1
|
Wint WY, Miyanohara M, Yamada H, Nakatsuka T, Okamoto M, Ryo K, Tanaka T, Hanada N, Murata T. Rapid multiplex real-time PCR assay using a portable device for the detection of oral pathogens. Diagn Microbiol Infect Dis 2024; 109:116214. [PMID: 38402755 DOI: 10.1016/j.diagmicrobio.2024.116214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
Colonization by several oral pathogens and the onset of oral diseases, such as dental caries and periodontal diseases, are closely related. Therefore, the analysis of pathogens in oral specimens would be helpful for the risk assessment of oral diseases. We developed a rapid multiplex real-time polymerase chain reaction (PCR) method using a portable device and newly designed probe/primer sets to detect the oral pathogens Streptococcus mutans, Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia. The theoretical minimum detectable cell numbers of S. mutans, P. gingivalis, T. denticola, and T. forsythia were 1, 1, 4, and 3, respectively. The multiplex real-time PCR system simultaneously detected the colonization of S. mutans and P. gingivalis in human saliva. These results suggest that the multiplex real-time PCR system may be useful for the risk assessment of oral diseases.
Collapse
Affiliation(s)
- Wit Yee Wint
- Department of Oral Health Science, Tsurumi University School of Dental Medicine, Tsurumi, 230-8501 Yokohama, Japan
| | - Mayu Miyanohara
- Department of Oral Health Science, Tsurumi University School of Dental Medicine, Tsurumi, 230-8501 Yokohama, Japan
| | - Hidenori Yamada
- Department of Oral Health Science, Tsurumi University School of Dental Medicine, Tsurumi, 230-8501 Yokohama, Japan
| | - Takako Nakatsuka
- Department of Oral Health Science, Tsurumi University School of Dental Medicine, Tsurumi, 230-8501 Yokohama, Japan
| | - Masaaki Okamoto
- Department of Oral Health Science, Tsurumi University School of Dental Medicine, Tsurumi, 230-8501 Yokohama, Japan
| | - Koufuchi Ryo
- Department of Oral Health Science, Tsurumi University School of Dental Medicine, Tsurumi, 230-8501 Yokohama, Japan
| | - Tomoko Tanaka
- Department of Oral Health, School of Life Dentistry at Tokyo, Nippon Dental University, Fujimi, Chiyoda-ku, Tokyo, 102-8159 Japan
| | - Nobuhiro Hanada
- Department of Oral Health Science, Tsurumi University School of Dental Medicine, Tsurumi, 230-8501 Yokohama, Japan
| | - Takatoshi Murata
- Department of Oral Health Science, Tsurumi University School of Dental Medicine, Tsurumi, 230-8501 Yokohama, Japan.
| |
Collapse
|
2
|
Kitamura K, Ueno MK, Yoshida H. Rapid and sensitive on-site detection of SARS-CoV-2 RNA from environmental surfaces using portable laboratory devices. Microbiol Spectr 2023; 11:e0045623. [PMID: 37791760 PMCID: PMC10715158 DOI: 10.1128/spectrum.00456-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/15/2023] [Indexed: 10/05/2023] Open
Abstract
IMPORTANCE This study presents the development of a highly sensitive on-site method for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA on various surfaces, including doorknobs and tables. Identifying SARS-CoV-2 RNA on these surfaces can be crucial in guiding decision-making for implementing non-pharmaceutical interventions, such as zoning strategies, improving ventilation, maintaining physical distancing, and promoting increased hand hygiene practices. Moreover, the on-site detection system can facilitate the swift initiation of mitigation responses in non-laboratory settings, including long-term care facilities and schools. The protocols established in this study offer a comprehensive approach for achieving both sensitivity and rapidity in on-site SARS-CoV-2 RNA detection. Furthermore, since the RT-qPCR assay serves as the gold standard for detecting viral RNAs, the developed protocol holds potential for application to other viruses, including enteroviruses and noroviruses.
Collapse
Affiliation(s)
- Kouichi Kitamura
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| | - Minami Kikuchi Ueno
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| | - Hiromu Yoshida
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| |
Collapse
|
3
|
Luu B, McCoy-Hass V, Kadiu T, Ngo V, Kadiu S, Lien J. Severe Acute Respiratory Syndrome Associated Infections. PHYSICIAN ASSISTANT CLINICS 2023; 8:495-530. [PMID: 37197227 PMCID: PMC10015106 DOI: 10.1016/j.cpha.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Viral infections are some of the most common sources of respiratory illness in pediatric and adult populations worldwide. Influenza and coronaviruses are viral pathogens that could lead to severe respiratory illness and death. More recently, respiratory illness from coronaviruses, accounts for more than 1 million deaths in the United States alone. This article will explore the epidemiology, pathogenesis, diagnosis, treatment, and prevention of severe acute respiratory syndrome caused by coronavirus-2, and Middle Eastern respiratory syndrome.
