1
|
Sundaramoorthy P, Ramasamy T, Mishra SK, Jeong KY, Yong CS, Kim JO, Kim HM. Engineering of caveolae-specific self-micellizing anticancer lipid nanoparticles to enhance the chemotherapeutic efficacy of oxaliplatin in colorectal cancer cells. Acta Biomater 2016; 42:220-231. [PMID: 27395829 DOI: 10.1016/j.actbio.2016.07.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/07/2016] [Accepted: 07/05/2016] [Indexed: 12/17/2022] [Imported: 01/11/2025]
Abstract
UNLABELLED Novel nanomaterials for the intracellular transport of therapeutic cargos have been actively sought to effectively breach cell-membrane barriers. In this study we developed novel self-micellizing anticancer lipid (SMAL)-based pro-apoptotic nanoparticles (NPs) that enhance the accumulation and chemotherapeutic efficacy of oxaliplatin (OL) in colorectal cancer cells (CRCs). We demonstrated that NPs with special affinity to caveolae could be designed and based on this specificity, NPs effectively differentiated between endothelial cells (tumor cells) and epithelial cells, without the need for a cell-specific targeting moiety. We demonstrated a remarkable uptake of OL-loaded SMAL NPs (SMAL-OL) in HCT116 and HT-29 cells via the caveolae-mediated endocytosis (CvME) pathway. The higher accumulation of SMAL-OL in the intracellular environment resulted in a significantly elevated anticancer effect compared to that of free OL. Cell cycle analysis proved G2/M phase arrest, along with substantial presence of cells in the sub-G1 phase. An immunoblot analysis indicated an upregulation of pro-apoptotic markers (Bax; caspase-3; caspase-9; and PARP1) and downregulation of Bcl-xl and the PI3K/AKT/mTOR complex, indicating a possible intrinsic apoptotic signaling pathway. Overall, the ability of SMAL NPs to confer preferential specificity towards the cell surface domain could offer an exciting means of targeted delivery without the need for receptor-ligand-type strategies. STATEMENT OF SIGNIFICANCE In this work, we developed a novel self-micellizing anticancer lipid (SMAL)-based pro-apoptotic nanoparticles (NPs) that enhance the accumulation and chemotherapeutic efficacy of oxaliplatin (OL) in colorectal cancer cells. We demonstrated that NPs with special affinity to caveolae could be realized and based on this specificity, NPs effectively differentiated between endothelial cells (tumor cells) and epithelial cells, without the need for a cell-specific targeting moiety. In addition, oxaliplatin-loaded SMAL were efficiently endocytosed by the cancer cells and represent a significant breakthrough as an effective drug delivery system with promising potential in cancer therapy. We believe this work holds promising potential for the development of next generation of multifunctional nanocarriers for an exciting means of targeted delivery without the need for receptor-ligand-type strategies.
Collapse
|
|
9 |
78 |
2
|
Jeong KY, Lee EJ, Kim SJ, Yang SH, Sung YC, Seong J. Irradiation-induced localization of IL-12-expressing mesenchymal stem cells to enhance the curative effect in murine metastatic hepatoma. Int J Cancer 2015; 137:721-730. [PMID: 25639194 DOI: 10.1002/ijc.29428] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 12/23/2014] [Indexed: 12/20/2022] [Imported: 01/11/2025]
Abstract
Irradiation in conjunction with gene therapy is considered for efficient cancer treatment. Mesenchymal stem cells (MSCs), due to their irradiation-promotable tumor tropism, are ideal delivery vehicles for gene therapy. In this study, we investigated whether treatment with radiation and interleukin (IL)-12-expressing MSCs (MSCs/IL-12) exerts improved antitumor effects on murine metastatic hepatoma. HCa-I and Hepa 1-6 cells were utilized to generate heterotopic murine hepatoma models. Tumor-bearing mice were treated with irradiation or MSCs/IL-12 alone, or a combination. Monocyte chemoattractant protein-1 (MCP-1/CCL2) expression was assessed in irradiated hepatoma tissues to confirm a chemotactic effect. Combination treatment strategies were established and their therapeutic efficacies were evaluated by monitoring tumor growth, metastasis and survival rate. IL-12 expression was assessed and the apoptotic activity and immunological alterations in the tumor microenvironment were examined. MCP-1/CCL2 expression and localization of MSCs/IL-12 increased in the irradiated murine hepatoma cells. The antitumor effects, including suppression of pulmonary metastasis and survival rate improvements, were increased by the combination treatment with irradiation and MSCs/IL-12. IL-12 expression was increased in tumor cells, causing proliferation of cluster of differentiation 8(+) T-lymphocytes and natural killer cells. The apoptotic activity increased, indicating that the cytotoxicity of immune cells was involved in the antitumor effect of the combined treatment. Treatment with irradiation and MSCs/IL-12 showed effectiveness in treating murine metastatic hepatoma. IL-12-induced proliferation of immune cells played an important role in apoptosis of tumor cells. Our results suggest that treatment with irradiation and MSCs/IL-12 may be a useful strategy for enhancing antitumor activity in metastatic hepatoma.
