1
|
Tiruvadi V, James S, Howell B, Obatusin M, Crowell A, Riva-Posse P, Gross RE, McIntyre CC, Mayberg HS, Butera R. Mitigating Mismatch Compression in Differential Local Field Potentials. IEEE Trans Neural Syst Rehabil Eng 2023; 31:68-77. [PMID: 36288215 PMCID: PMC10784110 DOI: 10.1109/tnsre.2022.3217469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Deep brain stimulation (DBS) devices capable of measuring differential local field potentials ( ∂ LFP) enable neural recordings alongside clinical therapy. Efforts to identify oscillatory correlates of various brain disorders, or disease readouts, are growing but must proceed carefully to ensure readouts are not distorted by brain environment. In this report we identified, characterized, and mitigated a major source of distortion in ∂ LFP that we introduce as mismatch compression (MC). Using in vivo, in silico, and in vitro models of MC, we showed that impedance mismatches in the two recording electrodes can yield incomplete rejection of stimulation artifact and subsequent gain compression that distorts oscillatory power. We then developed and validated an opensource mitigation pipeline that mitigates the distortions arising from MC. This work enables more reliable oscillatory readouts for adaptive DBS applications.
Collapse
|
2
|
Olson JW, Gonzalez CL, Brinkerhoff S, Boolos M, Wade MH, Hurt CP, Nakhmani A, Guthrie BL, Walker HC. Local anatomy, stimulation site, and time alter directional deep brain stimulation impedances. Front Hum Neurosci 2022; 16:958703. [PMID: 35992943 PMCID: PMC9381736 DOI: 10.3389/fnhum.2022.958703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Directional deep brain stimulation (DBS) contacts provide greater spatial flexibility for therapy than traditional ring-shaped electrodes, but little is known about longitudinal changes of impedance and orientation. We measured monopolar and bipolar impedance of DBS contacts in 31 patients who underwent unilateral subthalamic nucleus deep brain stimulation as part of a randomized study (SUNDIAL, NCT03353688). At different follow-up visits, patients were assigned new stimulation configurations and impedance was measured. Additionally, we measured the orientation of the directional lead during surgery, immediately after surgery, and 1 year later. Here we contrast impedances in directional versus ring contacts with respect to local anatomy, active stimulation contact(s), and over time. Directional contacts display larger impedances than ring contacts. Impedances generally increase slightly over the first year of therapy, save for a transient decrease immediately post-surgery under general anesthesia during pulse generator placement. Local impedances decrease at active stimulation sites, and contacts in closest proximity to internal capsule display higher impedances than other anatomic sites. DBS leads rotate slightly in the immediate postoperative period (typically less than the angle of a single contact) but otherwise remain stable over the following year. These data provide useful information for setting clinical stimulation parameters over time.
Collapse
Affiliation(s)
- Joseph W. Olson
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christopher L. Gonzalez
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sarah Brinkerhoff
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Melissa H. Wade
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christopher P. Hurt
- Department of Physical Therapy, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Arie Nakhmani
- Department of Electrical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bart L. Guthrie
- Department of Neurosurgery, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harrison C. Walker
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Harrison C. Walker,
| |
Collapse
|
3
|
Cabral AM, Pereira AA, Vieira MF, Pessôa BL, de Oliveira Andrade A. Prevalence of distinct types of hardware failures related to deep brain stimulation. Neurosurg Rev 2021; 45:1123-1134. [PMID: 34665369 DOI: 10.1007/s10143-021-01673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/16/2021] [Accepted: 10/07/2021] [Indexed: 11/24/2022]
Abstract
Deep brain stimulation (DBS) is an effective treatment of several types of neurological conditions, including Parkinson's disease, essential tremor, dystonia, and epilepsy. Despite technological progress in the past 10 years, the number of studies reporting side effects of DBS has increased, mainly due to hardware failures. This review investigated studies published between 2017 and 2021 to identify the prevalence of distinct types of hardware failures related to DBS. In total, fifteen studies were selected for the estimate of the prevalence of five distinct types of hardware failures: high impedance, fracture or failure of the lead or other parts of the implant, skin erosion and infection, lead malposition or migration, and implantable pulse generator (IPG) malfunction. The quality evaluation of the studies suggests a need to report results including populations from distinct regions of the world so that results can be generalized. The objective analysis of the prevalence of hardware failures showed that skin erosion and infection presented the highest prevalence in relation to other hardware failures. Despite the sophistication of the surgical technique of DBS over time, there is a considerable complication rate, about 7 per 100 individuals ([Formula: see text], in which CI is the confidence interval). Future research can also include correlation analysis with the aim of understanding the correlation between distinct hardware failures and variables such as gender, type of disorder, and age.