Collapse
Affiliation(s)
- Brent Luu
- UC Davis Betty Irene Moore School of Nursing, 2450 48th Street, Sacramento, CA 95817, USA
| | - Virginia McCoy-Hass
- UC Davis Betty Irene Moore School of Nursing, 2450 48th Street, Sacramento, CA 95817, USA
| | - Teuta Kadiu
- UC Davis Betty Irene Moore School of Nursing, 2450 48th Street, Sacramento, CA 95817, USA
| | - Victoria Ngo
- UC Davis Betty Irene Moore School of Nursing, 2450 48th Street, Sacramento, CA 95817, USA
| | - Sara Kadiu
- Partners Pharmacy, 181 Cedar Hill Road Suite 1610, Marlborough, MA 01752, USA
| | - Jeffrey Lien
- Walgreens, 227 Shoreline Highway, Mill Valley, CA 94941, USA
| |
Collapse
|
4
|
Matsui Y, Chottikamporn J, Ungvanijban S, Seeyo KB, Vitoonpong R, Suwankitwat N, Songkasupa T, Norimine J, Yamada K, Chintapitaksakul L, Misawa N. Development of a Real-Time RT-PCR System Applicable for Rapid and Pen-Side Diagnosis of Foot-and-Mouth Disease Using a Portable Device, PicoGene® PCR1100. J Virol Methods 2023:114753. [PMID: 37209781 DOI: 10.1016/j.jviromet.2023.114753] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral vesicular disease, causing devastating losses to the livestock industry. A diagnostic method that enables quick decisions is required to control the disease, especially in FMD-free countries. Although conventional real-time reverse transcription polymerase chain reaction (RT-PCR) is a highly sensitive method widely used for the diagnosis of FMD, a time lag caused by the transport of samples to a laboratory may allow the spread of FMD. Here, we evaluated a real-time RT-PCR system using a portable PicoGene PCR1100 device for FMD diagnosis. This system could detect the synthetic FMD viral RNA within 20min with high sensitivity compared with a conventional real-time RT-PCR. Furthermore, the Lysis Buffer S for crude nucleic extraction improved the viral RNA detection of this system in a homogenate of vesicular epithelium samples collected from FMD virus-infected animals. Furthermore, this system could detect the viral RNA in crude extracts prepared using the Lysis Buffer S from the vesicular epithelium samples homogenized using a Finger Masher tube, which allows easy homogenization without any equipment, with a high correlation compared to the standard method. Thus, the PicoGene device system can be utilized for the rapid and pen-side diagnosis of FMD. (199 words).
Collapse
Affiliation(s)
- Yuto Matsui
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki City, Miyazaki 889-2192, Japan
| | - Jeeranant Chottikamporn
- Department of Livestock Development, Regional Reference Laboratory for Foot and Mouth Disease in the South East Asia, Pakchong, 30130, Thailand
| | - Sahawatchara Ungvanijban
- Department of Livestock Development, Regional Reference Laboratory for Foot and Mouth Disease in the South East Asia, Pakchong, 30130, Thailand
| | - Kingkarn Boonsuya Seeyo
- Department of Livestock Development, Regional Reference Laboratory for Foot and Mouth Disease in the South East Asia, Pakchong, 30130, Thailand
| | - Ratchaneekorn Vitoonpong
- Virology Section, Department of Livestock Development, National Institute of Animal Health, Bangkok 10400, Thailand
| | - Nutthakarn Suwankitwat
- Virology Section, Department of Livestock Development, National Institute of Animal Health, Bangkok 10400, Thailand
| | - Tapanut Songkasupa
- Virology Section, Department of Livestock Development, National Institute of Animal Health, Bangkok 10400, Thailand
| | - Junzo Norimine
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki City, Miyazaki 889-2192, Japan; Laboratory of Animal Infectious Disease and Prevention Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki City, Miyazaki 889-2192, Japan
| | - Kentaro Yamada
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki City, Miyazaki 889-2192, Japan; Laboratory of Veterinary Public Health, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki City, Miyazaki 889-2192, Japan
| | - Lerdchai Chintapitaksakul
- Bureau of Quality Control of Livestock Products, Bang Kadi, Mueang Pathum Thani District, Pathum Thani 12000, Thailand
| | - Naoaki Misawa
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki City, Miyazaki 889-2192, Japan; Laboratory of Veterinary Public Health, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki City, Miyazaki 889-2192, Japan.
