1
|
Vacca M, Celano G, Calabrese FM, Portincasa P, Gobbetti M, De Angelis M. The Controversial Role of Human Gut Lachnospiraceae. Microorganisms 2020; 8:573. [PMID: 32326636 PMCID: PMC7232163 DOI: 10.3390/microorganisms8040573] [Citation(s) in RCA: 966] [Impact Index Per Article: 193.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/05/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] [Imported: 09/14/2023] Open
Abstract
The complex polymicrobial composition of human gut microbiota plays a key role in health and disease. Lachnospiraceae belong to the core of gut microbiota, colonizing the intestinal lumen from birth and increasing, in terms of species richness and their relative abundances during the host's life. Although, members of Lachnospiraceae are among the main producers of short-chain fatty acids, different taxa of Lachnospiraceae are also associated with different intra- and extraintestinal diseases. Their impact on the host physiology is often inconsistent across different studies. Here, we discuss changes in Lachnospiraceae abundances according to health and disease. With the aim of harnessing Lachnospiraceae to promote human health, we also analyze how nutrients from the host diet can influence their growth and how their metabolites can, in turn, influence host physiology.
Collapse
|
Review |
5 |
966 |
2
|
Lammert F, Gurusamy K, Ko CW, Miquel JF, Méndez-Sánchez N, Portincasa P, van Erpecum KJ, van Laarhoven CJ, Wang DQH. Gallstones. Nat Rev Dis Primers 2016; 2:16024. [PMID: 27121416 DOI: 10.1038/nrdp.2016.24] [Citation(s) in RCA: 482] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] [Imported: 09/14/2023]
Abstract
Gallstones grow inside the gallbladder or biliary tract. These stones can be asymptomatic or symptomatic; only gallstones with symptoms or complications are defined as gallstone disease. Based on their composition, gallstones are classified into cholesterol gallstones, which represent the predominant entity, and bilirubin ('pigment') stones. Black pigment stones can be caused by chronic haemolysis; brown pigment stones typically develop in obstructed and infected bile ducts. For treatment, localization of the gallstones in the biliary tract is more relevant than composition. Overall, up to 20% of adults develop gallstones and >20% of those develop symptoms or complications. Risk factors for gallstones are female sex, age, pregnancy, physical inactivity, obesity and overnutrition. Factors involved in metabolic syndrome increase the risk of developing gallstones and form the basis of primary prevention by lifestyle changes. Common mutations in the hepatic cholesterol transporter ABCG8 confer most of the genetic risk of developing gallstones, which accounts for ∼25% of the total risk. Diagnosis is mainly based on clinical symptoms, abdominal ultrasonography and liver biochemistry tests. Symptoms often precede the onset of the three common and potentially life-threatening complications of gallstones (acute cholecystitis, acute cholangitis and biliary pancreatitis). Although our knowledge on the genetics and pathophysiology of gallstones has expanded recently, current treatment algorithms remain predominantly invasive and are based on surgery. Hence, our future efforts should focus on novel preventive strategies to overcome the onset of gallstones in at-risk patients in particular, but also in the population in general.
Collapse
|
Review |
9 |
482 |
3
|
Abstract
With a prevalence of 10-15% in adults in Europe and the USA, gallstones are the most common digestive disease needing admission to hospital in the West. The interplay between interprandial and postprandial physiological responses to endogenous and dietary lipids underscores the importance of coordinated hepatobiliary and gastrointestinal functions to prevent crystallisation and precipitation of excess biliary cholesterol. Indeed, identifying the metabolic and transcriptional pathways that drive the regulation of biliary lipid secretion has been a major achievement in the field. We highlight scientific advances in protein and gene regulation of cholesterol absorption, synthesis, and catabolism, and biliary lipid secretion with respect to the pathogenesis of cholesterol gallstone disease. We discuss the physical-chemical mechanisms of gallstone formation in bile and the active role of the gallbladder and the intestine. We also discuss gaps in our knowledge of the pathogenesis of gallstone formation and the potential for gene targeting in therapy.
Collapse
|
Review |
19 |
480 |
4
|
Portincasa P, Bonfrate L, Vacca M, De Angelis M, Farella I, Lanza E, Khalil M, Wang DQH, Sperandio M, Di Ciaula A. Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. Int J Mol Sci 2022; 23:1105. [PMID: 35163038 PMCID: PMC8835596 DOI: 10.3390/ijms23031105] [Citation(s) in RCA: 418] [Impact Index Per Article: 139.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023] [Imported: 08/29/2023] Open
Abstract
Gut microbiota encompasses a wide variety of commensal microorganisms consisting of trillions of bacteria, fungi, and viruses. This microbial population coexists in symbiosis with the host, and related metabolites have profound effects on human health. In this respect, gut microbiota plays a pivotal role in the regulation of metabolic, endocrine, and immune functions. Bacterial metabolites include the short chain fatty acids (SCFAs) acetate (C2), propionate (C3), and butyrate (C4), which are the most abundant SCFAs in the human body and the most abundant anions in the colon. SCFAs are made from fermentation of dietary fiber and resistant starch in the gut. They modulate several metabolic pathways and are involved in obesity, insulin resistance, and type 2 diabetes. Thus, diet might influence gut microbiota composition and activity, SCFAs production, and metabolic effects. In this narrative review, we discuss the relevant research focusing on the relationship between gut microbiota, SCFAs, and glucose metabolism.