Collapse
|
|
10 |
24 |
3
|
Back SK, Jeong KY, Li C, Lee J, Lee SB, Na HS. Chronically relapsing pruritic dermatitis in the rats treated as neonate with capsaicin; a potential rat model of human atopic dermatitis. J Dermatol Sci 2012; 67:111-119. [PMID: 22721998 DOI: 10.1016/j.jdermsci.2012.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 05/09/2012] [Accepted: 05/22/2012] [Indexed: 12/21/2022] [Imported: 01/11/2025]
Abstract
BACKGROUND The pathophysiological mechanisms underlying chronic pruritic skin diseases, e.g. atopic dermatitis (AD), and effective therapies remain elusive due to the paucity of animal models. Recently, we rediscovered that injection of capsaicin into rat pups resulted in vigorous scratching behavior and chronically relapsing AD-like cutaneous lesions well into adulthood. OBJECTIVES To characterize the chronic pruritic dermatitis induced by neonatal capsaicin treatment. METHODS Capsaicin (50mg/kg) was given to rat pups subcutaneously within 48 h after birth, and then scratching behavior, dermatitis and pathophysiological changes of rat skin were investigated chronologically. RESULTS Neonatal capsaicin treatment led to not only severe scratching and cutaneous lesions but also a large number of pathophysiological changes in the skin, such as histopathological changes including the deficiency of epidermal filaggrin expression, increases in the number of mast cells, levels of tissue NGF and Th2 cytokine mRNA, impaired skin barrier function and colonization with S. aureus. In addition, we observed the hyperproduction of serum IgE, which is clinically similar to the pathophysiology seen in the patients with atopic dermatitis. During the follow-up observation, the rats showed the alternative periods of relapsing and remitting skin lesions. CONCLUSION Injection of capsaicin into rat pups results in chronically relapsing pruritic dermatitis, similar to human AD. Therefore, we think neonatal capsaicin treatment could be a useful model for studying human AD and for the development of novel therapeutic drugs.
Collapse
|
|
13 |
24 |
4
|
Jeong KY, Lee J, Li C, Han T, Lee SB, Lee H, Back SK, Na HS. Juvenile obesity aggravates disease severity in a rat model of atopic dermatitis. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2015; 7:69-75. [PMID: 25553265 PMCID: PMC4274472 DOI: 10.4168/aair.2015.7.1.69] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/31/2014] [Accepted: 04/16/2014] [Indexed: 12/29/2022] [Imported: 01/11/2025]
Abstract
PURPOSE There is increasing epidemiological evidence of an association between childhood obesity and atopic dermatitis, but little is known about the underlying mechanism(s). In the present study, we used a rat model of atopic dermatitis to assess whether juvenile obesity, induced by reduction of litter size, aggravated the signs of atopic dermatitis and, if so, whether this aggravation was associated with changes in plasma concentration of adipokines, such as leptin and adiponectin. METHODS Dermatitis was induced by neonatal capsaicin treatment. Body weight, dermatitis score, serum IgE, skin nerve growth factor (NGF), serum leptin and adiponectin, and cytokine mRNA expression in the skin lesion were compared between small (SL, 5 pups) and large litters (LL, 15 pups). RESULTS The body weight of juvenile rats up to 6 weeks of age was significantly heavier in the SL group, compared with those in the LL group. The SL group showed more robust development of dermatitis, and higher levels of serum IgE and skin NGF than the LL group. Additionally, the SL group demonstrated higher levels of leptin and pro-inflammatory cytokine mRNA but lower levels of adiponectin than the LL group. CONCLUSIONS These results suggest a causal link between a decrease in immunological tolerance, induced by juvenile obesity, and aggravation of atopic dermatitis.
Collapse
|
research-article |
10 |
21 |
5
|
Sundaramoorthy P, Sim JJ, Jang YS, Mishra SK, Jeong KY, Mander P, Chul OB, Shim WS, Oh SH, Nam KY, Kim HM. Modulation of intracellular calcium levels by calcium lactate affects colon cancer cell motility through calcium-dependent calpain. PLoS One 2015; 10:e0116984. [PMID: 25629974 PMCID: PMC4309579 DOI: 10.1371/journal.pone.0116984] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/17/2014] [Indexed: 01/01/2023] [Imported: 01/11/2025] Open
Abstract
Cancer cell motility is a key phenomenon regulating invasion and metastasis. Focal adhesion kinase (FAK) plays a major role in cellular adhesion and metastasis of various cancers. The relationship between dietary supplementation of calcium and colon cancer has been extensively investigated. However, the effect of calcium (Ca2+) supplementation on calpain-FAK-motility is not clearly understood. We sought to identify the mechanism of FAK cleavage through Ca2+ bound lactate (CaLa), its downstream signaling and role in the motility of human colon cancer cells. We found that treating HCT116 and HT-29 cells with CaLa immediately increased the intracellular Ca2+ (iCa2+) levels for a prolonged period of time. Ca2+ influx induced cleavage of FAK into an N-terminal FAK (FERM domain) in a dose-dependent manner. Phosphorylated FAK (p-FAK) was also cleaved in to its p-N-terminal FAK. CaLa increased colon cancer cells motility. Calpeptin, a calpain inhibitor, reversed the effects of CaLa on FAK and pFAK cleavage in both cancer cell lines. The cleaved FAK translocates into the nucleus and modulates p53 stability through MDM2-associated ubiquitination. CaLa-induced Ca2+ influx increased the motility of colon cancer cells was mediated by calpain activity through FAK and pFAK protein destabilization. In conclusion, these results suggest that careful consideration may be given in deciding dietary Ca2+ supplementation to patient undergoing treatment for metastatic cancer.