| |
Collapse
|
5
|
Evaluation of a real-time mobile PCR device (PCR 1100) for the detection of the rabies gene in field samples. Trop Med Health 2023; 51:17. [PMID: 36932428 PMCID: PMC10020757 DOI: 10.1186/s41182-023-00501-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/23/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND The Philippines is ranked among the top countries with 200-300 annual deaths due to rabies. Most human rabies cases have been reported in remote areas, where dog surveillance is inadequate. Therefore, a strategy to effectively improve surveillance in remote areas will increase the number of detections. Detecting pathogens using portable real-time reverse transcription-polymerase chain reaction (RT-PCR) has the potential to be accepted in these areas. Thus, we aimed to develop an assay to detect the rabies virus (RABV) genome by combining the robust primer system LN34 with the PicoGene PCR1100 portable rapid instrument targeting RABV RNA (PCR1100 assay). METHODS Procedures were optimised using an LN34 primer/probe set, KAPA3G Plant PCR Kit (KAPA Biosystems), FastGene Scriptase II (NIPPON Genetics), and an artificial positive control RNA. RESULTS Positive control RNA showed an analytical limit of detection of 10 copies/µL without false positivity, generating results in approximately 32 min. Compared to dFAT or RT-qPCR using field samples, the sensitivity and specificity of the PCR1100 assay were 100%, and even lower copy numbers (approximately 10 copies/µL) were detected. CONCLUSIONS This study demonstrated that the developed assay can detect rabies RNA in field samples. Because dog-mediated rabies is endemic in remote areas, the rapidity, mobility, and practicality of the PCR1100 assay as well as the high sensitivity of the LN34 system make it an ideal tool for the confirmation of rabies in these areas.
Collapse
|
6
|
Lin S, Song X, Zhu K, Shao Q, Chen Y, Cheng W, Lei Z, Chen Y, Luo Y, Jin D. Performance Evaluation of a Novel Ultrafast Molecular Diagnostic Device Integrated With Microfluidic Chips and Dual Temperature Modules. Front Bioeng Biotechnol 2022; 10:895236. [PMID: 35662850 PMCID: PMC9162139 DOI: 10.3389/fbioe.2022.895236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Ultrafast, portable, and inexpensive molecular diagnostic platforms are critical for clinical diagnosis and on-site detection. There are currently no available real-time polymerase chain reaction (PCR) devices able to meet the demands of point-of-care testing, as the heating and cooling processes cannot be avoided. In this study, the dual temperature modules were first designed to process microfluidic chips automatically circulating between them. Thus, a novel ultrafast molecular diagnostic real-time PCR device (approximately 18 and 23 min for DNA and RNA detection, respectively) with two channels (FAM and Cy5) for the detection of 12 targets was developed. The device contained three core functional components, including temperature control, optics, and motion, which were integrated into a portable compact box. The temperature modules accurately control temperature in rapid thermal cycles with less than ±0.1 °C, ±1 °C and ±0.5 °C for the temperature fluctuation, uniformity, and error of indication, respectively. The average coefficient of variation (CV) of the fluorescence intensity (FI) for all 12 wells was 2.3% for FAM and 2.7% for Cy5. There was a good linear relationship between the concentrations of fluorescent dye and the FIs of FAM and Cy5(R2 = 0.9990 and 0.9937), and the average CVs of the Ct values calculated by the embedded software were 1.4% for FAM and Cy5, respectively. The 100 double-blind mocked sputum and 249 clinical stool samples were analyzed by the ultrafast real-time PCR device in comparison with the DAAN Gene SARS-CoV-2 kit run on the ABI 7500 instrument and Xpert C. difficile/Epi, respectively. Among the 249 stool samples, the ultrafast real-time PCR device detected toxigenic C. difficile in 54 samples (54/249, 21.7%) with a specificity and positive predictive values of 99.0 and 96.3%, which were higher than the Xpert C. difficile/Epi values of 94.4 and 88.1% (p > 0.05). The ultrafast real-time PCR device detected 15 SARS-CoV-2 positive samples, which has a 100% concordance with that obtained by the DAAN Gene SARS-CoV-2 kit. This study demonstrated that the ultrafast real-time PCR device integrated with microfluidic chips and dual temperature modules is an ultrafast, reliable, easy-to-use, and cost-effective molecular diagnostic platform for clinical diagnosis and on-site testing, especially in resource-limited settings.