Collapse
|
Review |
3 |
418 |
5
|
EASL Clinical Practice Guidelines on the prevention, diagnosis and treatment of gallstones. J Hepatol 2016; 65:146-181. [PMID: 27085810 DOI: 10.1016/j.jhep.2016.03.005] [Citation(s) in RCA: 329] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023] [Imported: 09/14/2023]
|
|
9 |
329 |
6
|
Di Ciaula A, Garruti G, Lunardi Baccetto R, Molina-Molina E, Bonfrate L, Wang DQH, Portincasa P. Bile Acid Physiology. Ann Hepatol 2017; 16:s4-s14. [PMID: 29080336 DOI: 10.5604/01.3001.0010.5493] [Citation(s) in RCA: 324] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 02/05/2023] [Imported: 08/29/2023]
Abstract
The primary bile acids (BAs) are synthetized from colesterol in the liver, conjugated to glycine or taurine to increase their solubility, secreted into bile, concentrated in the gallbladder during fasting, and expelled in the intestine in response to dietary fat, as well as bio-transformed in the colon to the secondary BAs by the gut microbiota, reabsorbed in the ileum and colon back to the liver, and minimally lost in the feces. BAs in the intestine not only regulate the digestion and absorption of cholesterol, triglycerides, and fat-soluble vitamins, but also play a key role as signaling molecules in modulating epithelial cell proliferation, gene expression, and lipid and glucose metabolism by activating farnesoid X receptor (FXR) and G-protein-coupled bile acid receptor-1 (GPBAR-1, also known as TGR5) in the liver, intestine, muscle and brown adipose tissue. Recent studies have revealed the metabolic pathways of FXR and GPBAR-1 involved in the biosynthesis and enterohepatic circulation of BAs and their functions as signaling molecules on lipid and glucose metabolism.
Collapse
|
Review |
8 |
324 |
7
|
Liu X, Invernizzi P, Lu Y, Kosoy R, Lu Y, Bianchi I, Podda M, Xu C, Xie G, Macciardi F, Selmi C, Lupoli S, Shigeta R, Ransom M, Lleo A, Lee AT, Mason AL, Myers RP, Peltekian KM, Ghent CN, Bernuzzi F, Zuin M, Rosina F, Borghesio E, Floreani A, Lazzari R, Niro G, Andriulli A, Muratori L, Muratori P, Almasio PL, Andreone P, Margotti M, Brunetto M, Coco B, Alvaro D, Bragazzi MC, Marra F, Pisano A, Rigamonti C, Colombo M, Marzioni M, Benedetti A, Fabris L, Strazzabosco M, Portincasa P, Palmieri VO, Tiribelli C, Croce L, Bruno S, Rossi S, Vinci M, Prisco C, Mattalia A, Toniutto P, Picciotto A, Galli A, Ferrari C, Colombo S, Casella G, Morini L, Caporaso N, Colli A, Spinzi G, Montanari R, Gregersen PK, Heathcote EJ, Hirschfield GM, Siminovitch KA, Amos CI, Gershwin ME, Seldin MF. Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis. Nat Genet 2010; 42:658-660. [PMID: 20639880 PMCID: PMC3150510 DOI: 10.1038/ng.627] [Citation(s) in RCA: 309] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 06/22/2010] [Indexed: 12/14/2022] [Imported: 09/14/2023]
Abstract
A genome-wide association screen for primary biliary cirrhosis risk alleles was performed in an Italian cohort. The results from the Italian cohort replicated IL12A and IL12RB associations, and a combined meta-analysis using a Canadian dataset identified newly associated loci at SPIB (P = 7.9 x 10(-11), odds ratio (OR) = 1.46), IRF5-TNPO3 (P = 2.8 x 10(-10), OR = 1.63) and 17q12-21 (P = 1.7 x 10(-10), OR = 1.38).
Collapse
|
Research Support, N.I.H., Extramural |
15 |
309 |
8
|
Baj J, Karakuła-Juchnowicz H, Teresiński G, Buszewicz G, Ciesielka M, Sitarz R, Forma A, Karakuła K, Flieger W, Portincasa P, Maciejewski R. COVID-19: Specific and Non-Specific Clinical Manifestations and Symptoms: The Current State of Knowledge. J Clin Med 2020; 9:1753. [PMID: 32516940 PMCID: PMC7356953 DOI: 10.3390/jcm9061753] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] [Imported: 08/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), due to the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has become an epidemiological threat and a worldwide concern. SARS-CoV-2 has spread to 210 countries worldwide and more than 6,500,000 confirmed cases and 384,643 deaths have been reported, while the number of both confirmed and fatal cases is continually increasing. COVID-19 is a viral disease that can affect every age group-from infants to the elderly-resulting in a wide spectrum of various clinical manifestations. COVID-19 might present different degrees of severity-from mild or even asymptomatic carriers, even to fatal cases. The most common complications include pneumonia and acute respiratory distress syndrome. Fever, dry cough, muscle weakness, and chest pain are the most prevalent and typical symptoms of COVID-19. However, patients might also present atypical symptoms that can occur alone, which might indicate the possible SARS-CoV-2 infection. The aim of this paper is to review and summarize all of the findings regarding clinical manifestations of COVID-19 patients, which include respiratory, neurological, olfactory and gustatory, gastrointestinal, ophthalmic, dermatological, cardiac, and rheumatologic manifestations, as well as specific symptoms in pediatric patients.
