1
|
Saab Y, Nakad Z. Validating the accuracy of mathematical model-based pharmacogenomics dose prediction with real-world data. Eur J Clin Pharmacol 2025:10.1007/s00228-025-03805-x. [PMID: 39832006 DOI: 10.1007/s00228-025-03805-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
OBJECTIVE The study aims to verify the usage of mathematical modeling in predicting patients' medication doses in association with their genotypes versus real-world data. METHODS The work relied on collecting, extracting, and using real-world data on dosing and patients' genotypes. Drug metabolizing enzymes, i.e., cytochrome CYP 450, were the focus. A total number of 1914 subjects from 26 studies were considered, and CYP2D6 and CYP2C19 gene polymorphisms were used for the verification. RESULTS Results show that the mathematical model was able to predict the reported optimal dosing of the values provided in the considered studies. Predicting patients' optimal doses circumvents trial and error in patients' treatments. DISCUSSION The authors discussed the advantages of using a mathematical model in patients' dosing and identified multiple issues that would hinder the usability of raw data in the future, especially in the era of artificial intelligence (AI). The authors recommend that researchers and healthcare professionals use simple descriptive metabolic activity terms for patients and use allele activity scores for drug dosing rather than phenotype/genotype classifications. CONCLUSION The authors verified that a mathematical model could assist in providing data for better-informed decision-making in clinical settings and drug research and development.
Collapse
Affiliation(s)
- Yolande Saab
- Pharmaceutical Sciences Department, School of Pharmacy, Lebanese American University, Byblos, Lebanon.
| | - Zahi Nakad
- Electrical and Computer Engineering Department, School of Engineering, Lebanese American University, P.O. Box: 36, Byblos, F-19, Lebanon.
| |
Collapse
|
2
|
Mirjebreili SM, Shalbaf R, Shalbaf A. Prediction of treatment response in major depressive disorder using a hybrid of convolutional recurrent deep neural networks and effective connectivity based on EEG signal. Phys Eng Sci Med 2024; 47:633-642. [PMID: 38358619 DOI: 10.1007/s13246-024-01392-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024]
Abstract
In this study, we have developed a novel method based on deep learning and brain effective connectivity to classify responders and non-responders to selective serotonin reuptake inhibitors (SSRIs) antidepressants in major depressive disorder (MDD) patients prior to the treatment using EEG signal. The effective connectivity of 30 MDD patients was determined by analyzing their pretreatment EEG signals, which were then concatenated into delta, theta, alpha, and beta bands and transformed into images. Using these images, we then fine tuned a hybrid Convolutional Neural Network that is enhanced with bidirectional Long Short-Term Memory cells based on transfer learning. The Inception-v3, ResNet18, DenseNet121, and EfficientNet-B0 models are implemented as base models. Finally, the models are followed by BiLSTM and dense layers in order to classify responders and non-responders to SSRI treatment. Results showed that the EfficiencyNet-B0 has the highest accuracy of 98.33, followed by DensNet121, ResNet18 and Inception-v3. Therefore, a new method was proposed in this study that uses deep learning models to extract both spatial and temporal features automatically, which will improve classification results. The proposed method provides accurate identification of MDD patients who are responding, thereby reducing the cost of medical facilities and patient care.
Collapse
Affiliation(s)
| | - Reza Shalbaf
- Institute for Cognitive Science Studies, Tehran, Iran
| | - Ahmad Shalbaf
- Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Singh S, Sarma DK, Verma V, Nagpal R, Kumar M. Unveiling the future of metabolic medicine: omics technologies driving personalized solutions for precision treatment of metabolic disorders. Biochem Biophys Res Commun 2023; 682:1-20. [PMID: 37788525 DOI: 10.1016/j.bbrc.2023.09.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
Metabolic disorders are increasingly prevalent worldwide, leading to high rates of morbidity and mortality. The variety of metabolic illnesses can be addressed through personalized medicine. The goal of personalized medicine is to give doctors the ability to anticipate the best course of treatment for patients with metabolic problems. By analyzing a patient's metabolomic, proteomic, genetic profile, and clinical data, physicians can identify relevant diagnostic, and predictive biomarkers and develop treatment plans and therapy for acute and chronic metabolic diseases. To achieve this goal, real-time modeling of clinical data and multiple omics is essential to pinpoint underlying biological mechanisms, risk factors, and possibly useful data to promote early diagnosis and prevention of complex diseases. Incorporating cutting-edge technologies like artificial intelligence and machine learning is crucial for consolidating diverse forms of data, examining multiple variables, establishing databases of clinical indicators to aid decision-making, and formulating ethical protocols to address concerns. This review article aims to explore the potential of personalized medicine utilizing omics approaches for the treatment of metabolic disorders. It focuses on the recent advancements in genomics, epigenomics, proteomics, metabolomics, and nutrigenomics, emphasizing their role in revolutionizing personalized medicine.