Collapse
Affiliation(s)
- Shan Lin
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
| | - Xiaojun Song
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Kun Zhu
- Hangzhou Biochip for Diagnosis Technology Co., Ltd., Hangzhou, China
| | - Quanyu Shao
- Hangzhou Biochip for Diagnosis Technology Co., Ltd., Hangzhou, China
| | - Yinhang Chen
- Hangzhou Biochip for Diagnosis Technology Co., Ltd., Hangzhou, China
| | - Wei Cheng
- Hangzhou Biochip for Diagnosis Technology Co., Ltd., Hangzhou, China
| | - Zhijing Lei
- Hangzhou Biochip for Diagnosis Technology Co., Ltd., Hangzhou, China
| | - Yu Chen
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
| | - Yun Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Yun Luo, ; Dazhi Jin,
| | - Dazhi Jin
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Yun Luo, ; Dazhi Jin,
| |
Collapse
|
7
|
Zhao X, Wan Q, Zhang J, Duan Y, Li Y, Ma J, Shi C, Ma C. Single-tube analysis for ultra-fast and visual detection of Salmonella. Anal Bioanal Chem 2022; 414:2333-2341. [PMID: 35079852 PMCID: PMC8788404 DOI: 10.1007/s00216-022-03904-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 11/24/2022]
Abstract
Herein, we developed an ultra-fast and visual single-tube nucleic acid detection approach, which combined the advantages of self-settling characteristics of chitosan-functionalized diatomaceous earth (CDE) and accelerated PCR (AC-PCR). DNA was rapidly extracted by CDE within 3 min for the next nucleic acid amplification based on the nucleic acid attached on the chitosan in pH = 5.0. Under the action of gravity, the DNA-enriched CDE self-sediments to the bottom of the tube could be directly used for AC-PCR to achieve single-tube extraction and amplification. Our method detected Salmonella culture fluids with a detection limit of 1 CFU/mL, which was 100-fold more sensitive than conventional method that have not undergone nucleic acid enrichment. Furthermore, it also displayed high specificity and sensitivity for a variety of spiked samples. The entire process could be completed within 17 min in a single tube, and in particular, the result was visualized by the naked eyes. Overall, it is an all-in-one detection strategy without the requirement of redundant procedure, which greatly improved the detection efficiency, and saved the time and the cost. With these advantages, the approach will supply a promising tool in the field of point-of-care testing for Salmonella and other foodborne pathogens.
Collapse
Affiliation(s)
- Xiaoli Zhao
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| | - Qianyi Wan
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| | - Jian Zhang
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| | - Yake Duan
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| | - Yong Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| | - Jingrong Ma
- Department of Gastroenterology, Ordos Central Hospital, Kangbashi, China
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, and Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China.
| |
Collapse
|
8
|
Hasan N, Bao Y, Chiong R. A multi-method analytical approach to predicting young adults' intention to invest in mHealth during the COVID-19 pandemic. TELEMATICS AND INFORMATICS 2022; 68:101765. [PMID: 34955594 PMCID: PMC8693780 DOI: 10.1016/j.tele.2021.101765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 01/05/2023]
Abstract
Mobile-based health (mHealth) systems are proving to be a popular alternative to the traditional visits to healthcare providers. They can also be useful and effective in fighting the spread of infectious diseases, such as the COVID-19 pandemic. Even though young adults are the most prevalent mHealth user group, the relevant literature has overlooked their intention to invest in and use mHealth services. This study aims to investigate the predictors that influence young adults' intention to invest in mHealth (IINmH), particularly during the COVID-19 crisis, by designing a research methodology that incorporates both the health belief model (HBM) and the expectation-confirmation model (ECM). As an expansion of the integrated HBM-ECM model, this study proposes two additional predictors: mobile Internet speed and mobile Internet cost. A multi-method analytical approach, including partial least squares structural equation modelling (PLS-SEM), fuzzy-set qualitative comparative analysis (fsQCA), and machine learning (ML), was utilised together with a sample dataset of 558 respondents. The dataset-about young adults in Bangladesh with an experience of using mHealth-was obtained through a structured questionnaire to examine the complex causal relationships of the integrated model. The findings from PLS-SEM indicate that value-for-money, mobile Internet cost, health motivation, and confirmation of services all have a substantial impact on young adults' IINmH during the COVID-19 pandemic. At the same time, the fsQCA results indicate that a combination of predictors, instead of any individual predictor, had a significant impact on predicting IINmH. Among ML methods, the XGBoost classifier outperformed other classifiers in predicting the IINmH, which was then used to perform sensitivity analysis to determine the relevance of features. We expect this multi-method analytical approach to make a significant contribution to the mHealth domain as well as the broad information systems literature.