Collapse
|
Review |
5 |
247 |
9
|
Vecchié A, Dallegri F, Carbone F, Bonaventura A, Liberale L, Portincasa P, Frühbeck G, Montecucco F. Obesity phenotypes and their paradoxical association with cardiovascular diseases. Eur J Intern Med 2018; 48:6-17. [PMID: 29100895 DOI: 10.1016/j.ejim.2017.10.020] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/15/2022] [Imported: 09/14/2023]
Abstract
The pro-inflammatory state of the visceral adipose tissue (VAT) is supposed to accelerate cardiovascular (CV) and metabolic diseases in obese subjects. Some studies have recently reported an improved CV prognosis in certain obese and overweight patients as compared with leaner ones. This phenomenon, known as the "obesity paradox" (OP), has been described in many chronic diseases. This narrative review is based on the material searched for and obtained via PubMed and Web of Science up to May 2017. The search terms we used were: "obesity, paradox, adipose tissue" in combination with "cardiovascular, coronary heart disease, heart failure, arrhythmias". Using the current Body Mass Index (BMI)-based obesity definition, individuals with different clinical and biochemical characteristics are gathered together in the same category. Emerging evidence point to the existence of many "Obesity phenotypes" with different association with CV risk, accordingly to physical and life-style features. In this narrative review, we discussed if obesity phenotypes may be associated with a different CV risk, potentially explaining the OP. As a globally accepted definition of obesity is still lacking, we emphasized the need of a new approach, which should consider the heterogeneity of obesity. Better defining "obesities" and related CV risk is critical to markedly improve the classical BMI-based definition of obesity.
Collapse
|
Review |
7 |
218 |
10
|
Cordell HJ, Han Y, Mells GF, Li Y, Hirschfield GM, Greene CS, Xie G, Juran BD, Zhu D, Qian DC, Floyd JAB, Morley KI, Prati D, Lleo A, Cusi D, Gershwin ME, Anderson CA, Lazaridis KN, Invernizzi P, Seldin MF, Sandford RN, Amos CI, Siminovitch KA. International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways. Nat Commun 2015; 6:8019. [PMID: 26394269 PMCID: PMC4580981 DOI: 10.1038/ncomms9019] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 07/03/2015] [Indexed: 12/16/2022] [Imported: 09/14/2023] Open
Abstract
Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery data sets from genome-wide association studies of European subjects (n=2,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n=3,716 cases and 4,261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombined<5 × 10(-8)) and used pathway analysis to identify JAK-STAT/IL12/IL27 signalling and cytokine-cytokine pathways, for which relevant therapies exist.
Collapse
|
Meta-Analysis |
10 |
210 |
11
|
Grattagliano I, Palmieri VO, Portincasa P, Moschetta A, Palasciano G. Oxidative stress-induced risk factors associated with the metabolic syndrome: a unifying hypothesis. J Nutr Biochem 2008; 19:491-504. [PMID: 17855068 DOI: 10.1016/j.jnutbio.2007.06.011] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 06/05/2007] [Accepted: 06/18/2007] [Indexed: 01/18/2023] [Imported: 09/14/2023]
Abstract
Although the biochemical steps linking insulin resistance with the metabolic syndrome have not been completely clarified, mounting experimental and clinical evidence indicate oxidative stress as an attractive candidate for a central pathogenic role since it potentially explains the appearance of all risk factors and supports the clinical manifestations. In fact, metabolic syndrome patients exhibit activation of biochemical pathways leading to increased delivery of reactive oxygen species, decreased antioxidant protection and increased lipid peroxidation. The described associations between increased abdominal fat storage, liver steatosis and systemic oxidative stress, the diminished concentration of nitric oxide derivatives and antioxidant vitamins and the endothelial oxidative damages observed in subjects with the metabolic syndrome definitively support oxidative stress as the common second-level event in a unifying pathogenic view. Moreover, it has been observed that oxidative stress regulates the expression of genes governing lipid and glucose metabolism through activation or inhibition of intracellular sensors. Diet constituents can modulate redox reactions and the oxidative stress extent, thus also acting on nuclear gene expression. As a consequence of the food-gene interaction, metabolic syndrome patients may express different disease features and extents according to the different pathways activated by oxidative stress-modulated effectors. This view could also explain family differences and interethnic variations in determining risk factor appearance. This review mechanistically focused on oxidative stress events leading to individual disease factor appearance in metabolic syndrome patients and their setting for a more helpful clinical approach.
