes putative 90 to 158 amino acids depending on the strains. To explore the role of ORF4 in HEV-1 replication and infection, we cloned the complete genome of wild-type HEV-1 downstream of a T7 RNA polymerase promoter, and the following ORF4 mutant constructs were prepared: the first construct had TTG instead of the initiation codon ATG (A2836T), introducing an M→L mutation in ORF4 and a D→V mutation in ORF1. The second construct had ACG instead of the ATG codon (T2837C), introducing an M→T mutation in ORF4. The third construct had ACG instead of the second in-frame ATG codon (T2885C), introducing an M→T mutation in ORF4. The fourth construct contained two mutations (T2837C and T2885C) accompanying two M→T mutations in ORF4. For the latter three constructs, the accompanied mutations introduced in ORF1 were all synonymous changes. The capped entire genomic RNAs were generated by in vitro transcription and used to transfect PLC/PRF/5 cells. Three mRNAs containing synonymous mutations in ORF1, i.e., T2837CRNA, T2885CRNA, and T2837C/T2885CRNA, replicated normally in PLC/PRF/5 cells and generated infectious viruses that successfully infected Mongolian gerbils as the wild-type HEV-1 did. In contrast, the mutant RNA, i.e., A2836TRNA, accompanying an amino acid change (D937V) in ORF1 generated infectious viruses upon transfection, but they replicated slower than the wild-type HEV-1 and failed to infect Mongolian gerbils. No putative viral protein(s) derived from ORF4 were detected in the wild-type HEV-1- as well as the mutant virus-infected PLC/PRF/5 cells by Western blot analysis using a high-titer anti-HEV-1 IgG antibody. These results demonstrated that the ORF4-defective HEV-1s had the ability to replicate in the cultured cells, and that these defective viruses had the ability to infect Mongolian gerbils unless the overlapping ORF1 was accompanied by non-synonymous mutation(s), confirming that ORF4 is not essential in the replication and infection of HEV-1.
Collapse
Affiliation(s)
- Huimin Bai
- Department of Basic Medicine and Forensic Medicine, Baotou Medical College, Baotou 014060, China
| | - Yasushi Ami
- Division of Experimental Animals Research, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Yuriko Suzaki
- Division of Experimental Animals Research, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Yen Hai Doan
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Tian-Cheng Li
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| |
Collapse
|
3
|
Mongolia Gerbils Are Broadly Susceptible to Hepatitis E Virus. Viruses 2022; 14:v14061125. [PMID: 35746596 PMCID: PMC9229706 DOI: 10.3390/v14061125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/12/2022] Open
Abstract
Although cell culture systems for hepatitis E virus (HEV) have been established by using cell lines such as PLC/PRF/5 and A549, small-animal models for this virus are limited. Since Mongolia gerbils are susceptible to genotype 1, 3 and 4 HEV (HEV-1, HEV-3 and HEV4), we intraperitoneally inoculated Mongolia gerbils with HEV-5, HEV-7, HEV-8, rabbit HEV or rat HEV in addition to the above three genotypes to investigate the infectivity and to assess whether Mongolia gerbil is an appropriate animal model for HEV infection. The results indicated that (i) HEV-5 and rat HEV were effectively replicated in the Mongolia gerbils in the same manner as HEV-4: large amounts of the viral RNA were detected in the feces and livers, and high titers of the serum anti-HEV IgG antibodies were induced in all animals. The feces were shown to contain HEV that is infectious to naïve gerbils. Furthermore, HEV-4, HEV-5 and rat HEV were successfully transmitted to the gerbils by oral inoculation. (ii) Although the viral RNA and serum anti-HEV IgG antibodies were detected in all animals inoculated with HEV-1 and HEV-8, both titers were low. The viral RNA was detected in the feces collected from two of three HEV-3-inoculated, and one of three HEV-7-inoculated gerbils, but the titers were low. The serum antibody titers were also low. The viruses excreted into the feces of HEV-1-, HEV-3-, HEV-7- and HEV-8-inoculated gerbils failed to infect naïve Mongolia gerbils. (iii) No infection sign was observed in the rabbit HEV-inoculated gerbils. These results demonstrated that Mongolia gerbils are broadly susceptible to HEV, and their degree of sensitivity was dependent on the genotype. Mongolia gerbils were observed to be susceptible to not only HEVs belonging to HEV-A but also to rat HEV belonging to HEV-C1, and thus Mongolia gerbil could be useful as a small-animal model for cross-protection experiments between HEV-A and HEV-C1. Mongolia gerbils may also be useful for the evaluation of the efficacy of vaccines against HEV.