Collapse
Affiliation(s)
- Najmul Hasan
- Center for Modern Information Management, School of Management, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yukun Bao
- Center for Modern Information Management, School of Management, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Raymond Chiong
- School of Information and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
9
|
Wang Y, Shi Y, Li W, Wang S, Zheng J, Xu G, Li G, Shen X, Yang J. Gut microbiota imbalance mediates intestinal barrier damage in high-altitude exposed mice. FEBS J 2022; 289:4850-4868. [PMID: 35188712 DOI: 10.1111/febs.16409] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/14/2022] [Accepted: 02/18/2022] [Indexed: 12/14/2022]
Abstract
The environmental conditions in high-altitude areas can induce gastrointestinal disorders and changes in gut microbiota. The gut microbiota is closely related to a variety of gastrointestinal diseases, although the underlying pathogenic mechanisms are not well-identified. The present study aimed to investigate the regulatory effect of high altitude on intestinal dysfunction via gut microbiota disturbance. Forty C57BL/6J mice were divided into four groups: one plain control group (CON) and three high-altitude exposure groups (HAE) (altitude: 4000 m a.s.l.; oxygen content: 12.7%; 1-, 2- and 4-week exposure). Another set of 40 mice was divided into two CON and two HAE subgroups. Antibiotic cocktails were administered to one CON and HAE groups and autoclaved water was administered to the second CON and HAE groups for 4 weeks, respectively. In the fecal microbiota transplantation experiment, there were four transplantation groups, which received, respectively: phosphate-buffered saline for 2 weeks, feces from CON for 2 weeks, feces from HAE-4W for 2 weeks, and HAE-4W for 4 weeks. Hematoxylin and eosin staining, periodic acid-Schiff staining, a terminal deoxynucleotidyl transferase dUTP nick end labeling assay and a quantitative reverse transcriptase-polymerase chain reaction were applied to detect changes in intestinal cellular structure, morphology, apoptosis and intestinal inflammatory response. Fecal microbiota was analyzed using 16S rDNA amplicon sequencing. A high-altitude environment changed the ecological balance of gut microbiota in mice and caused damage to the intestinal structure and mucosal barrier. Interestingly, similar damage, which was inhibited by antibiotic cocktails at high altitude, was observed in mice transplanted with fecal microbiota from HAE. A high-altitude environment contributes to dyshomeostasis of gut microbiota, thereby impairing the intestinal mucosal barrier, eventually inducing and exacerbating intestinal damage.
Collapse
Affiliation(s)
- Yuhao Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases & Digestive Diseases of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yi Shi
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Wenhao Li
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Shu Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases & Digestive Diseases of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiyang Zheng
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases & Digestive Diseases of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guanghui Xu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases & Digestive Diseases of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guixiang Li
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases & Digestive Diseases of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xuefeng Shen
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Jianjun Yang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases & Digestive Diseases of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
10
|
Komatsu T, Komatsu M, Nakajima H, Uemoto Y. Ultra-rapid real-time polymerase chain reaction assay for genotyping of the NT5E gene in Japanese black beef using a mobile PCR device, PCR 1100. Anim Sci J 2022; 93:e13763. [PMID: 35946783 DOI: 10.1111/asj.13763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
The concentration of inosine 5'-monophosphate (IMP) in beef is an important factor contributing to beef palatability. A previous study suggested that single nucleotide polymorphisms (SNPs) in the ecto-5'-nucleotidase (NT5E) gene strongly affect the concentration of IMP under postmortem conditions by regulating NT5E enzymatic activity in beef. Genotyping of the NT5E gene is performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) or real-time PCR assay. However, these conventional laboratory assays require large installed instruments. They also involve complicated procedures and are time-consuming. Here, the PCR primers and probes for the NT5E gene (rs42508588 SNP) were designed and synthesized, and we examined the rapid genotyping of the NT5E gene using a PicoGene PCR 1100 mobile PCR device. The results showed that this system enabled rapid amplification of each allele at approximately 19.4 s per cycle, with a total run time of 13 min 36 s. This device is portable and does not require a power supply, which facilitates its use not only in specific laboratories but also in meat production farms and distribution stages of beef.
Collapse
Affiliation(s)
- Tomohiko Komatsu
- Yamagata Prefectural Okitama Livestock Hygiene Service Center, Nanyo, Japan
| | - Masataka Komatsu
- Forestry and Fisheries Department, Yamagata Prefecture Agriculture, Yamagata, Japan
| | - Hiroaki Nakajima
- Livestock Institute of Yamagata Integrated Agricultural Research Center, Shinjo, Japan
| | - Yoshinobu Uemoto
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
11
|
Kobialka RM, Ceruti A, Bergmann M, Hartmann K, Truyen U, Abd El Wahed A. Molecular Detection of Feline Coronavirus Based on Recombinase Polymerase Amplification Assay. Pathogens 2021; 10:pathogens10101237. [PMID: 34684186 PMCID: PMC8538120 DOI: 10.3390/pathogens10101237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
Feline coronavirus (FCoV) is endemic in cat populations worldwide. Persistently, subclinically infected cats play a significant role in spreading the infection. Testing fecal samples of cats may facilitate efforts to decrease the viral burden within a population. Real-time RT-PCR is highly sensitive and specific for the detection of FCoV but must be performed in a fully equipped laboratory. A simple and accurate assay is needed to identify FCoV at the point-of-need. The aim of this study was to develop a rapid FCoV detection assay based on isothermal amplification technology, i.e., reverse transcription-recombinase polymerase amplification (RT-RPA). Primers were designed to target the highly conserved 3′ untranslated region of the 7b gene. Running on a constant temperature of 42 °C, reverse transcription as well as DNA amplification and detection was achieved in a maximum of 15 min. A probit analysis revealed a detection limit of 58.5 RNA copies/reaction. For cross-detection, nucleic acids from 19 viruses were tested. Both RT-RPA and real-time RT-PCR showed cross-detection with canine coronavirus and transmissible gastroenteritis virus, but not with other pathogens. To evaluate clinical performance, RNA was extracted from 39 fecal samples from cats. All samples were tested simultaneously with real-time RT-PCR resulting in a RT-RPA sensitivity and specificity of 90.9% and 100%, respectively. RT-RPA can be considered a promising simple method for rapid detection of FCoV.
