1
|
Dhureja M, Chaturvedi P, Choudhary A, Kumar P, Munshi A. Molecular Insights of Drug Resistance in Epilepsy: Multi-omics Unveil. Mol Neurobiol 2024:10.1007/s12035-024-04220-6. [PMID: 38753128 DOI: 10.1007/s12035-024-04220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/03/2024] [Indexed: 06/12/2024]
Abstract
Epilepsy is a devastating neurological disorder mainly associated with impaired synchronic discharge that leads to sensory, motor, and psychomotor impairments. Till now, about 30 anti-seizure medications (ASMs) have been approved for the management of epilepsy, yet one-third of individuals still have uncontrollable epilepsy and develop resistance. Drug resistance epilepsy (DRE) is defined as the condition where two ASMs fail to control the seizure in epileptic patients. The leading cause of the resistance was the extended use of ASMs. According to various studies, alterations in some genes and their expressions, along with specific metabolic impairments, are suggested to be associated with ASMs resistance and DRE pathophysiology. Several factors aid in the pathophysiology of DRE, such as alterations in protein-encoding genes such as neurotransmitter receptors, drug transporters, ion channels, and drug targets. Furthermore, the altered metabolite levels of metabolites implicated in neurotransmitter signaling, energetic pathways, oxidative stress, and neuroinflammatory signaling differentiate the epileptic patient from the DRE patient. Various DRE biomarkers can be identified using the "integrated omics approach," which includes the study of genomics, transcriptomics, and metabolomics. The current review has been compiled to understand the pathophysiological mechanisms of DRE by focusing on genomics, transcriptomics, and metabolomics. An effort has also been made to identify the therapeutic targets based on identifying significant markers by a multi-omics approach. This has the potential to develop novel therapeutic interventions in the future.
Collapse
Affiliation(s)
- Maanvi Dhureja
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Pragya Chaturvedi
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anita Choudhary
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India.
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India.
| |
Collapse
|
2
|
Li D, Lin Q, Luo F, Wang H. Insights into the Structure, Metabolism, Biological Functions and Molecular Mechanisms of Sialic Acid: A Review. Foods 2023; 13:145. [PMID: 38201173 PMCID: PMC10779236 DOI: 10.3390/foods13010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Sialic acid (SA) is a kind of functional monosaccharide which exists widely in edible bird's nest (EBN), milk, meat, mucous membrane surface, etc. SA is an important functional component in promoting brain development, anti-oxidation, anti-inflammation, anti-virus, anti-tumor and immune regulation. The intestinal mucosa covers the microbial community that has a significant impact on health. In the gut, SA can also regulate gut microbiota and metabolites, participating in different biological functions. The structure, source and physiological functions of SA were reviewed in this paper. The biological functions of SA through regulating key signaling pathways and target genes were discussed. In summary, SA can modulate gut microbiota and metabolites, which affect gene expressions and exert its biological activities. It is helpful to provide scientific reference for the further investigation of SA in the functional foods.
Collapse
Affiliation(s)
- Dan Li
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
- Hunan Engineering Research Center of Full Life-Cycle Energy-Efficient Buildings and Environmental Health, School of Civil Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qinlu Lin
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Feijun Luo
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Hanqing Wang
- Hunan Engineering Research Center of Full Life-Cycle Energy-Efficient Buildings and Environmental Health, School of Civil Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
3
|
Kianičková K, Pažitná L, Kundalia PH, Pakanová Z, Nemčovič M, Baráth P, Katrlíková E, Šuba J, Trebatická J, Katrlík J. Alterations in the Glycan Composition of Serum Glycoproteins in Attention-Deficit Hyperactivity Disorder. Int J Mol Sci 2023; 24:ijms24108745. [PMID: 37240090 DOI: 10.3390/ijms24108745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Changes in protein glycosylation are associated with most biological processes, and the importance of glycomic analysis in the research of disorders is constantly increasing, including in the neurodevelopmental field. We glycoprofiled sera in 10 children with attention-deficit hyperactivity disorder (ADHD) and 10 matching healthy controls for 3 types of samples: whole serum, sera after depletion of abundant proteins (albumin and IgG), and isolated IgG. The analytical methods used were a lectin-based glycoprotein microarray enabling high-throughput glycan analysis and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) as a standard method for the identification of glycan structures. For microarray analysis, the samples printed on microarray slides were incubated with biotinylated lectins and detected using the fluorescent conjugate of streptavidin by a microarray scanner. In the ADHD patient samples, we found increased antennary fucosylation, decreased di-/triantennary N-glycans with bisecting N-acetylglucosamine (GlcNAc), and decreased α2-3 sialylation. The results obtained by both independent methods were consistent. The study's sample size and design do not allow far-reaching conclusions to be drawn. In any case, there is a strong demand for a better and more comprehensive diagnosis of ADHD, and the obtained results emphasize that the presented approach brings new horizons to studying functional associations of glycan alterations in ADHD.