Collapse
|
Review |
17 |
200 |
12
|
Baj J, Forma A, Sitarz M, Portincasa P, Garruti G, Krasowska D, Maciejewski R. Helicobacter pylori Virulence Factors-Mechanisms of Bacterial Pathogenicity in the Gastric Microenvironment. Cells 2020; 10:27. [PMID: 33375694 PMCID: PMC7824444 DOI: 10.3390/cells10010027] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] [Imported: 08/29/2023] Open
Abstract
Gastric cancer constitutes one of the most prevalent malignancies in both sexes; it is currently the fourth major cause of cancer-related deaths worldwide. The pathogenesis of gastric cancer is associated with the interaction between genetic and environmental factors, among which infection by Helicobacter pylori (H. pylori) is of major importance. The invasion, survival, colonization, and stimulation of further inflammation within the gastric mucosa are possible due to several evasive mechanisms induced by the virulence factors that are expressed by the bacterium. The knowledge concerning the mechanisms of H. pylori pathogenicity is crucial to ameliorate eradication strategies preventing the possible induction of carcinogenesis. This review highlights the current state of knowledge and the most recent findings regarding H. pylori virulence factors and their relationship with gastric premalignant lesions and further carcinogenesis.
Collapse
|
Review |
5 |
198 |
13
|
Gasbarrini A, Corazza GR, Gasbarrini G, Montalto M, Di Stefano M, Basilisco G, Parodi A, Usai-Satta P, Vernia P, Anania C, Astegiano M, Barbara G, Benini L, Bonazzi P, Capurso G, Certo M, Colecchia A, Cuoco L, Di Sario A, Festi D, Lauritano C, Miceli E, Nardone G, Perri F, Portincasa P, Risicato R, Sorge M, Tursi A. Methodology and indications of H2-breath testing in gastrointestinal diseases: the Rome Consensus Conference. Aliment Pharmacol Ther 2009; 29 Suppl 1:1-49. [PMID: 19344474 DOI: 10.1111/j.1365-2036.2009.03951.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] [Imported: 09/14/2023]
Abstract
BACKGROUND Breath tests represent a valid and non-invasive diagnostic tool in many gastroenterological conditions. The rationale of hydrogen-breath tests is based on the concept that part of the gas produced by colonic bacterial fermentation diffuses into the blood and is excreted by breath, where it can be quantified easily. There are many differences in the methodology, and the tests are increasingly popular. AIM The Rome Consensus Conference was convened to offer recommendations for clinical practice about the indications and methods of H2-breath testing in gastrointestinal diseases. METHODS Experts were selected on the basis of a proven knowledge/expertise in H2-breath testing and divided into Working Groups (methodology; sugar malabsorption; small intestine bacterial overgrowth; oro-coecal transit time and other gas-related syndromes). They performed a systematic review of the literature, and then formulated statements on the basis of the scientific evidence, which were debated and voted by a multidisciplinary Jury. Recommendations were then modified on the basis of the decisions of the Jury by the members of the Expert Group. RESULTS AND CONCLUSIONS The final statements, graded according to the level of evidence and strength of recommendation, are presented in this document; they identify the indications for the use of H2-breath testing in the clinical practice and methods to be used for performing the tests.
Collapse
|
Consensus Development Conference |
16 |
186 |
14
|
Loguercio C, Andreone P, Brisc C, Brisc MC, Bugianesi E, Chiaramonte M, Cursaro C, Danila M, de Sio I, Floreani A, Freni MA, Grieco A, Groppo M, Lazzari R, Lobello S, Lorefice E, Margotti M, Miele L, Milani S, Okolicsanyi L, Palasciano G, Portincasa P, Saltarelli P, Smedile A, Somalvico F, Spadaro A, Sporea I, Sorrentino P, Vecchione R, Tuccillo C, Del Vecchio Blanco C, Federico A. Silybin combined with phosphatidylcholine and vitamin E in patients with nonalcoholic fatty liver disease: a randomized controlled trial. Free Radic Biol Med 2012; 52:1658-1665. [PMID: 22343419 DOI: 10.1016/j.freeradbiomed.2012.02.008] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 01/31/2012] [Accepted: 02/05/2012] [Indexed: 12/12/2022] [Imported: 09/14/2023]
Abstract
The only currently recommended treatment for nonalcoholic fatty liver disease (NAFLD) is lifestyle modification. Preliminary studies of silybin showed beneficial effects on liver function. Realsil (RA) comprises the silybin phytosome complex (silybin plus phosphatidylcholine) coformulated with vitamin E. We report on a multicenter, phase III, double-blind clinical trial to assess RA in patients with histologically documented NAFLD. Patients were randomized 1:1 to RA or placebo (P) orally twice daily for 12 months. Prespecified primary outcomes were improvement over time in clinical condition, normalization of liver enzyme plasma levels, and improvement of ultrasonographic liver steatosis, homeostatic model assessment (HOMA), and quality of life. Secondary outcomes were improvement in liver histologic score and/or decrease in NAFLD score without worsening of fibrosis and plasma changes in cytokines, ferritin, and liver fibrosis markers. We treated 179 patients with NAFLD; 36 were also HCV positive. Forty-one patients were prematurely withdrawn and 138 patients analyzed per protocol (69 per group). Baseline patient characteristics were generally well balanced between groups, except for steatosis, portal infiltration, and fibrosis. Adverse events (AEs) were generally transient and included diarrhea, dysgeusia, and pruritus; no serious AEs were recorded. Patients receiving RA but not P showed significant improvements in liver enzyme plasma levels, HOMA, and liver histology. Body mass index normalized in 15% of RA patients (2.1% with P). HCV-positive patients in the RA but not the P group showed improvements in fibrogenesis markers. This is the first study to systematically assess silybin in NAFLD patients. Treatment with RA but not P for 12 months was associated with improvement in liver enzymes, insulin resistance, and liver histology, without increases in body weight. These findings warrant further investigation.