Collapse
Affiliation(s)
- Rea Maja Kobialka
- Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, 04103 Leipzig, Germany; (R.M.K.); (A.C.); (U.T.)
| | - Arianna Ceruti
- Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, 04103 Leipzig, Germany; (R.M.K.); (A.C.); (U.T.)
| | - Michelle Bergmann
- Clinic of Small Animal Medicine, LMU, 80539 Munich, Germany; (M.B.); (K.H.)
| | - Katrin Hartmann
- Clinic of Small Animal Medicine, LMU, 80539 Munich, Germany; (M.B.); (K.H.)
| | - Uwe Truyen
- Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, 04103 Leipzig, Germany; (R.M.K.); (A.C.); (U.T.)
| | - Ahmed Abd El Wahed
- Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, 04103 Leipzig, Germany; (R.M.K.); (A.C.); (U.T.)
- Correspondence: ; Tel.: +49-341-97-38-153
| |
Collapse
|
12
|
Current diagnostic approaches to detect two important betacoronaviruses: Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pathol Res Pract 2021; 225:153565. [PMID: 34333398 PMCID: PMC8305226 DOI: 10.1016/j.prp.2021.153565] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are two common betacoronaviruses, which are still causing transmission among the human population worldwide. The major difference between the two coronaviruses is that MERS-CoV is now causing sporadic transmission worldwide, whereas SARS-CoV-2 is causing a pandemic outbreak globally. Currently, different guidelines and reports have highlighted several diagnostic methods and approaches which could be used to screen and confirm MERS-CoV and SARS-CoV-2 infections. These methods include clinical evaluation, laboratory diagnosis (nucleic acid-based test, protein-based test, or viral culture), and radiological diagnosis. With the presence of these different diagnostic approaches, it could cause a dilemma to the clinicians and diagnostic laboratories in selecting the best diagnostic strategies to confirm MERS-CoV and SARS-CoV-2 infections. Therefore, this review aims to provide an up-to-date comparison of the advantages and limitations of different diagnostic approaches in detecting MERS-CoV and SARS-CoV-2 infections. This review could provide insights for clinicians and scientists in detecting MERS-CoV and SARS-CoV-2 infections to help combat the transmission of these coronaviruses.
Collapse
|
13
|
Asadzadeh A, Kalankesh LR. A scope of mobile health solutions in COVID-19 pandemics. INFORMATICS IN MEDICINE UNLOCKED 2021; 23:100558. [PMID: 33842688 PMCID: PMC8019236 DOI: 10.1016/j.imu.2021.100558] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 01/12/2023] Open
Abstract
Background and aim COVID-19 has become an international emergency. The use of digital solutions can be effective in managing, preventing, and overcoming the further spread of infectious disease outbreaks. Accordingly, the use of mobile-health (m-health) technologies has the potential to promote public health. This review aimed to study the application of m-health solutions for the management of the COVID-19 outbreak. Methods The search strategy was done in Medline (PubMed), Embase, IEEE, and Google Scholar by using related keywords to m-health and COVID-19 on July 6, 2020. English papers that used m-health technologies for the COVID-19 outbreak were included. Results Of the 2046 papers identified, 16 were included in this study. M-health had been used for various aims such as early detection, fast screening, patient monitoring, information sharing, education, and treatment in response to the COVID-19 outbreak. M-health solutions were classified into four use case categories: prevention, diagnosis, treatment, and protection. The mobile phone-based app and short text massaging were the most frequently used modalities, followed by wearables, portable screening devices, mobile-telehealth, and continuous telemetry monitor during the pandemics. Conclusion It appears that m-health technologies played a positive role during the COVID-19 outbreak. Given the extensive capabilities of m-health solutions, investigation and use of all potential applications of m-health should be considered for combating the current Epidemics and mitigating its negative impacts.
Collapse
Affiliation(s)
- Afsoon Asadzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila R Kalankesh
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran.,Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Aggarwal S, Acharjee A, Mukherjee A, Baker MS, Srivastava S. Role of Multiomics Data to Understand Host-Pathogen Interactions in COVID-19 Pathogenesis. J Proteome Res 2021; 20:1107-1132. [PMID: 33426872 PMCID: PMC7805606 DOI: 10.1021/acs.jproteome.0c00771] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Indexed: 12/15/2022]
Abstract
Human infectious diseases are contributed equally by the host immune system's efficiency and any pathogens' infectivity. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the coronavirus strain causing the respiratory pandemic coronavirus disease 2019 (COVID-19). To understand the pathobiology of SARS-CoV-2, one needs to unravel the intricacies of host immune response to the virus, the viral pathogen's mode of transmission, and alterations in specific biological pathways in the host allowing viral survival. This review critically analyzes recent research using high-throughput "omics" technologies (including proteomics and metabolomics) on various biospecimens that allow an increased understanding of the pathobiology of SARS-CoV-2 in humans. The altered biomolecule profile facilitates an understanding of altered biological pathways. Further, we have performed a meta-analysis of significantly altered biomolecular profiles in COVID-19 patients using bioinformatics tools. Our analysis deciphered alterations in the immune response, fatty acid, and amino acid metabolism and other pathways that cumulatively result in COVID-19 disease, including symptoms such as hyperglycemic and hypoxic sequelae.