Collapse
Affiliation(s)
- Kristína Kianičková
- Institute of Chemistry, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia
| | - Lucia Pažitná
- Institute of Chemistry, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia
| | - Paras H Kundalia
- Institute of Chemistry, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia
| | - Zuzana Pakanová
- Institute of Chemistry, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia
| | - Marek Nemčovič
- Institute of Chemistry, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia
| | - Peter Baráth
- Institute of Chemistry, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia
| | - Eva Katrlíková
- Department of Paediatric Psychiatry, Faculty of Medicine, Comenius University, The National Institute of Children's Diseases, SK-83340 Bratislava, Slovakia
| | - Ján Šuba
- Department of Paediatric Psychiatry, Faculty of Medicine, Comenius University, The National Institute of Children's Diseases, SK-83340 Bratislava, Slovakia
| | - Jana Trebatická
- Department of Paediatric Psychiatry, Faculty of Medicine, Comenius University, The National Institute of Children's Diseases, SK-83340 Bratislava, Slovakia
| | - Jaroslav Katrlík
- Institute of Chemistry, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia
| |
Collapse
|
4
|
Ashaat EA, Sabry S, Zaki ME, Mohamed R, Abdelsattar HA, Bawady SA, Ashaat NA, Elnaggar W, Ganem MMF, El-Hariri HM, El-Bassyouni HT, Saleh DA. Sialic acid and anti-ganglioside M1 antibodies are invaluable biomarkers correlated with the severity of autism spectrum disorder. Brain Dev 2023; 45:212-219. [PMID: 36522215 DOI: 10.1016/j.braindev.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Autism spectrum disorders (ASD) are devastating neurodevelopmental disorders that showed global increased prevalence. They are characterized by impairment of social communication and stereotyped patterns. OBJECTIVE This study aimed at measuring the levels of total sialic acid (SA) and anti-ganglioside M1 (anti- GM1) IgG antibodies as essential biomarkers in a cohort of children with ASD to identify their diagnostic yield as well as their correlation with the severity of autistic behaviors. METHODS The demographic characteristics, anthropometric measurements, and clinical data were recorded. The levels of total plasma SA and serum anti-GM1 IgG antibodies levels were measured in 100 children with ASD and 100 healthy controls. The severity of ASD-related symptoms was assessed by using the Childhood Autism Rating Scale (CARS). RESULTS Children with ASD had significantly higher levels of both SA and anti-GM1 antibodies than healthy controls (p < 0.001). SA showed a statistically significant moderate diagnostic performance while anti-GM1 antibody showed a statistically significant high diagnostic in differentiating severe from mild to moderate autism. Moreover, both SA and anti-GM1 antibodies levels were significantly correlated to the severity of ASD symptoms (p < 0.001). CONCLUSION The significantly increased levels of SA and anti-GM1 antibodies in children with ASD and their correlation with autism-related symptoms suggest their possible etiopathogenic role in autism as one of the pediatric autoimmune neuropsychiatric disorders. However, further large-scale studies are still needed to explore their possible bidirectional relationship as biomarkers for autism.