Collapse
|
research-article |
10 |
21 |
6
|
Jeong KY. Inhibiting focal adhesion kinase: A potential target for enhancing therapeutic efficacy in colorectal cancer therapy. World J Gastrointest Oncol 2018; 10:290-292. [PMID: 30364839 PMCID: PMC6198301 DOI: 10.4251/wjgo.v10.i10.290] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/16/2018] [Accepted: 08/27/2018] [Indexed: 02/05/2023] [Imported: 01/11/2025] Open
Abstract
Focal adhesion kinase (FAK) is a major integrin-dependent tyrosine phosphorylated protein, recently, FAK association with colorectal cancer (CRC) has gained attention. The various cancer-promoting mechanisms that associated with FAK can be implicated in the progression of CRC. The interactions between structural features of FAK and various kinases could be closely related to growth, survival, and metastasis in CRC cells. These interactions include human epithelial growth factor receptor, c-Met, platelet-derived growth factor receptor, vascular endothelial growth factor receptor, and Src. Such interactions can trigger the survival signaling of CRC cells and are also involved signaling downstream of phosphatidylinositol 3-kinase, AKT, and the extracellular regulated kinase. Based on this scientific background, many pharmaceutical companies are taking efforts to develop FAK inhibitors to treat solid cancer including CRC. Although the anti-cancer efficacies have been noted in many studies, the commercial drugs have not been developed yet. Therefore, the FAK research on CRC is expected to gain momentum and be highly appreciated as a potential field for developing the new drugs. Therefore, the studies on FAK that effect on the progression of human CRC s would be possible to suggest various approaches to CRC treatment, and FAK could be a potential target as an anticancer candidate for CRC therapies.
Collapse
|
Editorial |
7 |
20 |
7
|
Jeong KY, Kang JH. Investigation of the pruritus-induced functional activity in the rat brain using manganese-enhanced MRI. J Magn Reson Imaging 2015; 42:709-716. [PMID: 25545752 DOI: 10.1002/jmri.24832] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/01/2014] [Indexed: 11/11/2022] [Imported: 01/11/2025] Open
Abstract
PURPOSE To provide clear information on the activation regions of itching, we investigated the functional activity of cerebral regions in the pruritus-induced rat model using manganese-enhanced magnetic resonance imaging (MEMRI). MATERIALS AND METHODS Itching was induced via neonatal capsaicin treatment in Sprague-Dawley rats (itching rats), and scratching behavior of the control, itching, and gabapentin (GBP)-treated itching rats was compared. Then the activated or deactivated brain regions were investigated in the control, itching, and GBP-treated itching rats using a 4.7T MRI system. RESULTS While the itching rats engaged in vigorous scratching (121.2 ± 22.4 times), the scratching behavior was decreased in the GBP-treated itching rats (30.6 ± 8.8 times). GBP induced the attenuation of functional activity in two regions -7.10 mm from bregma, in one region -6.65 mm from bregma, and in one region -6.06 mm from bregma. The brain regions related to itching were as follows: parafascicular nucleus, thalamus, superior/inferior colliculus, periaqueductal gray, cingulate cortex, amygdala, midbrain regions, lateral habenula, and hypothalamic areas. CONCLUSION Our MEMRI investigation indicates new functional activity of cerebral regions in rats due to the effect of itching or GBP. This information could be used to monitor the therapeutic effects of novel agents or for clinical strategies to treat pathological itch.
Collapse
|
|
10 |
20 |
8
|
Sundaramoorthy P, Baskaran R, Mishra SK, Jeong KY, Oh SH, Kyu Yoo B, Kim HM. Novel self-micellizing anticancer lipid nanoparticles induce cell death of colorectal cancer cells. Colloids Surf B Biointerfaces 2015; 135:793-801. [PMID: 26342325 DOI: 10.1016/j.colsurfb.2015.08.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/02/2015] [Accepted: 08/24/2015] [Indexed: 12/23/2022] [Imported: 01/11/2025]
Abstract
In the present study, we developed a novel drug-like self-micellizing anticancer lipid (SMAL), and investigated its anticancer activity and effects on cell death pathways in human colorectal cancer (CRC) cell lines. Three self-assembled nanoparticles were prepared, namely, SMAL102 (lauramide derivative), SMAL104 (palmitamide derivative), and SMAL108 (stearamide derivative) by a thin-film hydration technique, and were characterized for physicochemical and biological parameters. SMAL102 were nanosized (160.23 ± 8.11 nm) with uniform spherical shape, while SMAL104 and SMAL108 did not form spherical shape but formed large size nanoparticles and irregular in shape. Importantly, SMAL102 showed a cytotoxic effect towards CRC cell lines (HCT116 and HT-29), and less toxicity to a normal colon fibroblast cell line (CCD-18Co). Conversely, SMAL104 and SMAL108 did not have an anti-proliferative effect on CRC cell lines. SMAL102 nanoparticles were actively taken up by CRC cell lines, localized in the cell membrane, and exhibited remarkable cytotoxicity in a concentration-dependent manner. The normal colon cell line showed significantly less cellular uptake and non-cytotoxicity as compared with the CRC cell lines. SMAL102 nanoparticles induced caspase-3, caspase-9, and PARP cleavage in HT-29 cells, indicating the induction of apoptosis; whereas LC3B was activated in HCT116 cells, indicating autophagy-induced cell death. Collectively, these results demonstrate that SMAL102 induced cell death via activation of apoptosis and autophagy in CRC cell lines. The present study could be a pioneer for further preclinical and clinical development of such compounds.
Collapse
|
|
10 |
16 |
9
|
Jeong KY, Seong J. Neonatal capsaicin treatment in rats affects TRPV1-related noxious heat sensation and circadian body temperature rhythm. J Neurol Sci 2014; 341:58-63. [PMID: 24746025 DOI: 10.1016/j.jns.2014.03.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 12/31/2022] [Imported: 01/11/2025]
Abstract
The transient receptor potential vanilloid 1 (TRPV1) is a cation channel that serves as a polymodal detector of noxious stimuli such as capsaicin. Therefore, capsaicin treatment has been used to investigate the physiological function of TRPV1. Here, we report physiological changes induced by treating neonatal rats with capsaicin. Capsaicin (50mg/kg) (cap-treated) or vehicle (vehicle-treated) was systemically administered to newborn SD rat pups within 48 h after birth. TRPV1 expression, intake volume of capsaicin water, and noxious heat sensation were measured 6 weeks after capsaicin treatment. Circadian body temperature and locomotion were recorded by biotelemetry. Expression of Per1, Per2, Bmal1 and Hsf1 (clock genes) was also investigated. Neonatal capsaicin treatment not only decreased TRPV1 expression but also induced desensitization to noxious heat stimuli. Circadian body temperature of cap-treated rats increased significantly compared with that of vehicle-treated rats. Additionally, the amplitude of the circadian body temperature was reversed in cap-treated rats. Expression of the hypothalamic Hsf1 and liver Per2 clock genes followed a similar trend. Therefore, we suggest that these findings will be useful in studying various physiological mechanisms related to TRPV1.