Collapse
Affiliation(s)
- Shalini Aggarwal
- Department of Biosciences and
Bioengineering, Indian Institute of Technology
Bombay, Mumbai 400076,
India
| | - Arup Acharjee
- Department of Biosciences and
Bioengineering, Indian Institute of Technology
Bombay, Mumbai 400076,
India
| | - Amrita Mukherjee
- Department of Biosciences and
Bioengineering, Indian Institute of Technology
Bombay, Mumbai 400076,
India
| | - Mark S. Baker
- Department of Biomedical Science,
Faculty of Medicine, Health and Human Sciences, Macquarie
University, Sydney 2109,
Australia
| | - Sanjeeva Srivastava
- Department of Biosciences and
Bioengineering, Indian Institute of Technology
Bombay, Mumbai 400076,
India
| |
Collapse
|
15
|
Komabayashi K, Matoba Y, Seto J, Ikeda Y, Tanaka W, Aoki Y, Ikeda T, Matsuzaki Y, Itagaki T, Shirato K, Mizuta K. Isolation of Human Coronaviruses OC43, HKU1, NL63, and 229E in Yamagata, Japan, Using Primary Human Airway Epithelium Cells Cultured by Employing an Air-Liquid Interface Culture. Jpn J Infect Dis 2020; 74:285-292. [PMID: 33250494 DOI: 10.7883/yoken.jjid.2020.776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Isolation of seasonal coronaviruses, which include human coronavirus (HCoV) OC43, HCoV-HKU1, and HCoV-NL63, from primary cultures is difficult because it requires experienced handling, an exception being HCoV-229E, which can be isolated using cell lines such as RD-18S and HeLa-ACE2-TMPRSS2. We aimed to isolate seasonal CoVs in Yamagata, Japan to obtain infective virions useful for further research and to accelerate fundamental studies on HCoVs and SARS-CoV-2. Using modified air-liquid interface (ALI) culture of the normal human airway epithelium from earlier studies, we isolated 29 HCoVs (80.6%: 16, 6, 6, and 1 isolates of HCoV-OC43, HCoV-HKU1, HCoV-NL63, and HCoV-229E, respectively) from 36 cryopreserved nasopharyngeal specimens. In ALI cultures of HCoV-OC43 and HCoV-NL63, the harvested medium contained more than 1 × 104 genome copies/µL at every tested time point during the more than 100 days of culture. Four isolates of HCoV-NL63 were further subcultured and successfully propagated in an LLC-MK2 cell line. Our results suggest that ALI culture is useful for isolating seasonal CoVs and sustainably obtaining HCoV-OC43 and HCoV-NL63 virions. Furthermore, the LLC-MK2 cell line in combination with ALI cultures can be used for the large-scale culturing of HCoV-NL63. Further investigations are necessary to develop methods for culturing difficult-to-culture seasonal CoVs in cell lines.
Collapse
Affiliation(s)
- Kenichi Komabayashi
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Japan
| | - Yohei Matoba
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Japan
| | - Junji Seto
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Japan
| | - Yoko Ikeda
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Japan
| | - Waka Tanaka
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Japan
| | - Yoko Aoki
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Japan
| | - Tatsuya Ikeda
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Japan
| | - Yoko Matsuzaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Japan
| | | | - Kazuya Shirato
- Department of Virology III, National Institute of Infectious Diseases, Japan
| | - Katsumi Mizuta
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Japan
| |
Collapse
|
16
|
Shirato K, Nao N, Matsuyama S, Takeda M, Kageyama T. An Ultra-Rapid Real-Time RT-PCR Method Using the PCR1100 to Detect Severe Acute Respiratory Syndrome Coronavirus-2. Jpn J Infect Dis 2020; 74:29-34. [PMID: 32611983 DOI: 10.7883/yoken.jjid.2020.324] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in Wuhan, China, in December 2019, has rapidly spread worldwide. SARS-CoV-2 is usually detected via real-time reverse-transcription polymerase chain reaction (RT-PCR). However, the increase in specimen load in institutions/hospitals necessitates a simpler detection system. Here, we present an ultra-rapid, real-time RT-PCR assay for SARS-CoV-2 detection using PCR1100 device. Although PCR1100 tests only one specimen at a time, the amplification period is less than 20 min and the sensitivity and specificity match those of conventional real-time RT-PCR performed on large instruments. The method is potentially helpful when daily multiple SARS-CoV-2 testing is needed, for example to confirm virus-free status prior to patient discharge.