Collapse
|
Randomized Controlled Trial |
13 |
182 |
15
|
Méndez-Sánchez N, Bugianesi E, Gish RG, Lammert F, Tilg H, Nguyen MH, Sarin SK, Fabrellas N, Zelber-Sagi S, Fan JG, Shiha G, Targher G, Zheng MH, Chan WK, Vinker S, Kawaguchi T, Castera L, Yilmaz Y, Korenjak M, Spearman CW, Ungan M, Palmer M, El-Shabrawi M, Gruss HJ, Dufour JF, Dhawan A, Wedemeyer H, George J, Valenti L, Fouad Y, Romero-Gomez M, Eslam M. Global multi-stakeholder endorsement of the MAFLD definition. Lancet Gastroenterol Hepatol 2022; 7:388-390. [PMID: 35248211 DOI: 10.1016/s2468-1253(22)00062-0] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023] [Imported: 09/14/2023]
|
Letter |
3 |
178 |
16
|
Wang HH, Garruti G, Liu M, Portincasa P, Wang DQH. Cholesterol and Lipoprotein Metabolism and Atherosclerosis: Recent Advances In reverse Cholesterol Transport. Ann Hepatol 2017; 16:s27-s42. [PMID: 29080338 DOI: 10.5604/01.3001.0010.5495] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 09/18/2017] [Indexed: 02/04/2023] [Imported: 09/14/2023]
Abstract
Atherosclerosis is characterized by lipid accumulation, inflammatory response, cell death and fibrosis in the arterial wall, and is major pathological basis for ischemic coronary heart disease (CHD), which is the leading cause of morbidity and mortality in the USA and Europe. Intervention studies with statins have shown to reduce LDL cholesterol levels and subsequently the risk of developing CHD. However, not all the aggressive statin therapy could decrease the risk of developing CHD. Many clinical and epidemiological studies have clearly demonstrated that the HDL cholesterol is inversely associated with risk of CHD and is a critical and independent component of predicting its risk. Elucidations of HDL metabolism give rise to therapeutic targets with potential to raising plasma HDL cholesterol levels, thereby reducing the risk of developing CHD. The concept of reverse cholesterol transport is based on the hypothesis that HDL displays an cardioprotective function, which is a process involved in the removal of excess cholesterol that is accumulated in the peripheral tissues (e.g., macrophages in the aortae) by HDL, transporting it to the liver for excretion into the feces via the bile. In this review, we summarize the latest advances in the role of the lymphatic route in reverse cholesterol transport, as well as the biliary and the non-biliary pathways for removal of cholesterol from the body. These studies will greatly increase the likelihood of discovering new lipid-lowering drugs, which are more effective in the prevention and therapeutic intervention of CHD that is the major cause of human death and disability worldwide.
Collapse
|
Review |
8 |
170 |
17
|
Wang HH, Lee DK, Liu M, Portincasa P, Wang DQH. Novel Insights into the Pathogenesis and Management of the Metabolic Syndrome. Pediatr Gastroenterol Hepatol Nutr 2020; 23:189-230. [PMID: 32483543 PMCID: PMC7231748 DOI: 10.5223/pghn.2020.23.3.189] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] [Imported: 09/14/2023] Open
Abstract
The metabolic syndrome, by definition, is not a disease but is a clustering of individual metabolic risk factors including abdominal obesity, hyperglycemia, hypertriglyceridemia, hypertension, and low high-density lipoprotein cholesterol levels. These risk factors could dramatically increase the prevalence of type 2 diabetes and cardiovascular disease. The reported prevalence of the metabolic syndrome varies, greatly depending on the definition used, gender, age, socioeconomic status, and the ethnic background of study cohorts. Clinical and epidemiological studies have clearly demonstrated that the metabolic syndrome starts with central obesity. Because the prevalence of obesity has doubly increased worldwide over the past 30 years, the prevalence of the metabolic syndrome has markedly boosted in parallel. Therefore, obesity has been recognized as the leading cause for the metabolic syndrome since it is strongly associated with all metabolic risk factors. High prevalence of the metabolic syndrome is not unique to the USA and Europe and it is also increasing in most Asian countries. Insulin resistance has elucidated most, if not all, of the pathophysiology of the metabolic syndrome because it contributes to hyperglycemia. Furthermore, a major contributor to the development of insulin resistance is an overabundance of circulating fatty acids. Plasma fatty acids are derived mainly from the triglycerides stored in adipose tissues, which are released through the action of the cyclic AMP-dependent enzyme, hormone sensitive lipase. This review summarizes the latest concepts in the definition, pathogenesis, pathophysiology, and diagnosis of the metabolic syndrome, as well as its preventive measures and therapeutic strategies in children and adolescents.