Collapse
|
|
11 |
15 |
10
|
Lim EJ, Back SK, Kim MA, Li C, Lee J, Jeong KY, Na HS. Long-lasting neonatal inflammation enhances pain responses to subsequent inflammation, but not peripheral nerve injury in adult rats. Int J Dev Neurosci 2009; 27:215-222. [PMID: 19429386 DOI: 10.1016/j.ijdevneu.2009.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 01/16/2009] [Accepted: 01/18/2009] [Indexed: 11/19/2022] [Imported: 01/11/2025] Open
Abstract
The early postnatal period has been suggested to be the vulnerable time for structural and functional reorganization of sensory systems, and painful stimuli at this time may alter neuronal circuits, thereby leading to changes in an individual's response to pain later in life. In the present study, we examined whether inflammatory experience in the early life can affect pain responses to subsequent noxious insults later in life. The two groups of neonatal rats, treated with an inflammatory irritant and untreated, were subjected to inflammation and peripheral nerve injury in adulthood. Neonatal inflammation was induced by injection of complete Freund's adjuvant (CFA, 25 microl) into the hindpaw or tail of newborn rat pups. Adult rats which had suffered from neonatal paw inflammation at P0 were subjected to re-injection of CFA into the paw neonatally exposed to CFA or L5 spinal nerve ligation. Paw thickness and histology of inflamed paw were examined to assess the neonatal inflammation. Adult animals whose tail had been subjected to CFA injection on P3 received tail-innervating nerve injury. The results showed that the neonatal CFA-treated rats suffered from chronic inflammation, confirmed by persistent increase of paw thickness and histological result of inflamed paw. These animals showed enhanced pain responses to re-inflammatory challenge by injection of CFA (200 microl) into the neonatally inflamed paw 8 weeks after birth compared with the neonatally untreated animals. However, neuropathic pain on the hindpaw and the tail which had been induced by peripheral nerve injury in the neonatal CFA-treated group were not different from those of the untreated group. The present data suggest that early neonatal long-lasting inflammation differentially affects pain responses later in life, depending on the types of subsequent noxious insults.
Collapse
|
|
16 |
11 |
11
|
Jeong KY, Park M, Sim JJ, Kim HM. Combination Antitumor Effect of Sorafenib via Calcium-Dependent Deactivation of Focal Adhesion Kinase Targeting Colorectal Cancer Cells. Molecules 2020; 25:5299. [PMID: 33202899 PMCID: PMC7697278 DOI: 10.3390/molecules25225299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/28/2020] [Accepted: 11/06/2020] [Indexed: 12/31/2022] [Imported: 01/11/2025] Open
Abstract
Sorafenib has been recently used for the treatment of patients with advanced colorectal cancer (CRC) and is recognized for its therapeutic value. However, the continuous use of sorafenib may cause resistance in the treatment of cancer patients. In this study, we investigated whether sorafenib exerts an enhanced anticancer effect on CRC cells via the calcium-mediated deactivation of the focal adhesion kinase (FAK) signaling pathways. The appropriate dose of sorafenib and lactate calcium salt (CaLa) for a combination treatment were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Then, cell cycle analysis was performed following treatment with 2.5 μM sorafenib and/or 2.5 mM CaLa. CRC cells were found to be in the G1 phase by sorafenib treatment, and they accumulated in the sub-G1 phase with CaLa treatment. Western blots and enzyme-linked immunosorbent assays were performed to analyze the elements of the recombinant activated factor (RAF) and focal adhesion kinase (FAK) signaling cascades. Sorafenib-inhibited RAF-dependent signaling in CRC cells, however, either did not affect the expression of Akt or increased it. As the upstream signaling of FAK was suppressed by CaLa, we observed that the expression of the sub-signaling phospho (p) AKT and p-mammalian target of rapamycin was also suppressed. Treatment with a combination of sorafenib and CaLa enhanced the antitumor activity of CRC cells. The % viability of CRC cells was significantly decreased compared to the single treatment with sorafenib or CaLa, and the accumulation of Sub G1 of CRC cells was clearly confirmed. The migration ability of CRC cells was significantly reduced. The findings of this study indicate that sorafenib will show further improved antitumor efficacy against CRC due to overcoming resistance through the use of CaLa.
Collapse
|
research-article |
5 |
10 |
12
|
Jeong KY, Kang JH. Investigation of spinal nerve ligation-mediated functional activation of the rat brain using manganese-enhanced MRI. Exp Anim 2018; 67:23-29. [PMID: 28747592 PMCID: PMC5814311 DOI: 10.1538/expanim.17-0033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/13/2017] [Indexed: 10/31/2022] [Imported: 01/11/2025] Open
Abstract
To provide clear information on the cerebral regions according to peripheral neuropathy, the functional activation was investigated using manganese-enhanced magnetic resonance imaging (MEMRI). L5-spinal nerve ligation (SNL) was applied to the rats to induce neuropathic pain. Mechanical allodynia and thermal hyperalgesia were measured to confirm neuropathic pain induction following before and after gabapentin (GBP) treatment. The cerebral regions were investigated using a 4.7T MRI system in the sham, SNL, and GBP-treated SNL rats. Neuropathic pain was severely induced by SNL on the postoperative day 14, excepting the sham group. While MEMRI indicated many activation regions in the brain of SNL rats before GBP treatment, the activities were chronologically attenuated after GBP treatment. The brain regions relating SNL-induced neuropathic pain were as follows: the posterior association area of the parietal region, superior colliculus, inferior colliculus, primary somatosensory area, cingulate cortex, and cingulum bundle. SNL induced- neuropathic pain is transmitted to the primary somatosensory area and parietal region through the cingulum bundle and limbic system. These findings would be helpful for the understanding of neuropathic pain-associated process and be an accurate target for a relief of neuropathic pain.