Collapse
Affiliation(s)
- Samradhi Singh
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal, 462030, Madhya Pradesh, India
| | - Devojit Kumar Sarma
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal, 462030, Madhya Pradesh, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Manoj Kumar
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal, 462030, Madhya Pradesh, India.
| |
Collapse
|
4
|
Singh AV, Chandrasekar V, Paudel N, Laux P, Luch A, Gemmati D, Tissato V, Prabhu KS, Uddin S, Dakua SP. Integrative toxicogenomics: Advancing precision medicine and toxicology through artificial intelligence and OMICs technology. Biomed Pharmacother 2023; 163:114784. [PMID: 37121152 DOI: 10.1016/j.biopha.2023.114784] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023] Open
Abstract
More information about a person's genetic makeup, drug response, multi-omics response, and genomic response is now available leading to a gradual shift towards personalized treatment. Additionally, the promotion of non-animal testing has fueled the computational toxicogenomics as a pivotal part of the next-gen risk assessment paradigm. Artificial Intelligence (AI) has the potential to provid new ways analyzing the patient data and making predictions about treatment outcomes or toxicity. As personalized medicine and toxicogenomics involve huge data processing, AI can expedite this process by providing powerful data processing, analysis, and interpretation algorithms. AI can process and integrate a multitude of data including genome data, patient records, clinical data and identify patterns to derive predictive models anticipating clinical outcomes and assessing the risk of any personalized medicine approaches. In this article, we have studied the current trends and future perspectives in personalized medicine & toxicology, the role of toxicogenomics in connecting the two fields, and the impact of AI on personalized medicine & toxicology. In this work, we also study the key challenges and limitations in personalized medicine, toxicogenomics, and AI in order to fully realize their potential.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | | | - Namuna Paudel
- Department of Chemistry, Amrit Campus, Institute of Science and Technology, Tribhuvan University, Lainchaur, Kathmandu 44600 Nepal
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; Centre Hemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy; Centre for Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Veronica Tissato
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; Centre Hemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy; Centre for Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | |
Collapse
|
5
|
Baron JM. Artificial Intelligence in the Clinical Laboratory: An Overview with Frequently Asked Questions. Clin Lab Med 2023; 43:1-16. [PMID: 36764803 DOI: 10.1016/j.cll.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This article provides an overview of machine learning fundamentals and some applications of machine learning to clinical laboratory diagnostics and patient management. A key goal of this article is to provide a basic foundation in clinical machine learning for readers with clinical laboratory experience that will set them up for more in-depth study of the topic and/or to become a better collaborator with computational colleagues in the development and deployment of machine learning-based solutions.
Collapse
Affiliation(s)
- Jason M Baron
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114-2696, USA.
| |
Collapse
|
6
|
Sridharan K, Ramanathan M, Al Banna R. Evaluation of supervised machine learning algorithms in predicting the poor anticoagulation control and stable weekly doses of warfarin. Int J Clin Pharm 2023; 45:79-87. [PMID: 36306062 DOI: 10.1007/s11096-022-01471-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/10/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Machine learning algorithms (MLAs) carry a huge potential in identifying predicting factors and are being explored for their utility in the field of personalized medicine. AIM We aimed to investigate MLAs for identifying predictors (clinical and genetic) of poor anticoagulation status (ACS) and stable weekly warfarin dose (SWWD). METHOD Clinical factors, in addition to the CYP2C9, VKORC1, and CYP4F2 genotypes, were obtained for patients receiving warfarin for at least the previous six months. The C5.0 decision tree classification algorithm was used to predict poor ACS while classification and regression tree analysis (CART), in addition to the Chi-square automatic interaction detector (CHAID), was used to predict SWWD. The percentage of patients within 20% of the actual dose, root mean squared error (RMSE), and area under the receiver-operating characteristics curve (AUROC) were identified as performance indicators of the models. RESULTS In the C5.0 classification decision tree, the CYP4F2 genotype was the strongest predictor of ACS (AUROC = 0.53). In the CART analysis of SWWD, VKORC1 polymorphisms were the most significant predictor, followed by the CYP2C9 genotype (percentage of patients within 20% of the actual dose = 38.2%, RMSE = 13.6). For the CHAID algorithm, the percentage of patients within 20% of the actual dose was 49%, while the RMSE was found to be 13.4. CONCLUSION Genetic and non-genetic predictive factors were identified by the MLAs for ACS and SWWD. Further, the need to externally validate the MLAs in a prospective study was highlighted.
Collapse
Affiliation(s)
- Kannan Sridharan
- Department of Pharmacology and Therapeutics, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain.
| | - Murali Ramanathan
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Rashed Al Banna
- Department of Cardiology, Salmaniya Medical Complex, Manama, Kingdom of Bahrain
| |
Collapse
|
7
|
Koutsouleris N, Hauser TU, Skvortsova V, De Choudhury M. From promise to practice: towards the realisation of AI-informed mental health care. THE LANCET DIGITAL HEALTH 2022; 4:e829-e840. [DOI: 10.1016/s2589-7500(22)00153-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 11/07/2022]
|
8
|
Bobo WV, Van Ommeren B, Athreya AP. Machine learning, pharmacogenomics, and clinical psychiatry: predicting antidepressant response in patients with major depressive disorder. Expert Rev Clin Pharmacol 2022; 15:927-944. [DOI: 10.1080/17512433.2022.2112949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- William V. Bobo
- Department of Psychiatry & Psychology, Mayo Clinic Florida, Jacksonville, FL, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN & Jacksonville, FL, USA
| | | | - Arjun P. Athreya
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
9
|
Lin E, Lin CH, Lane HY. De Novo Peptide and Protein Design Using Generative Adversarial Networks: An Update. J Chem Inf Model 2022; 62:761-774. [DOI: 10.1021/acs.jcim.1c01361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Eugene Lin
- Department of Biostatistics, University of Washington, Seattle, Washington 98195, United States
- Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195, United States
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Chieh-Hsin Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Psychiatry, China Medical University Hospital, Taichung 40447, Taiwan
- Brain Disease Research Center, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung 41354, Taiwan
| |
Collapse
|