Collapse
Affiliation(s)
- Kazuya Shirato
- Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Diseases, Japan
| | - Naganori Nao
- Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Diseases, Japan
| | - Shutoku Matsuyama
- Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Diseases, Japan
| | - Makoto Takeda
- Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Diseases, Japan
| | - Tsutomu Kageyama
- Influenza Virus Research Center, National Institute of Infectious Diseases, Japan
| |
Collapse
|
17
|
Shirato K, Nao N, Kawase M, Kageyama T. An Ultra-Rapid Real-Time RT-PCR Method Using PCR1100 for Detecting Human Orthopneumovirus. Jpn J Infect Dis 2020; 73:465-468. [PMID: 32475879 DOI: 10.7883/yoken.jjid.2020.182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human orthopneumovirus, also known as the respiratory syncytial virus (RSV), is a leading cause of respiratory tract infections in children worldwide. The World Health Organization has taken steps toward establishing a global surveillance system for RSV, based on the global influenza surveillance and response system initiated in 2015. The US Centers for Disease Control and Prevention (CDC) has developed a genetic detection method based on real-time reverse transcription polymerase chain reaction (RT-PCR), which is used in global RSV surveillance. In Japan, immunoassay-based rapid antigen detection kits are widely used for the detection of RSV. In this study, an ultra-rapid real-time RT-PCR method for the rapid detection of RSV was developed using the PCR1100 device based on the US CDC assay in order to detect RSV in comparable time to rapid test kits. The ultra-rapid real-time RT-PCR could detect RSV viral RNA in less than 20 min while maintaining sensitivity and specificity comparable to conventional real-time RT-PCR using large installed instruments. Furthermore, combining ultra-rapid real-time RT-PCR with the M1 Sample Prep kit reduced the total working time for the detection of RSV from clinical specimen to less than 25 min, suggesting this method could be used for point-of-care RSV testing.
Collapse
Affiliation(s)
- Kazuya Shirato
- Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, Japan
| | - Naganori Nao
- Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, Japan
| | - Miyuki Kawase
- Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, Japan
| | - Tsutomu Kageyama
- Influenza Virus Research Center, National Institute of Infectious Disease, Murayama Branch, Japan
| |
Collapse
|
18
|
Shirato K, Nao N, Katano H, Takayama I, Saito S, Kato F, Katoh H, Sakata M, Nakatsu Y, Mori Y, Kageyama T, Matsuyama S, Takeda M. Development of Genetic Diagnostic Methods for Detection for Novel Coronavirus 2019(nCoV-2019) in Japan. Jpn J Infect Dis 2020; 73:304-307. [PMID: 32074516 DOI: 10.7883/yoken.jjid.2020.061] [Citation(s) in RCA: 307] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During the emergence of novel coronavirus 2019 (nCoV) outbreak in Wuhan city, China at the end of 2019, there was movement of many airline travelers between Wuhan and Japan, suggesting that the Japanese population was at high risk of infection by the virus. Hence, we urgently developed diagnostic systems for detection of 2019 nCoV. Two nested RT-PCR and two real-time RT-PCR assays were adapted for use in Japan. As of February 8, 2020, these assays have successfully detected 25 positive cases of infection in Japan.
Collapse
Affiliation(s)
- Kazuya Shirato
- Department of Virology III, National Institute of Infectious Disease, Japan
| | - Naganori Nao
- Department of Virology III, National Institute of Infectious Disease, Japan
| | - Harutaka Katano
- Department of Pathology National Institute of Infectious Disease, Japan
| | - Ikuyo Takayama
- Influenza Virus Research Center, National Institute of Infectious Disease, Japan
| | - Shinji Saito
- Influenza Virus Research Center, National Institute of Infectious Disease, Japan
| | - Fumihiro Kato
- Department of Virology III, National Institute of Infectious Disease, Japan
| | - Hiroshi Katoh
- Department of Virology III, National Institute of Infectious Disease, Japan
| | - Masafumi Sakata
- Department of Virology III, National Institute of Infectious Disease, Japan
| | - Yuichiro Nakatsu
- Department of Virology III, National Institute of Infectious Disease, Japan
| | - Yoshio Mori
- Department of Virology III, National Institute of Infectious Disease, Japan
| | - Tsutomu Kageyama
- Influenza Virus Research Center, National Institute of Infectious Disease, Japan
| | - Shutoku Matsuyama
- Department of Virology III, National Institute of Infectious Disease, Japan
| | - Makoto Takeda
- Department of Virology III, National Institute of Infectious Disease, Japan
| |
Collapse
|
19
|
[Basis of coronavirus infection, and SARS-CoV-2]. Uirusu 2020; 70:155-166. [PMID: 34544930 DOI: 10.2222/jsv.70.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|