Collapse
|
Review |
5 |
148 |
18
|
Frühbeck G, Catalán V, Rodríguez A, Ramírez B, Becerril S, Salvador J, Portincasa P, Colina I, Gómez-Ambrosi J. Involvement of the leptin-adiponectin axis in inflammation and oxidative stress in the metabolic syndrome. Sci Rep 2017; 7:6619. [PMID: 28747790 PMCID: PMC5529549 DOI: 10.1038/s41598-017-06997-0] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/22/2017] [Indexed: 12/20/2022] [Imported: 09/14/2023] Open
Abstract
The aim of the present work was to study whether the leptin-adiponectin axis may have a pathophysiological role in the increased systemic inflammation and oxidative stress observed in patients with the metabolic syndrome (MS). Leptin, adiponectin, and markers of inflammation and oxidative stress were measured in a sample of 140 Caucasian subjects (74 males/66 females), aged 28-82 years, 60 with and 80 without the MS. Total concentrations of adiponectin as well as its multimeric forms HMW, MMW and LMW were significantly lower in individuals with the MS. The ratio adiponectin/leptin, a marker of dysfunctional adipose tissue, was dramatically decreased in the MS group. Systemic oxidative stress, as evidenced by levels of thiobarbituric acid reactive substances (TBARS), as well as markers of inflammation such as serum amyloid A (SAA), C-reactive protein (CRP) and osteopontin were significantly increased in subjects with the MS. Total adiponectin concentrations were negatively correlated with levels of TBARS and CRP levels. Furthermore, the ratio adiponectin/leptin was negatively correlated with SAA concentrations as well as with CRP levels. We concluded that a dysfunctional adipose tissue as suggested by a low adiponectin/leptin ratio may contribute to the increased oxidative stress and inflammation, hallmarks of the MS.
Collapse
|
research-article |
8 |
146 |
19
|
Petrosillo G, Portincasa P, Grattagliano I, Casanova G, Matera M, Ruggiero FM, Ferri D, Paradies G. Mitochondrial dysfunction in rat with nonalcoholic fatty liver Involvement of complex I, reactive oxygen species and cardiolipin. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1767:1260-1267. [PMID: 17900521 DOI: 10.1016/j.bbabio.2007.07.011] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 07/17/2007] [Accepted: 07/31/2007] [Indexed: 12/16/2022] [Imported: 09/14/2023]
Abstract
Mitochondrial dysfunction and oxidative stress play a central role in the pathophysiology of nonalcoholic fatty liver disease (NAFLD). This study aimed to elucidate the mechanism(s) responsible for mitochondrial dysfunction in nonalcoholic fatty liver. Fatty liver was induced in rats with a choline-deficient (CD) diet for 30 days. We examined the effect of CD diet on various parameters related to mitochondrial function such as complex I activity, oxygen consumption, reactive oxygen species (ROS) generation and cardiolipin content and oxidation. The activity of complex I was reduced by 35% in mitochondria isolated from CD livers compared with the controls. These changes in complex I activity were associated with parallel changes in state 3 respiration. Hydrogen peroxide (H(2)O(2)) generation was significantly increased in mitochondria isolated from CD livers. The mitochondrial content of cardiolipin, a phospholipid required for optimal activity of complex I, decreased by 38% as function of CD diet, while there was a significantly increase in the level of peroxidized cardiolipin. The lower complex I activity in mitochondria from CD livers could be completely restored to the level of control livers by exogenously added cardiolipin. This effect of cardiolipin could not be replaced by other phospholipids nor by peroxidized cardiolipin. It is concluded that CD diet causes mitochondrial complex I dysfunction which can be attributed to ROS-induced cardiolipin oxidation. These findings provide new insights into the alterations underlying mitochondrial dysfunction in NAFLD.
Collapse
|
|
18 |
142 |
20
|
Eijsbouts C, Zheng T, Kennedy NA, Bonfiglio F, Anderson CA, Moutsianas L, Holliday J, Shi J, Shringarpure S, Voda AI, Farrugia G, Franke A, Hübenthal M, Abecasis G, Zawistowski M, Skogholt AH, Ness-Jensen E, Hveem K, Esko T, Teder-Laving M, Zhernakova A, Camilleri M, Boeckxstaens G, Whorwell PJ, Spiller R, McVean G, D'Amato M, Jostins L, Parkes M. Genome-wide analysis of 53,400 people with irritable bowel syndrome highlights shared genetic pathways with mood and anxiety disorders. Nat Genet 2021; 53:1543-1552. [PMID: 34741163 PMCID: PMC8571093 DOI: 10.1038/s41588-021-00950-8] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] [Imported: 09/14/2023]
Abstract
Irritable bowel syndrome (IBS) results from disordered brain-gut interactions. Identifying susceptibility genes could highlight the underlying pathophysiological mechanisms. We designed a digestive health questionnaire for UK Biobank and combined identified cases with IBS with independent cohorts. We conducted a genome-wide association study with 53,400 cases and 433,201 controls and replicated significant associations in a 23andMe panel (205,252 cases and 1,384,055 controls). Our study identified and confirmed six genetic susceptibility loci for IBS. Implicated genes included NCAM1, CADM2, PHF2/FAM120A, DOCK9, CKAP2/TPTE2P3 and BAG6. The first four are associated with mood and anxiety disorders, expressed in the nervous system, or both. Mirroring this, we also found strong genome-wide correlation between the risk of IBS and anxiety, neuroticism and depression (rg > 0.5). Additional analyses suggested this arises due to shared pathogenic pathways rather than, for example, anxiety causing abdominal symptoms. Implicated mechanisms require further exploration to help understand the altered brain-gut interactions underlying IBS.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