Collapse
|
research-article |
7 |
9 |
13
|
Lee EJ, Lee SJ, Kim JH, Kim KJ, Yang SH, Jeong KY, Seong J. Radiation Inhibits Interleukin-12 Production via Inhibition of C-Rel through the Interleukin-6/ Signal Transducer and Activator of Transcription 3 Signaling Pathway in Dendritic Cells. PLoS One 2016; 11:e0146463. [PMID: 26745884 PMCID: PMC4706448 DOI: 10.1371/journal.pone.0146463] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/17/2015] [Indexed: 12/19/2022] [Imported: 01/11/2025] Open
Abstract
Radiotherapy (RT) is a potent anti-tumor modality. However, unwanted effects including increased recurrence and metastasis that involve factors such as cytokines, which induce complex molecular mechanisms, have also been reported. In a previous study, we showed that interleukin (IL)-12 and radiotherapy combination treatment suppressed tumor growth and metastasis in a hepatoma mouse model. In this study, we investigated the mechanism underlying the IL-12 anti-tumor effect during radiotherapy. In tumor-bearing mice, irradiation decreased IL-12 expression in the tumors and spleens. However, a number of dendritic cells infiltrated into the tumors in which IL-12 expression did not decrease. To further study the underlying detailed mechanism for this decrease in IL-12, LPS-stimulated bone marrow-derived dendritic cells (BMDCs) were irradiated, and then IL-12- and IL-6-associated molecules were examined in irradiated tumors and BMDCs. Irradiation resulted in IL-12 suppression and IL-6 increase. IL-6 and signal transducer and activator of transcription 3 (STAT3) inhibitors restored the irradiation-induced IL-12 decrease via suppression of C-Rel activation. Taken together, our study suggests that irradiation-induced IL-6 can decrease IL-12 production through the inhibition of C-Rel phosphorylation by the IL-6/STAT3 signaling pathway.
Collapse
|
research-article |
9 |
8 |
14
|
Park M, Sundaramoorthy P, Sim JJ, Jeong KY, Kim HM. Synergistically Anti-metastatic Effect of 5-Flourouracil on Colorectal Cancer Cells via Calcium-mediated Focal Adhesion Kinase Proteolysis. Anticancer Res 2017; 37:103-114. [PMID: 28011480 DOI: 10.21873/anticanres.11295] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/16/2016] [Accepted: 11/29/2016] [Indexed: 11/10/2022] [Imported: 01/11/2025]
Abstract
AIM To investigate the possibility of enhancing an anti-metastatic effect of 5-fluorouracil (5-FU) on colorectal cancer (CRC) cells by combining it with continuous calcium supplementation. MATERIALS AND METHODS Optimal doses of 5-FU with/without lactate salt (CaLa) were determined via clonogenicity and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays using human CRC cells cultured on normal or low-attachment plates. Invasion and migration assays confirmed the enhanced anti-metastatic effect of combining 5-FU and CaLa. Western blot analysis for elements of the focal adhesion kinase (FAK) signaling cascade and epithelial-mesenchymal transition (EMT) markers was used to investigate the underlying mechanism. RESULTS 5-FU (2.5 μM) had no antitumor activity against unanchored CRC cells, while it significantly suppressed anchorage-dependent cell proliferation. In contrast, treatment with CaLa (2.5 mM), alone and in combination with 5-FU, exerted antitumor activity against both anchored and unanchored CRC cells via calcium-mediated FAK proteolysis and inhibition of EMT markers, such as vimentin and SNAIL. CONCLUSION Calcium supplementation represents a method of enhancing the potency of existing antitumor agents such as 5-FU, augmenting their clinical effectiveness.
Collapse
|
|
8 |
8 |
15
|
Jeong KY, Lee C, Cho JH, Kang JH, Na HS. New method of manganese-enhanced Magnetic Resonance Imaging (MEMRI) for rat brain research. Exp Anim 2012; 61:157-164. [PMID: 22531731 DOI: 10.1538/expanim.61.157] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] [Imported: 01/11/2025] Open
Abstract
Manganese (Mn(2+))-enhanced MRI (MEMRI) is known to provide insight into functional and anatomical biology. However, this method, which uses Mn(2+) as a MRI-detectable contrast agent, has drawbacks such as the toxicity to cells beyond a certain level of Mn(2+). In this study, we attempt to determine a new method of ICV administration, the optimal concentration of administered Mn(2+) and the optimal MEMRI acquisition time following administration. Male Sprague-Dawley rats were used in the following experimental sessions: (1) intracerebroventricular (ICV) cannula implantation in the region of the cisterna magna, (2) serial dilution of MnCl(2) (20-80 mM), (3) ICV administration of MnCl(2) through the cannula, and (4) T(1)-weighted MRI measurements. We confirmed that cannula implantation in the region of the cisterna magna was a new ICV injection method for the administration of a contrast agent. The optimal concentration for MEMRI was 20/50 mM/µl of MnCl(2). The MEMRI data acquired at different time points indicate that most signal enhancement is maintained during 14-48 h after contrast agent injection, and 24 h was the optimal time to acquire images of the rat brain. The present study offers optimized parameters for contrast agent injection that would be a good basis for studies using MEMRI to research the rat brain.