Collapse
Affiliation(s)
- Ariana Moura Cabral
- Centre for Innovation and Technology Assessment in Health, Faculty of Electrical Engineering, Postgraduate Program in Electrical and Biomedical Engineering, Federal University of Uberlândia, Campus Santa Mônica - Bloco 1E, Av. Joao Naves de Avila, 2121, Uberlandia, MG, 38408-100, Brazil
| | - Adriano Alves Pereira
- Centre for Innovation and Technology Assessment in Health, Faculty of Electrical Engineering, Postgraduate Program in Electrical and Biomedical Engineering, Federal University of Uberlândia, Campus Santa Mônica - Bloco 1E, Av. Joao Naves de Avila, 2121, Uberlandia, MG, 38408-100, Brazil
| | - Marcus Fraga Vieira
- Bioengineering and Biomechanics Laboratory, Federal University of Goiás, Goiânia, Brazil
| | - Bruno Lima Pessôa
- Postgraduate Program in Neurology, Faculty of Medicine, Federal University of Fluminense, Niterói, Brazil
| | - Adriano de Oliveira Andrade
- Centre for Innovation and Technology Assessment in Health, Faculty of Electrical Engineering, Postgraduate Program in Electrical and Biomedical Engineering, Federal University of Uberlândia, Campus Santa Mônica - Bloco 1E, Av. Joao Naves de Avila, 2121, Uberlandia, MG, 38408-100, Brazil
| |
Collapse
|
4
|
Miterko LN, Lin T, Zhou J, van der Heijden ME, Beckinghausen J, White JJ, Sillitoe RV. Neuromodulation of the cerebellum rescues movement in a mouse model of ataxia. Nat Commun 2021; 12:1295. [PMID: 33637754 PMCID: PMC7910465 DOI: 10.1038/s41467-021-21417-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Deep brain stimulation (DBS) relieves motor dysfunction in Parkinson's disease, and other movement disorders. Here, we demonstrate the potential benefits of DBS in a model of ataxia by targeting the cerebellum, a major motor center in the brain. We use the Car8 mouse model of hereditary ataxia to test the potential of using cerebellar nuclei DBS plus physical activity to restore movement. While low-frequency cerebellar DBS alone improves Car8 mobility and muscle function, adding skilled exercise to the treatment regimen additionally rescues limb coordination and stepping. Importantly, the gains persist in the absence of further stimulation. Because DBS promotes the most dramatic improvements in mice with early-stage ataxia, we postulated that cerebellar circuit function affects stimulation efficacy. Indeed, genetically eliminating Purkinje cell neurotransmission blocked the ability of DBS to reduce ataxia. These findings may be valuable in devising future DBS strategies.