Collapse
Affiliation(s)
- Engy A Ashaat
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Sahar Sabry
- Biochemical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Moushira E Zaki
- Biological Anthropology Department, National Research Centre, Cairo, Egypt
| | - Ramy Mohamed
- Biological Anthropology Department, National Research Centre, Cairo, Egypt
| | | | - Somia A Bawady
- Clinical Pathology Departments, Ain Shams University, Cairo, Egypt
| | - Neveen A Ashaat
- Professor of Human Genetics, Ain Shams University, Cairo, Egypt
| | - Walaa Elnaggar
- Pediatric Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mona M F Ganem
- Internal Medicine Research Department, National Research Centre, Cairo, Egypt
| | - Hazem M El-Hariri
- Community Medicine Department, National Research Centre, Cairo, Egypt
| | - Hala T El-Bassyouni
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Dina Amin Saleh
- Pediatric Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Liu Y, Di Y, Zheng Q, Qian Z, Fan J, Ren W, Wei Z, Tian Y. Altered expression of glycan patterns and glycan-related genes in the medial prefrontal cortex of the valproic acid rat model of autism. Front Cell Neurosci 2022; 16:1057857. [PMID: 36568890 PMCID: PMC9772556 DOI: 10.3389/fncel.2022.1057857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorders (ASD) represent a group of neurodevelopmental defects characterized by social deficits and repetitive behaviors. Alteration in Glycosylation patterns could influence the nervous system development and contribute to the molecular mechanism of ASD. Interaction of environmental factors with susceptible genes may affect expressions of glycosylation-related genes and thus result in abnormal glycosylation patterns. Here, we used an environmental factor-induced model of autism by a single intraperitoneal injection of 400 mg/kg valproic acid (VPA) to female rats at day 12.5 post-conception. Following confirmation of reduced sociability and increased self-grooming behaviors in VPA-treated offspring, we analyzed the alterations in the expression profile of glycan patterns and glycan-related genes by lectin microarrays and RNA-seq, respectively. Lectin microarrays detected 14 significantly regulated lectins in VPA rats, with an up-regulation of high-mannose with antennary and down-regulation of Siaα2-3 Gal/GalNAc. Based on the KEGG and CAZy resources, we assembled a comprehensive list of 961 glycan-related genes to focus our analysis on specific genes. Of those, transcription results revealed that there were 107 differentially expressed glycan-related genes (DEGGs) after VPA treatment. Functional analysis of DEGGs encoding anabolic enzymes revealed that the process trimming to form core structure and glycan extension from core structure primarily changed, which is consistent with the changes in glycan patterns. In addition, the DEGGs encoding glycoconjugates were mainly related to extracellular matrix and axon guidance. This study provides insights into the underlying molecular mechanism of aberrant glycosylation after prenatal VPA exposure, which may serve as potential biomarkers for the autism diagnosis.
Collapse
Affiliation(s)
- Yingxun Liu
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China,College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China,Genetic Engineering Laboratory, College of Biological and Environmental Engineering, Xi’an University, Xi’an, Shaanxi, China
| | - Yuanyuan Di
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Qi Zheng
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Zhaoqiang Qian
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Juan Fan
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China,College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Wei Ren
- School of Education, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Zhaoming Wei
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China,College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China,*Correspondence: Zhaoming Wei,
| | - Yingfang Tian
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China,College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China,Yingfang Tian,
| |
Collapse
|
6
|
Liu F, Simpson AB, D'Costa E, Bunn FS, van Leeuwen SS. Sialic acid, the secret gift for the brain. Crit Rev Food Sci Nutr 2022; 63:9875-9894. [PMID: 35531941 DOI: 10.1080/10408398.2022.2072270] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The human brain grows rapidly in early life which requires adequate nutrition. Human milk provides optimal nutrition for the developing brain, and breastfeeding significantly improves the cognition development of infants. These benefits have been largely attributed to human milk oligosaccharides (HMOS), associated with sialic acid (Sia). Subsequently, sialylated HMOS present a vital source of exogenous Sia to infants. Sialic acid is a key molecule essential for proper development of gangliosides, and therefore critical in brain development and function. Recent pre-clinical studies suggest dietary supplementation with Sia or sialylated oligosaccharides enhances intelligence and cognition performance in early and later life. Furthermore, emerging evidence suggests the involvement of Sia in brain homeostasis and disbalance correlates with common pathologies such as Alzheimer's disease (AD). Therefore, this review will discuss early brain health and development and the role of Sia in this process. Additionally, studies associating breastfeeding and specific HMOS to benefits in cognitive development are critically assessed. Furthermore, the review will assess studies implying the potential role of HMOS and microbiota in brain development via the gut-brain axis. Finally, the review will summarize recent advances regarding the role of Sia in neurodegenerative disease in later life and potential roles of dietary Sia sources.