Collapse
|
|
13 |
8 |
16
|
Jeong KY, Kim HM, Kang JH. Investigation of the functional difference between the pathological itching and neuropathic pain-induced rat brain using manganese-enhanced MRI. Acta Radiol 2016; 57:861-868. [PMID: 26385912 DOI: 10.1177/0284185115604514] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/12/2015] [Indexed: 01/17/2023] [Imported: 01/11/2025]
Abstract
BACKGROUND There is a remarkable similarity in the central sensitization of itch and pain. However, the interactions between itch and pain are only partially understood. PURPOSE To investigate the functional activity of cerebral regions to provide clear information on the neuronal pathways related to both pathological itching (PI) and neuropathic pain (NP). MATERIAL AND METHODS Sprague-Dawley rats were used in this study. PI was induced via neonatal capsaicin treatment, and scratching behavior was counted. NP was induced via lumbar spinal nerve 5 (L5) ligation, and mechanical allodynia was measured. The activated cerebral regions in the control, PI, and NP rats were measured using a 4.7 T magnetic resonance imaging (MRI) system and manganese-enhanced MRI (MEMRI). Subsequently, the cerebral activation regions were identified, and the signal intensity was compared. RESULTS Cerebral activities of the PI-induced rats were found in three regions -7.10 and -4.20 mm, and two regions -2.45 mm from the bregma. In the NP-induced rats, cerebral activities were found in two regions 7.10 and -2.45 mm, and one region -4.20 mm from the bregma. Comparing the PI and NP rats, the cerebral activities were different in one region -7.10 mm and -2.45 mm, and two regions -4.20 mm from the bregma. The different regions were the midbrain area, the geniculate complex, the hypothalamic area, and the amygdala area. CONCLUSION Our MEMRI investigation indicates functionally different activity of cerebral regions due to the effect of PI or NP. These findings provide clear information of the signal transduction in the brain regarding PI or NP that share a similar neuronal pathway.
Collapse
|
|
9 |
7 |
17
|
Jeong KY, Kim EK, Park MH, Kim HM. Perspective on Cancer Therapeutics Utilizing Analysis of Circulating Tumor Cells. Diagnostics (Basel) 2018; 8:23. [PMID: 29641512 PMCID: PMC6023425 DOI: 10.3390/diagnostics8020023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/03/2018] [Accepted: 04/09/2018] [Indexed: 12/19/2022] [Imported: 01/11/2025] Open
Abstract
Various methods are available for cancer screening, and the methods are performed depending on the origin site of cancer. Among these methods, biopsy followed by medical imaging is the most common. After cancer progression is determined, an optimal treatment-such as surgery, chemotherapy, and/or radiation therapy-is selected. A new assay has been developed that detects circulating tumor cells (CTCs). Tracking changes in CTCs may reveal important tumoral sensitivity information or resistance patterns to specific regimens and prompt changes in therapy on a personalized basis. Characterization of CTCs at the DNA, RNA, and protein levels is important for gaining insight for clinical applications. A small number of CTCs can be analyzed to obtain genome information such as the progression of cancer including metastasis, even in a single cluster. Although many clinical studies, particularly CTC enumeration and detection of specific oncogene expression, have increased the success rate of diagnosis and predicting prognosis, there is no consensus regarding the technical approaches and various aspects of the methodology, making it difficult to standardize optimal methods for CTC analysis. However, ongoing technological advances are currently being achieved and large-scale clinical studies are being conducted. Applying CTC analysis in the clinic would be very useful for advancing diagnosis, prognosis prediction, and therapeutics.
Collapse
|
other |
7 |
6 |
18
|
Jeong KY, Lee EJ, Yang SH, Seong J. Combination of macrophage inflammatory protein 1 alpha with existing therapies to enhance the antitumor effects on murine hepatoma. JOURNAL OF RADIATION RESEARCH 2015; 56:37-45. [PMID: 25225286 PMCID: PMC4572594 DOI: 10.1093/jrr/rru077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/23/2014] [Accepted: 08/16/2014] [Indexed: 06/03/2023] [Imported: 01/11/2025]
Abstract
Existing therapies such as irradiation or sorafenib have limited success in the treatment of hepatocellular carcinoma (HCC) due to tumor recurrence and metastasis. Therefore, combination with other therapeutics is often considered. Macrophage inflammatory protein-1 alpha (MIP-1α) is a member of a family of chemoattractant cytokines that can induce the migration of monocytes, which in turn can play a role in fighting tumors. This study investigated whether intravenous injection of MIP-1α in conjunction with irradiation or sorafenib could enhance the antitumor effects on murine hepatoma. An HCa-I tumor was grown on the right thigh of each C3H/HeN mouse. Mice were then treated with 10 Gy of irradiation, sorafenib, or a combination of MIP-1α with either irradiation or sorafenib, and antitumor and antimetastatic effects were then investigated. To understand the mechanisms, changes in the level of immunological markers were also evaluated. Combination treatment of MIP-1α with irradiation or sorafenib resulted in a significant enhancement of antitumor effects, prevention of lung metastasis and increase in host survival. This was achieved by significantly increasing the levels of the immunological markers: Cluster Differentiation (CD) 8, CD107A and CD11C. We conclude that a combination treatment of MIP-1α with irradiation or sorafenib would be a useful strategy for management of hepatoma.