Collapse
Affiliation(s)
- Lauren N. Miterko
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XProgram in Developmental Biology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA
| | - Tao Lin
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA
| | - Joy Zhou
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Neuroscience, Baylor College of Medicine, Houston, TX USA
| | - Meike E. van der Heijden
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA
| | - Jaclyn Beckinghausen
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Neuroscience, Baylor College of Medicine, Houston, TX USA
| | - Joshua J. White
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Neuroscience, Baylor College of Medicine, Houston, TX USA
| | - Roy V. Sillitoe
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XProgram in Developmental Biology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Neuroscience, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XDevelopment, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
5
|
Satzer D, Yu H, Wells M, Padmanaban M, Burns MR, Warnke PC, Xie T. Deep Brain Stimulation Impedance Decreases Over Time Even When Stimulation Settings Are Held Constant. Front Hum Neurosci 2020; 14:584005. [PMID: 33240066 PMCID: PMC7680729 DOI: 10.3389/fnhum.2020.584005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/12/2020] [Indexed: 11/16/2022] Open
Abstract
Objectives: To study whether and to what extent the therapeutic impedance and current change under long-term deep brain stimulation (DBS) with constant stimulation settings, which could inform the role of constant current stimulation. Methods: Therapy impedance and current measurements were retrospectively collected from patients with Parkinson’s disease (PD) undergoing DBS of the subthalamic nucleus (STN) or essential tremor (ET) undergoing ventral intermediate nucleus (VIM). Baseline and follow-up measurements were obtained for intervals of at least 6 months without changes in stimulation settings. The single longest interval of constant stimulation for each electrode was included. Temporal trends in impedance and current were analyzed as absolute and relative differences and as the rate of change. Results: Impedance and current data from 79 electrodes (60 in STN, 19 in VIM) in 44 patients (32 with PD, 12 with ET) met inclusion criteria. The duration between baseline and follow-up measurements with constant stimulation settings was 17 months (median, with an interquartile range of 12–26 months) in the mixed group. Therapy impedance decreased by 27 ± 12 Ω/year (mean ± 2 standard errors; p < 0.0001), and therapy current increased at a rate of 0.142 ± 0.063 mA/year (p < 0.0001). Similar results were observed in the STN and VIM subgroups. Conclusions: Impedance decreases gradually over time, even when stimulation settings are kept constant. The rate of decrease is smaller than previously reported, suggesting that changes in stimulation settings contribute to impedance drift. Stimulation-independent impedance drift is gradual but relevant to constant-current programming.
Collapse
Affiliation(s)
- David Satzer
- Department of Neurosurgery, University of Chicago Medicine, Chicago, IL, United States
| | - Huiyan Yu
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Beijing, China.,Department of Neurology, University of Chicago Medicine, Chicago, IL, United States
| | - Meredith Wells
- Department of Neurobiology, University of Chicago Medicine, Chicago, IL, United States
| | - Mahesh Padmanaban
- Department of Neurology, University of Chicago Medicine, Chicago, IL, United States
| | - Matthew R Burns
- Department of Neurology, University of Chicago Medicine, Chicago, IL, United States.,Department of Neurology, University of Florida College of Medicine, Chicago, IL, United States
| | - Peter C Warnke
- Department of Neurosurgery, University of Chicago Medicine, Chicago, IL, United States
| | - Tao Xie
- Department of Neurology, University of Chicago Medicine, Chicago, IL, United States
| |
Collapse
|
6
|
Wong JK, Hess CW, Almeida L, Middlebrooks EH, Christou EA, Patrick EE, Shukla AW, Foote KD, Okun MS. Deep brain stimulation in essential tremor: targets, technology, and a comprehensive review of clinical outcomes. Expert Rev Neurother 2020; 20:319-331. [PMID: 32116065 DOI: 10.1080/14737175.2020.1737017] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Essential tremor (ET) is a common movement disorder with an estimated prevalence of 0.9% worldwide. Deep brain stimulation (DBS) is an established therapy for medication refractory and debilitating tremor. With the arrival of next generation technology, the implementation and delivery of DBS has been rapidly evolving. This review will highlight the current applications and constraints for DBS in ET.Areas covered: The mechanism of action, targets for neuromodulation, next generation guidance techniques, symptom-specific applications, and long-term efficacy will be reviewed.Expert opinion: The posterior subthalamic area and zona incerta are alternative targets to thalamic DBS in ET. However, they may be associated with additional stimulation-induced side effects. Novel stimulation paradigms and segmented electrodes provide innovative approaches to DBS programming and stimulation-induced side effects.