139 |
21
|
Krawczyk M, Bonfrate L, Portincasa P. Nonalcoholic fatty liver disease. Best Pract Res Clin Gastroenterol 2010; 24:695-708. [PMID: 20955971 DOI: 10.1016/j.bpg.2010.08.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 08/16/2010] [Indexed: 02/07/2023] [Imported: 09/14/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), the most common liver disorder in the Western world, is a clinico-histopathological entity in which excessive triglyceride accumulation in the liver occurs. Non-alcoholic steatohepatitis (NASH) represents the necroinflammatory form, which can lead to advanced liver fibrosis, cirrhosis, and hepatocellular carcinoma. The pathogenesis of NAFLD/NASH is complex but increased visceral adiposity plus insulin resistance with increased free fatty acids release play an initial key role for the onset and perpetuation of liver steatosis. Further events in the liver include oxidative stress and lipid peroxidation, decreased antioxidant defences, early mitochondrial dysfunction, iron accumulation, unbalance of adipose-derived adipokines with a chronic proinflammatory status, and gut-derived microbial adducts. New gene polymorphisms increasing the risk of fatty liver, namely APOC3 and PNPLA3, have been lately identified allowing further insights into the pathogenesis of this condition. In our review pathophysiological, genetic, and essential diagnostic and therapeutic aspects of NAFLD are examined with future trends in this field highlighted.
Collapse
|
Review |
15 |
139 |
22
|
Di Ciaula A, Wang DQH, Portincasa P. An update on the pathogenesis of cholesterol gallstone disease. Curr Opin Gastroenterol 2018; 34:71-80. [PMID: 29283909 PMCID: PMC8118137 DOI: 10.1097/mog.0000000000000423] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] [Imported: 08/29/2023]
Abstract
PURPOSE OF REVIEW Gallstone disease is a major epidemiologic and economic burden worldwide, and the most frequent form is cholesterol gallstone disease. RECENT FINDINGS Major pathogenetic factors for cholesterol gallstones include a genetic background, hepatic hypersecretion of cholesterol, and supersaturated bile which give life to precipitating cholesterol crystals that accumulate and grow in a sluggish gallbladder. Additional factors include mucin and inflammatory changes in the gallbladder, slow intestinal motility, increased intestinal absorption of cholesterol, and altered gut microbiota. Mechanisms of disease are linked with insulin resistance, obesity, the metabolic syndrome, and type 2 diabetes. The role of nuclear receptors, signaling pathways, gut microbiota, and epigenome are being actively investigated. SUMMARY Ongoing research on cholesterol gallstone disease is intensively investigating several pathogenic mechanisms, associated metabolic disorders, new therapeutic approaches, and novel strategies for primary prevention, including lifestyles.
Collapse
|
Review |
7 |
135 |
23
|
Palmieri VO, Grattagliano I, Portincasa P, Palasciano G. Systemic oxidative alterations are associated with visceral adiposity and liver steatosis in patients with metabolic syndrome. J Nutr 2006; 136:3022-3026. [PMID: 17116714 DOI: 10.1093/jn/136.12.3022] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] [Imported: 09/14/2023] Open
Abstract
Although evidence suggests the link between chronic inflammation and oxidative stress as the main mechanism responsible for endothelial dysfunction and cardiovascular complications in patients with metabolic syndrome, little is known about the determining role of each metabolic syndrome component in such alterations. This study investigated the relation between systemic oxidative alterations and metabolic syndrome features in 41 patients. Compared with control subjects, serum vitamin C and alpha-tocopherol concentrations were lower and those of lipid peroxides [thiobarbituric acid reactive substances (TBARs)] were higher in metabolic syndrome patients (P < 0.001). A linear relation was observed between visceral fat thickness and serum TBARs:cholesterol ratio (r = 0.541, P < 0.001), whereas negative correlations were found between alpha-tocopherol and BMI (r = -0.212, P < 0.05) and the grade of liver steatosis (r = -0.263, P < 0.02). Patients with metabolic syndrome and liver steatosis had higher serum hyaluronate (HA) concentrations (P < 0.001). Serum HA was positively correlated with serum alanine amino transferase (r = 0.715, P < 0.001) and the homeostasis monitoring assessment index (r = 0.248, P < 0.03). The presence of metabolic syndrome was predicted from a linear combination of visceral fat and all oxidative variables. In metabolic syndrome patients, serum nitrosothiols and vitamin C concentrations, which were lower (P < 0.001) than in control subjects, were inversely related to the grade of hypertension (r = -0.645, P < 0.001 and r = -0.415, P < 0.007, respectively). In conclusion, metabolic syndrome patients exhibited decreased antioxidant protection and increased lipid peroxidation. Our results indicate a strong association between increased abdominal fat storage, liver steatosis, and systemic oxidative alterations in metabolic syndrome patients and diminished nitrosothiols and vitamin C concentrations as important factors associated with hypertension in these patients.