Collapse
|
research-article |
10 |
6 |
19
|
Jeong KY. Cancer-specific metabolism: Promising approaches for colorectal cancer treatment. World J Gastrointest Oncol 2019; 11:768-772. [PMID: 31662818 PMCID: PMC6815929 DOI: 10.4251/wjgo.v11.i10.768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/04/2019] [Accepted: 09/10/2019] [Indexed: 02/05/2023] [Imported: 01/11/2025] Open
Abstract
Investigation of cancer-specific metabolism has made it possible to establish the principle that atypically reconstituted metabolism is considered a hallmark of cancer due to changes in physiological property. Recently, a variety of targets depending on the prompted aerobic glycolysis process, starting from the abnormal uptake of glucose, and cancer-specific metabolism due to impaired mitochondrial function and abnormal expression of drug-metabolizing enzymes have been investigated and discovered. Given that most solid cancers rely on cancer-specific metabolism to support their growth, it is necessary to examine closely the specific processes of cancer metabolism and have a detailed understanding of how cellular metabolism is altered in colorectal cancer (CRC) related to CRC survival and proliferation. The development of key methods to regulate efficiently cancer-specific metabolism in CRC is still in the initial stage. Therefore, targeting cancer-specific metabolism will yield treatable methods that are critical as a new area of development strategies for CRC treatment.
Collapse
|
Editorial |
6 |
6 |
20
|
Jeong KY. Changes in TRPV1-Mediated Physiological Function in Rats Systemically Treated With Capsaicin on the Neonate. Int J Mol Sci 2020; 21:3143. [PMID: 32365623 PMCID: PMC7247669 DOI: 10.3390/ijms21093143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022] [Imported: 01/11/2025] Open
Abstract
Capsaicin is the active component of chili peppers and is a hydrophobic, colorless, odorless, and crystalline to waxy compound. The transient receptor potential vanilloid 1 (TRPV1) is the capsaicin receptor channels that are involved in a variety of functions like transduction and transmission of the physiological stimulus. Subcutaneous injection of capsaicin to a newborn rat leads to involuntary lifelong TRPV1 desensitization. Various physiological changes including sensory and homeostatic actions in the body associated with neonatal capsaicin treatment are induced by direct TRPV1 channel targeting. Interesting changes include unique phenomena such as the reduction in pain perception, abnormal body temperature, increase in infection, infectious or neuropathological itching, and irregular circadian core body temperature rhythm. These symptoms are associated with relatively higher fever or loss of sensory c-fiber related to TRPV1 desensitization. The aforementioned outcomes not only provide a warning about the risk of capsaicin exposure in newborns but also indicate the possible occurrence of relatively rare diseases that are difficult to diagnose. Therefore, Therefore, the present review aims to summarize the unique phenomena caused by systemic capsaicin administration in neonatal rats.
Collapse
|
Review |
5 |
6 |
21
|
JEONG KEUNYEONG, MANDER POONAM, SIM JAEJUN, KIM HWANMOOK. Combination of lactate calcium salt with 5-indanesulfonamide and α-cyano-4-hydroxycinnamic acid to enhance the antitumor effect on HCT116 cells via intracellular acidification. Oncol Lett 2016; 11:1866-1872. [PMID: 26998091 PMCID: PMC4774552 DOI: 10.3892/ol.2016.4137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 12/03/2015] [Indexed: 01/05/2023] [Imported: 01/11/2025] Open
Abstract
Maintenance of a neutral intracellular pH (pHi) is favorable for the survival of tumors, and maintenance of highly acidic extracellular pH (pHe) facilitates tumor invasiveness. The aim of the present study was to investigate the antitumor effects of lactate calcium salt (CaLa), 5-indanesulfonamide (IS) and α-cyano-4-hydroxycinnamic acid (CA) via pH regulation in colon cancer cells. HCT116 cells were treated with CaLa, IS, CA and combinations of the three. Subsequently, the concentration of intracellular lactate was determined. pHi and pHe were measured using cell lysates and culture media. Colony formation assay, cell viability assay and western blot analysis were additionally performed to analyze the consequences of the pH changes. CaLa, IS, CA and combination treatments induced an increase in the concentration of intracellular lactate. Lactate influx into the tumor microenvironment produced an acidic pHi in colon cancer cells. Consequently, colony formation and cell viability were significantly decreased, as well as poly(adenosine diphosphate-ribose) polymerase degradation. The tumor microenvironment may be exploited therapeutically by disrupting the mechanism that regulates pHi, leading to cell apoptosis. The present study indicated that treatment with CaLa, IS and CA induced intracellular acidification via lactate influx, causing apoptosis of colon cancer cells. Additionally, the findings suggested that the combination of CaLa with IS and CA may enhance antitumor activity, and may provide a potential therapeutic approach for the treatment of colon cancer.
Collapse
|
research-article |
9 |
5 |
22
|
Sung IS, Park SY, Jeong KY, Kim HM. Investigation of the preventive effect of calcium on inflammation-mediated choroidal neovascularization. Life Sci 2019; 233:116727. [PMID: 31381895 DOI: 10.1016/j.lfs.2019.116727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 01/03/2023] [Imported: 01/11/2025]
Abstract
AIMS Age-related macular degeneration (AMD) is a leading cause of irreversible blindness in elderly people. The pathogenesis of neovascular AMD is known but is closely related to inflammation and choroidal neovascularization (CNV). The aim of this study was to investigate the anti-inflammatory and anti-angiogenic effects of calcium on neovascular AMD. MAIN METHODS Human retinal pigment epithelial cells (ARPE-19) were used to identify protein markers of inflammation induced by differentiated macrophages. Choroidal neovascularization (CNV) mouse model was established by rupturing the Bruch's membrane using laser photocoagulation in C57BL/6 mice. Mice were divided into the following groups: untreated control and calcium supplemented. The expression levels of toll-like receptor isotype (TLR) 4, nuclear factor kappa B (NF-κB), hypoxia-inducible factor-1α (Hif-1α), and vascular endothelial growth factor (VEGF) were investigated to check whether calcium supplementation results in suppression of inflammation and has an anti-angiogenic effect. CNV was evaluated by immunofluorescence staining on choroidal flat mounts. KEY FINDING The inflammation-induced expression of TLR4, NF-κB, and Hif-1α was decreased in ARPE-19 cells after calcium supplementation. Inhibition of the transcriptional activation of ARPE-19 cells by Hif-1α suppression resulted in decreased VEGF expression. In the laser-induced CNV mouse model, calcium supplementation inhibited inflammatory mediators and neovascularization in the retinal tissue. SIGNIFICANCE Supplementation with calcium seems to constrain inveterate symptoms of neovascular AMD by inhibiting inflammation and angiogenesis in the laser-induced CNV mouse model.