Collapse
Affiliation(s)
- Joshua K Wong
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Christopher W Hess
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Leonardo Almeida
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | | | - Evangelos A Christou
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Erin E Patrick
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA
| | - Aparna Wagle Shukla
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Kelly D Foote
- Fixel Institute for Neurological Diseases, Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
7
|
Parkinsonian Beta Dynamics during Rest and Movement in the Dorsal Pallidum and Subthalamic Nucleus. J Neurosci 2020; 40:2859-2867. [PMID: 32107277 DOI: 10.1523/jneurosci.2113-19.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 02/16/2020] [Accepted: 02/19/2020] [Indexed: 11/21/2022] Open
Abstract
In Parkinson's disease (PD), pathologically high levels of beta activity (12-30 Hz) reflect specific symptomatology and normalize with pharmacological or surgical intervention. Although beta characterization in the subthalamic nucleus (STN) of PD patients undergoing deep brain stimulation (DBS) has now been translated into adaptive DBS paradigms, a limited number of studies have characterized beta power in the globus pallidus internus (GPi), an equally effective DBS target. Our objective was to compare beta power in the STN and GPi during rest and movement in people with PD undergoing DBS. Thirty-seven human female and male participants completed a simple behavioral experiment consisting of periods of rest and button presses, leading to local field potential recordings from 19 (15 participants) STN and 26 (22 participants) GPi nuclei. We examined overall beta power as well as beta time-domain dynamics (i.e., beta bursts). We found higher beta power during rest and movement in the GPi, which also had more beta desynchronization during movement. Beta power was positively associated with bradykinesia and rigidity severity; however, these clinical associations were present only in the GPi cohort. With regards to beta dynamics, bursts were similar in duration and frequency in the GPi and STN, but GPi bursts were stronger and correlated to bradykinesia-rigidity severity. Beta dynamics therefore differ across basal ganglia nuclei. Relative to the STN, beta power in the GPi may be readily detected, modulates more with movement, and relates more to clinical impairment. Together, this could point to the GPi as a potentially effective target for beta-based adaptive DBS.SIGNIFICANCE STATEMENT It is known that subthalamic nucleus (STN) beta activity is linked to symptom severity in Parkinson's disease (PD), but few studies have characterized beta activity in the globus pallidus internus (GPi), another effective target for deep brain stimulation (DBS). We compared beta power in the STN and GPi during rest and movement in 37 people with PD undergoing DBS. We found that beta dynamics differed across basal ganglia nuclei. Our results show that, relative to the STN, beta power in the GPi may be readily detected, modulates more with movement, and relates more to clinical impairment. Together, this could point to the GPi as a potentially effective target for beta-based adaptive DBS.