Collapse
Affiliation(s)
- Fan Liu
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anna Bella Simpson
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Esmée D'Costa
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Fanny Sophia Bunn
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sander S van Leeuwen
- Department of Laboratory Medicine, Sector Human Nutrition and Health, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Potential of Salivary Biomarkers in Autism Research: A Systematic Review. Int J Mol Sci 2021; 22:ijms221910873. [PMID: 34639213 PMCID: PMC8509590 DOI: 10.3390/ijms221910873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
The diagnostic process for autism spectrum disorders (ASD) is based on a behavioral analysis of the suspected individual. Despite intensive research, no specific and valid biomarker has been identified for ASD, but saliva, with its advantages such as non-invasive collection, could serve as a suitable alternative to other body fluids. As a source of nucleic acid of both human and microbial origin, protein and non-protein molecules, saliva offers a complex view on the current state of the organism. Additionally, the use of salivary markers seems to be less complicated not only for ASD screening but also for revealing the etiopathogenesis of ASD, since enrolling neurotypical counterparts willing to participate in studies may be more feasible. The aim of the presented review is to provide an overview of the current research performed on saliva in relation to ASD, mutual complementing, and discrepancies that result in difficulties applying the observed markers in clinical practice. We emphasize the methodological limitations of saliva collection and processing as well as the lack of information regarding ASD diagnosis, which is critically discussed.
Collapse
|
8
|
Khamirani HJ, Zoghi S, Faghihi F, Dastgheib SA, Hassanipour H, Bagher Tabei SM, Mohammadi S, Masoudi M, Poorang S, Ehsani E, Dianatpour M. Phenotype of ST3GAL3 deficient patients: A case and review of the literature. Eur J Med Genet 2021; 64:104250. [PMID: 34022416 DOI: 10.1016/j.ejmg.2021.104250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/19/2021] [Accepted: 05/16/2021] [Indexed: 12/24/2022]
Abstract
ST3GAL3 deficiency is an extremely rare autosomal recessive disorder caused by pathogenic mutations in the ST3GAL3 gene. Epilepsy, motor development delay, severe intellectual disability, and behavioral disorders have been reported to be associated with ST3GAL3 deficiency. In the present study, ST3GAL3 deficiency was caused by a homozygous splice-site mutation (NM_174964.4: c.936+1delG) in ST3GAL3. The patient described in this study was clinically similar to previously reported cases; nevertheless, we were able to detect repetitive behavior, previously not reported manifestations.