Collapse
|
4
|
Experimental Cross-Species Transmission of Rat Hepatitis E Virus to Rhesus and Cynomolgus Monkeys. Viruses 2022; 14:v14020293. [PMID: 35215886 PMCID: PMC8880335 DOI: 10.3390/v14020293] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 11/24/2022] Open
Abstract
Rat hepatitis E virus (rat HEV) was first identified in wild rats and was classified as the species Orthohepevirus C in the genera Orthohepevirus, which is genetically different from the genotypes HEV-1 to HEV-8, which are classified as the species Orthohepevirus A. Although recent reports suggest that rat HEV transmits to humans and causes hepatitis, the infectivity of rat HEV to non-human primates such as cynomolgus and rhesus monkeys remains controversial. To investigate whether rat HEV infects non-human primates, we inoculated one cynomolgus monkey and five rhesus monkeys with a V-105 strain of rat HEV via an intravenous injection. Although no significant elevation of alanine aminotransferase (ALT) was observed, rat HEV RNA was detected in fecal specimens, and seroconversion was observed in all six monkeys. The partial nucleotide sequences of the rat HEV recovered from the rat HEV-infected monkeys were identical to those of the V-105 strain, indicating that the infection was caused by the rat HEV. The rat HEV recovered from the cynomolgus and rhesus monkeys successfully infected both nude and Sprague-Dawley rats. The entire rat HEV genome recovered from nude rats was identical to that of the V-105 strain, suggesting that the rat HEV replicates in monkeys and infectious viruses were released into the fecal specimens. These results demonstrated that cynomolgus and rhesus monkeys are susceptible to rat HEV, and they indicate the possibility of a zoonotic infection of rat HEV. Cynomolgus and rhesus monkeys might be useful as animal models for vaccine development.
Collapse
|
5
|
MENDOZA MV, YONEMITSU K, ISHIJIMA K, KURODA Y, TATEMOTO K, INOUE Y, SHIMODA H, KUWATA R, TAKANO A, SUZUKI K, MAEDA K. Nationwide survey of hepatitis E virus infection among wildlife in Japan. J Vet Med Sci 2022; 84:992-1000. [PMID: 35675975 PMCID: PMC9353082 DOI: 10.1292/jvms.22-0237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
In Japan, hepatitis E virus (HEV) causes hepatitis in humans through the consumption of raw or undercooked meat, including game meat. In the present study, nationwide surveillance of HEV
infection among a total of 5,557 wild animals, including 15 species, was conducted in Japan. The prevalence of anti-HEV antibodies in wild boar was 12.4%, with higher positive rates in big
boars (over 50 kg, 18.4%) than in small individuals (less than 30 kg, 5.3%). Furthermore, HEV RNA was more frequently detected in piglets than in older boars. Interestingly, the detection of
HEV among wildlife by ELISA and RT-PCR suggested that HEV infection in Sika deer was a very rare event, and that there was no HEV infection among wild animals except for wild boar, Sika deer
and Japanese monkeys. In conclusion, wild boar, especially piglets, are at high risk of HEV infection, while other wild animals showed less risk or no risk of HEV transmission.