Collapse
|
8
|
Krishna V, Sammartino F, Rabbani Q, Changizi B, Agrawal P, Deogaonkar M, Knopp M, Young N, Rezai A. Connectivity-based selection of optimal deep brain stimulation contacts: A feasibility study. Ann Clin Transl Neurol 2019; 6:1142-1150. [PMID: 31353863 PMCID: PMC6649384 DOI: 10.1002/acn3.784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/19/2019] [Accepted: 03/26/2019] [Indexed: 01/25/2023] Open
Abstract
Background The selection of optimal deep brain stimulation (DBS) parameters is time‐consuming, experience‐dependent, and best suited when acute effects of stimulation can be observed (e.g., tremor reduction). Objectives To test the hypothesis that optimal stimulation location can be estimated based on the cortical connections of DBS contacts. Methods We analyzed a cohort of 38 patients with Parkinson's disease (24 training, and 14 test cohort). Using whole‐brain probabilistic tractography, we first mapped the cortical regions associated with stimulation‐induced efficacy (rigidity, bradykinesia, and tremor improvement) and side effects (paresthesia, motor contractions, and visual disturbances). We then trained a support vector machine classifier to categorize DBS contacts into efficacious, defined by a therapeutic window ≥2 V (threshold for side effect minus threshold for efficacy), based on their connections with cortical regions associated with efficacy versus side effects. The connectivity‐based classifications were then compared with actual stimulation contacts using receiver‐operating characteristics (ROC) curves. Results Unique cortical clusters were associated with stimulation‐induced efficacy and side effects. In the training dataset, 42 of the 47 stimulation contacts were accurately classified as efficacious, with a therapeutic window of ≥3 V in 31 (66%) and between 2 and 2.9 V in 11 (24%) electrodes. This connectivity‐based estimation was successfully replicated in the test cohort with similar accuracy (area under ROC = 0.83). Conclusions Cortical connections can predict the efficacy of DBS contacts and potentially facilitate DBS programming. The clinical utility of this paradigm in optimizing DBS outcomes should be prospectively tested, especially for directional electrodes.
Collapse
Affiliation(s)
- Vibhor Krishna
- Center for NeuromodulationThe Ohio State UniversityColumbusOhio
| | | | - Qinwan Rabbani
- Center for NeuromodulationThe Ohio State UniversityColumbusOhio
| | | | - Punit Agrawal
- Center for NeuromodulationThe Ohio State UniversityColumbusOhio
| | | | - Michael Knopp
- Wright Center of Innovation in Biomedical ImagingThe Ohio State UniversityColumbusOhio
| | - Nicole Young
- Center for NeuromodulationThe Ohio State UniversityColumbusOhio
| | - Ali Rezai
- Center for NeuromodulationThe Ohio State UniversityColumbusOhio
| |
Collapse
|
9
|
Eisinger RS, Urdaneta ME, Foote KD, Okun MS, Gunduz A. Non-motor Characterization of the Basal Ganglia: Evidence From Human and Non-human Primate Electrophysiology. Front Neurosci 2018; 12:385. [PMID: 30026679 PMCID: PMC6041403 DOI: 10.3389/fnins.2018.00385] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/22/2018] [Indexed: 12/02/2022] Open
Abstract
Although the basal ganglia have been implicated in a growing list of human behaviors, they include some of the least understood nuclei in the brain. For several decades studies have employed numerous methodologies to uncover evidence pointing to the basal ganglia as a hub of both motor and non-motor function. Recently, new electrophysiological characterization of the basal ganglia in humans has become possible through direct access to these deep structures as part of routine neurosurgery. Electrophysiological approaches for identifying non-motor function have the potential to unlock a deeper understanding of pathways that may inform clinical interventions and particularly neuromodulation. Various electrophysiological modalities can also be combined to reveal functional connections between the basal ganglia and traditional structures throughout the neocortex that have been linked to non-motor behavior. Several reviews have previously summarized evidence for non-motor function in the basal ganglia stemming from behavioral, clinical, computational, imaging, and non-primate animal studies; in this review, instead we turn to electrophysiological studies of non-human primates and humans. We begin by introducing common electrophysiological methodologies for basal ganglia investigation, and then we discuss studies across numerous non-motor domains–emotion, response inhibition, conflict, decision-making, error-detection and surprise, reward processing, language, and time processing. We discuss the limitations of current approaches and highlight the current state of the information.
Collapse
Affiliation(s)
- Robert S Eisinger
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Morgan E Urdaneta
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Kelly D Foote
- Department of Neurosurgery, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| | - Michael S Okun
- Department of Neuroscience, University of Florida, Gainesville, FL, United States.,Department of Neurosurgery, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| | - Aysegul Gunduz
- Department of Neuroscience, University of Florida, Gainesville, FL, United States.,Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|