Collapse
Affiliation(s)
- Hossein Jafari Khamirani
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran; Comprehensive Medical Genetic Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Zoghi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Faghihi
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Seyed Mohammad Bagher Tabei
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran; Maternal-fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Mohammadi
- Comprehensive Medical Genetic Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marjan Masoudi
- Comprehensive Medical Genetic Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Poorang
- Comprehensive Medical Genetic Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Ehsani
- Comprehensive Medical Genetic Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran; Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Farajollahi Z, Razmara E, Heidari E, Jafarinia E, Garshasbi M. A novel variant of ST3GAL3 causes non-syndromic autosomal recessive intellectual disability in Iranian patients. J Gene Med 2020; 22:e3253. [PMID: 32666583 DOI: 10.1002/jgm.3253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/01/2020] [Accepted: 07/09/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The number of reported genes causing non-syndromic autosomal recessive intellectual disability (NS-ARID) is increasing. For example, mutations in the ST3GAL3 gene have been reported to be associated with NS-ARID. In the present study, we aimed to determine the genetic cause of the NS-ARID in a five-generation consanguineous Iranian family. METHODS We subjected four patients with an initial diagnosis of NS-ID in an Iranian family. To identify the possible genetic cause(s), whole-exome sequencing was performed on the proband and Sanger sequencing was applied to investigate co-segregation analysis. Using in silico predictive tools, the possible impacts of the variant on the structure and function of ST3Gal-III were predicted. RESULTS The common clinical features were detected in all affected members who were suffering from a severe ID. Using whole-exome sequencing, a novel variant, c.704C>T or p.(Thr235Met), in exon 9 of the ST3GAL3 gene (NM_001270461.2, OMIM# 606494) was identified and verified by Sanger sequencing. This variant is located next to the VS motif of ST3Gal-III, which is a vital part of the catalytical domains. CONCLUSIONS In the present study, we identified a novel missense variant, c.704C>T or p.(Thr235Met), in the ST3GAL3. To our knowledge, is the third variant in this gene to be associated with NS-ARID. Our findings highlight the need for further investigations into the mechanisms by which variants in ST3GAL3 contribute to neurological dysfunction.
Collapse
Affiliation(s)
- Zahra Farajollahi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Erfan Heidari
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Jafarinia
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
10
|
Yang X, Li H, Ge J, Chao H, Li G, Zhou Z, Liu J. The level of GNE and its relationship with behavioral phenotypes in children with autism spectrum disorder. Medicine (Baltimore) 2020; 99:e21013. [PMID: 32664106 PMCID: PMC7360203 DOI: 10.1097/md.0000000000021013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Autism spectrum disorder (ASD) is a serious nervous system disease, and the cause is not known. Sialic acid (SA) is an indispensable nutrient for early brain development. In previous study, it was found that the SA level of ASD group was lower than that of control group. However, the reason for this has not well explained. A case-control study was conducted to understand the association between the SA synthase enzyme regulatory gene and ASD. The study sample included 65 ASD children and 64 healthy children. The levels of the GNE gene were measured, which encodes UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE), a key enzyme in SA biosynthesis. The symptom severity, intelligence development level, and behavioral performance of ASD children were estimated. There was a significant difference in the levels of GNE between the ASD and control groups (t = 2.028, P = .045). Moreover, the levels of GNE were negatively related to stereotypical behaviors according to the Autism Diagnostic Observation Schedule (ADOS) assessment (r = -0.386, P = .039). However, there is no the correlation between the levels of GNE and autistic severity. As evaluated through the Social Responsiveness Scale (SRS), the levels of GNE were negatively associated with autistic mannerisms scores, social cognition scores and SRS total scores in the children with ASD (r = -0.314, P = .020). These results indicate that the GNE gene may be associated with autism spectrum disorder, and it is also related to autistic behavioral performance, such as stereotypical behaviors, autistic mannerisms, and social cognition ability. Our data suggest that future studies to explore the causal relationship between GNE and the etiology of ASD may be needed.
Collapse
Affiliation(s)
- Xiaolei Yang
- Department of Preventive Medicine, School of Public Health
- Postdoctoral Workstation, Research Institute of Medical and Pharmacy, Qiqihar Medical University, Qiqihar
- Postdoctoral Research Station, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongjie Li
- Department of Preventive Medicine, School of Public Health
| | - Jie Ge
- Department of Preventive Medicine, School of Public Health
| | - Hong Chao
- Department of Preventive Medicine, School of Public Health
| | - Gang Li
- Department of Preventive Medicine, School of Public Health
| | - Zhongguang Zhou
- Postdoctoral Research Station, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jicheng Liu
- Postdoctoral Workstation, Research Institute of Medical and Pharmacy, Qiqihar Medical University, Qiqihar
| |
Collapse
|