Collapse
Affiliation(s)
| | - Kenzo YONEMITSU
- Department of Veterinary Science, National Institute of Infectious Diseases
| | - Keita ISHIJIMA
- Department of Veterinary Science, National Institute of Infectious Diseases
| | - Yudai KURODA
- Department of Veterinary Science, National Institute of Infectious Diseases
| | - Kango TATEMOTO
- Joint Faculty of Veterinary Medicine, Yamaguchi University
| | - Yusuke INOUE
- Joint Faculty of Veterinary Medicine, Yamaguchi University
| | | | - Ryusei KUWATA
- Faculty of Veterinary Medicine, Okayama University of Science
| | - Ai TAKANO
- Joint Faculty of Veterinary Medicine, Yamaguchi University
| | | | - Ken MAEDA
- Joint Faculty of Veterinary Medicine, Yamaguchi University
| |
Collapse
|
6
|
Zhang W, Ami Y, Suzaki Y, Kataoka M, Takeda N, Muramatsu M, Li T. A Cross-Species Transmission of a Camel-Derived Genotype 8 Hepatitis E Virus to Rabbits. Pathogens 2021; 10:pathogens10111374. [PMID: 34832530 PMCID: PMC8618709 DOI: 10.3390/pathogens10111374] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 12/27/2022] Open
Abstract
Novel genotypes of hepatitis E virus (HEV), i.e., HEV-5, HEV-7, and HEV-8, have been identified in wild boar, dromedary camels, and Bactrian camels, respectively, and they transmit to cynomolgus monkeys in a trans-species manner, raising the potential for zoonotic infection. Rabbits are the natural reservoir for rabbit HEV, but they are also susceptible to HEV-3 and HEV-4. It has been unknown whether rabbits are susceptible to HEV-5, HEV-7, and HEV-8. To investigate the infectivity of novel HEVs in rabbits and to assess whether rabbits are appropriate animal models for these HEVs, we inoculated Japanese white rabbits with HEV-5, HEV-7, and HEV-8, respectively. We observed that viral RNA was present in the fecal specimens of the HEV-8-inoculated rabbits and anti-HEV IgG antibodies were present in its sera, although anti-HEV IgM was undetectable and no significant elevation of ALT was observed. These results indicated that HEV-8 crossed species and infected the rabbits. No evidence for replication was observed in HEV-5 and HEV-7, suggesting that rabbits are not susceptible to these genotypes. The antibodies elicited in the HEV-8-infected rabbits did not protect them from the rabbit HEV challenge, suggesting that the antigenicity differs between HEV-8 and rabbit HEV. Antigenic analyses demonstrated that anti-HEV-8 antibodies reacted more strongly with homologous HEV-8 virus-like particles (VLPs) compared to heterologous rabbit HEV VLPs, but anti-rabbit HEV antibody had similar reactivity to the VLPs of rabbit HEV and HEV-8, suggesting that HEV-8 lacks some epitope(s) that exist in rabbit HEV and induced the neutralizing antibodies against rabbit HEV.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (W.Z.); (M.M.)
| | - Yasushi Ami
- Division of Experimental Animals Research, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (Y.A.); (Y.S.)
| | - Yuriko Suzaki
- Division of Experimental Animals Research, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (Y.A.); (Y.S.)
| | - Michiyo Kataoka
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 208-0011, Japan;
| | - Naokazu Takeda
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0781, Japan;
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (W.Z.); (M.M.)
| | - Tiancheng Li
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (W.Z.); (M.M.)
- Correspondence: ; Tel.: +81-42-561-0771; Fax: +81-42-565-4729
| |
Collapse
|
7
|
Advances in Hepatitis E Virus Biology and Pathogenesis. Viruses 2021; 13:v13020267. [PMID: 33572257 PMCID: PMC7915517 DOI: 10.3390/v13020267] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) is one of the causative agents for liver inflammation across the world. HEV is a positive-sense single-stranded RNA virus. Human HEV strains mainly belong to four major genotypes in the genus Orthohepevirus A, family Hepeviridae. Among the four genotypes, genotype 1 and 2 are obligate human pathogens, and genotype 3 and 4 cause zoonotic infections. HEV infection with genotype 1 and 2 mainly presents as acute and self-limiting hepatitis in young adults. However, HEV infection of pregnant women with genotype 1 strains can be exacerbated to fulminant hepatitis, resulting in a high rate of case fatality. As pregnant women maintain the balance of maternal-fetal tolerance and effective immunity against invading pathogens, HEV infection with genotype 1 might dysregulate the balance and cause the adverse outcome. Furthermore, HEV infection with genotype 3 can be chronic in immunocompromised patients, with rapid progression, which has been a challenge since it was reported years ago. The virus has a complex interaction with the host cells in downregulating antiviral factors and recruiting elements to generate a conducive environment of replication. The virus-cell interactions at an early stage might determine the consequence of the infection. In this review, advances in HEV virology, viral life cycle, viral interference with the immune response, and the pathogenesis in pregnant women are discussed, and perspectives on these aspects are presented.