Collapse
|
|
19 |
131 |
24
|
Wang HH, Portincasa P, Mendez-Sanchez N, Uribe M, Wang DQH. Effect of ezetimibe on the prevention and dissolution of cholesterol gallstones. Gastroenterology 2008; 134:2101-2110. [PMID: 18442485 PMCID: PMC2741499 DOI: 10.1053/j.gastro.2008.03.011] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 02/26/2008] [Accepted: 03/06/2008] [Indexed: 12/16/2022] [Imported: 09/14/2023]
Abstract
BACKGROUND & AIMS Cholesterol cholelithiasis is one of the most prevalent and most costly digestive diseases in developed countries and its incidence has increased markedly in Asian countries owing to the adoption of Western-type dietary habits. Because animal experiments showed that high efficiency of intestinal cholesterol absorption contributes to gallstone formation, we explored whether the potent cholesterol absorption inhibitor ezetimibe could prevent gallstones and promote gallstone dissolution in mice and reduce biliary cholesterol content in human beings. METHODS Male gallstone-susceptible C57L mice were fed a lithogenic diet and concomitantly administered with ezetimibe at 0, 0.8, 4, or 8 mg/kg/day for 8 or 12 weeks. Gallbladder biles and gallstones were examined by microscopy. Gallbladder emptying in response to cholecystokinin octapeptide was measured gravimetrically. Biliary lipid outputs were analyzed by physical-chemical methods. Cholesterol absorption efficiency was determined by fecal dual-isotope ratio and mass balance methods. Lipid changes in gallbladder biles of gallstone patients vs overweight subjects without gallstones were examined before (day 0) and at 30 days after ezetimibe treatment (20 mg/day). RESULTS Ezetimibe prevented gallstones by effectively reducing intestinal cholesterol absorption and biliary cholesterol secretion, and protected gallbladder motility function by desaturating bile in mice. Treatment with ezetimibe promoted the dissolution of gallstones by forming an abundance of unsaturated micelles. Furthermore, ezetimibe significantly reduced biliary cholesterol saturation and retarded cholesterol crystallization in biles of patients with gallstones. CONCLUSIONS Ezetimibe is a novel approach to reduce biliary cholesterol content and a promising strategy for preventing or treating cholesterol gallstones by inhibiting intestinal cholesterol absorption.
Collapse
|
Clinical Trial |
17 |
123 |
25
|
Henström M, Diekmann L, Bonfiglio F, Hadizadeh F, Kuech EM, von Köckritz-Blickwede M, Thingholm LB, Zheng T, Assadi G, Dierks C, Heine M, Philipp U, Distl O, Money ME, Belheouane M, Heinsen FA, Rafter J, Nardone G, Cuomo R, Usai-Satta P, Galeazzi F, Neri M, Walter S, Simrén M, Karling P, Ohlsson B, Schmidt PT, Lindberg G, Dlugosz A, Agreus L, Andreasson A, Mayer E, Baines JF, Engstrand L, Portincasa P, Bellini M, Stanghellini V, Barbara G, Chang L, Camilleri M, Franke A, Naim HY, D'Amato M. Functional variants in the sucrase-isomaltase gene associate with increased risk of irritable bowel syndrome. Gut 2018; 67:263-270. [PMID: 27872184 PMCID: PMC5563477 DOI: 10.1136/gutjnl-2016-312456] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/29/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022] [Imported: 09/14/2023]
Abstract
OBJECTIVE IBS is a common gut disorder of uncertain pathogenesis. Among other factors, genetics and certain foods are proposed to contribute. Congenital sucrase-isomaltase deficiency (CSID) is a rare genetic form of disaccharide malabsorption characterised by diarrhoea, abdominal pain and bloating, which are features common to IBS. We tested sucrase-isomaltase (SI) gene variants for their potential relevance in IBS. DESIGN We sequenced SI exons in seven familial cases, and screened four CSID mutations (p.Val557Gly, p.Gly1073Asp, p.Arg1124Ter and p.Phe1745Cys) and a common SI coding polymorphism (p.Val15Phe) in a multicentre cohort of 1887 cases and controls. We studied the effect of the 15Val to 15Phe substitution on SI function in vitro. We analysed p.Val15Phe genotype in relation to IBS status, stool frequency and faecal microbiota composition in 250 individuals from the general population. RESULTS CSID mutations were more common in patients than asymptomatic controls (p=0.074; OR=1.84) and Exome Aggregation Consortium reference sequenced individuals (p=0.020; OR=1.57). 15Phe was detected in 6/7 sequenced familial cases, and increased IBS risk in case-control and population-based cohorts, with best evidence for diarrhoea phenotypes (combined p=0.00012; OR=1.36). In the population-based sample, 15Phe allele dosage correlated with stool frequency (p=0.026) and Parabacteroides faecal microbiota abundance (p=0.0024). The SI protein with 15Phe exhibited 35% reduced enzymatic activity in vitro compared with 15Val (p<0.05). CONCLUSIONS SI gene variants coding for disaccharidases with defective or reduced enzymatic activity predispose to IBS. This may help the identification of individuals at risk, and contribute to personalising treatment options in a subset of patients.
Collapse
|
Multicenter Study |
7 |
123 |