Collapse
|
8
|
Guo Y, Yang F, Xu X, Feng M, Liao Y, He Z, Takeda N, Muramatsu M, Li Q, Li TC. Immunization of human hepatitis E viruses conferred protection against challenge by a camel hepatitis E virus. Vaccine 2020; 38:7316-7322. [PMID: 32980200 DOI: 10.1016/j.vaccine.2020.09.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/04/2020] [Accepted: 09/13/2020] [Indexed: 12/27/2022]
Abstract
Dromedary camel hepatitis E virus is a novel HEV that belongs to the family Hepeviridae, and is classified as genotype 7 HEV (HEV-7). Since HEV-7 is transmitted from camels to humans and causes acute hepatitis E, this virus is a non-negligible pathogen for zoonosis, and a vaccine against HEV-7 infection is urgently needed. Here, we first intravenously inoculated HEV-7 to rhesus monkeys to explore the susceptibility, and we established an animal model. We then used virus-like particles (VLPs) of HEV-1 (HEV-1 VLPs) and HEV-3 (HEV-3 VLPs), a candidate hepatitis E vaccine, to intramuscularly inoculate rhesus monkeys. The monkeys elicited IgG antibody titers as high as >1:102,400 against heterologous HEV-7 without any adjuvants. The HEV-1 VLPs and HEV-3 VLPs-immunized monkeys were challenged intravenously with HEV-7, and they were protected completely from the infection, demonstrating that these VLPs could be a usable vaccine against HEV-7 infection. We also observed that HEV-7-infected rhesus monkeys did not show any liver damage during these experiments. Further efforts are necessary to establish an animal model for investigation of the pathogenesis of hepatitis E caused by HEV-7 infection.
Collapse
Affiliation(s)
- Yingqiu Guo
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan Province 650118, China
| | - Fengmei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan Province 650118, China
| | - Xingli Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan Province 650118, China
| | - Min Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan Province 650118, China
| | - Yun Liao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan Province 650118, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan Province 650118, China
| | - Naokazu Takeda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0781, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo 208-0011, Japan
| | - Qihan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan Province 650118, China.
| | - Tian-Cheng Li
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo 208-0011, Japan.
| |
Collapse
|
9
|
Zhang W, Kataoka M, Doan HY, Ami Y, Suzaki Y, Takeda N, Muramatsu M, Li TC. Characterization of a Novel Simian Sapelovirus Isolated from a Cynomolgus Monkey using PLC/PRF/5 Cells. Sci Rep 2019; 9:20221. [PMID: 31882888 PMCID: PMC6934677 DOI: 10.1038/s41598-019-56725-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/16/2019] [Indexed: 01/27/2023] Open
Abstract
We isolated a novel simian sapelovirus (SSV), Cam13, from fecal specimen of a cynomolgus monkey by using PLC/PRF/5 cells. The SSV infection of the cells induced an extensive cytopathic effect. Two types of virus particles with identical diameter (~32 nm) but different densities (1.348 g/cm3 and 1.295 g/cm3) were observed in the cell culture supernatants. The RNA genome of Cam13 possesses 8,155 nucleotides and a poly(A) tail, and it has a typical sapelovirus genome organization consisting of a 5’ terminal untranslated region, a large open reading frame (ORF), and a 3’ terminal untranslated region. The ORF encodes a single polyprotein that is subsequently processed into a leader protein (L), four structural proteins (VP1, VP2, VP3, and VP4) and seven functional proteins (2A, 2B, 2C, 3A, 3B, 3C, and 3D). We confirmed that 293 T, HepG2/C3A, Hep2C, Huh7 and primary cynomolgus monkey kidney cells were susceptible to SSV infection. In contrast, PK-15, Vero, Vero E6, RD-A, A549, and primary green monkey kidney cells were not susceptible to SSV infection. We established an ELISA for the detection of IgG antibodies against SSV by using the virus particles as the antigen. A total of 327 serum samples from cynomolgus monkeys and 61 serum samples from Japanese monkeys were examined, and the positive rates were 88.4% and 18%, respectively. These results demonstrated that SSV infection occurred frequently in the monkeys. Since Cam13 shared 76.54%–79.52% nucleotide sequence identities with other known SSVs, and constellated in a separate lineage in the phylogeny based on the entire genome sequence, we propose that Cam13 is a new genotype of the simian sapelovirus species.
Collapse
Affiliation(s)
- Wenjing Zhang
- Blood Center of Shandong Province, East Shanshi Road 22, Jinan, Shandong, 250014, China.,Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Michiyo Kataoka
- Department of Pathology, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Hai Yen Doan
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Yasushi Ami
- Division of Experimental Animals Research, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Yuriko Suzaki
- Division of Experimental Animals Research, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Naokazu Takeda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0781, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Tian-Cheng Li
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo, 208-0011, Japan.
| |
Collapse
|