Collapse
|
|
6 |
5 |
23
|
Jeong KY, Park MH. The Significance of Targeting Poly (ADP-Ribose) Polymerase-1 in Pancreatic Cancer for Providing a New Therapeutic Paradigm. Int J Mol Sci 2021; 22:3509. [PMID: 33805293 PMCID: PMC8037971 DOI: 10.3390/ijms22073509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/27/2022] [Imported: 01/11/2025] Open
Abstract
Genome-wide studies focusing on elucidating the effects on cancer progression have enabled the consequent identification of a distinct subpopulation of pancreatic cancer cells with unstable genomic characteristics. Based on this background, deleterious changes by poly (adenosine diphosphate (ADP)-ribose) polymerase-1 (PARP)-1 have been concentrated in oncology. One of the critical functions of PARP-1 is the response to DNA damage, which plays a pivotal role in DNA repair in cancers. PARP-1 also has widespread functions that are essential for the survival and growth of cancer cells. It regulates oxidative stress in mitochondria through the regulation of superoxide and oxidation. PARP-1 is in charge of regulating mitosis, which is a crucial role in tumorigenesis and remodels histones and chromatin enzymes related to transcriptional regulation, causing alterations in epigenetic markers and chromatin structure. Given the significance of these processes, it can be understood that these processes in cancer cells are at the frontline of the pathogenetic changes required for cancer cell survival, and these contributions can result in malignant transformation. Therefore, this review addresses the current molecular biological features for understanding the multifactorial function of PARP-1 in pancreatic cancer related to the aforementioned roles, along with the summary of recent approaches with PARP-1 inhibition in clinical studies targeting pancreatic cancer. This understanding could help to embrace the importance of targeting PARP-1 in the treatment of pancreatic cancer, which may present the potential to find out a variety of research topics that can be both challenged clinically and non-clinically.
Collapse
|
Review |
4 |
5 |
24
|
Jeong KY, Park M, Kim IU, Sim JJ, Kim HM. Enhancing 5-Fluorouracil Efficacy in a Primary Colorectal Cancer by Long-lasting Calcium Supplementation. Anticancer Res 2017; 37:2959-2964. [PMID: 28551633 DOI: 10.21873/anticanres.11649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 11/10/2022] [Imported: 01/11/2025]
Abstract
BACKGROUND/AIM 5-Fluorouracil (5-FU) over-use has led to an urgent need for alternative treatment regimens, such as a lower concentration of the drug because of its toxic effects. The aim of this study was to investigate the possibility of improving the antitumor effect of 5-FU without toxicity by targeting primary colorectal cancer (CRC) with sustained calcium supplementation. MATERIALS AND METHODS The viability of CRC cells was determined after treatment of 5-FU, lactate calcium salt (CaLac), or the combination of te two. Western blot analysis for the focal adhesion kinase (FAK) signaling cascade was performed to investigate the underlying mechanism. A xenograft model was established to evaluate antitumor efficacy of each treatment, and the necrotic effect was also observed in tumor tissues. RESULTS By the combined treatment, proteolysis of FAK signaling cascade, was mediated by sustained calcium supplementation resulting in further decrease in the clonogenicity of CRC cells. The in vivo anticancer efficacy including tumor necrosis was significantly increased by the combination treatment compared to single treatment of with 5-FU. CONCLUSION Sustained calcium supplementation was able to enhance the potency of 5-FU targeting the primary CRC.
Collapse
|
|
8 |
4 |
25
|
Sim JJ, Park MH, Baek JH, Lee H, Jeong KY, Kim HM. Investigation into Enhancing Capecitabine Efficacy in Colorectal Cancer by Inhibiting Focal Adhesion Kinase Signaling. Anticancer Res 2018; 38:4667-4676. [PMID: 30061234 DOI: 10.21873/anticanres.12772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 11/10/2022] [Imported: 01/11/2025]
Abstract
BACKGROUND/AIM Capecitabine is a pro-drug of 5-fluorouracil (5-FU), and is an orally available chemotherapeutic used to treat colorectal cancer (CRC). Recently, research has focused on improving its efficacy at lower doses in order to minimize its well-known toxicities. In this study, we investigated the possibility of improving the antitumor effect of capecitabine against CRC by destabilizing focal adhesion kinase (FAK) signaling. MATERIALS AND METHODS Optimal dosages for capecitabine and lactate calcium salt (LCS) were determined using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide MTT assay. The viability of CRC cells was investigated by MTT and clonogenic assays after single or combination treatment with capecitabine and LCS. Western blot analyses were used to determine changes in the expression of components of the FAK and AKT signaling cascade, and this information was used to elucidate the underlying mechanism. A xenograft model was established to evaluate the antitumor efficacy of the combination treatment, as well as its necrotic effect and organ toxicity. RESULTS The addition of LCS to capecitabine treatment led to an increase in the proteolysis of the FAK signaling cascade components, including SRC proto-oncogene, non-receptor tyrosine kinase; AKT serine/threonine kinase 1; and nuclear factor-kappa B, resulting in a decrease in the viability and clonogenic ability of CRC cells. In vivo antitumor efficacy, including tumor necrosis, was significantly increased with the combination treatment relative to both single treatments, and no organ toxicity was found in any experimental group. CONCLUSION The addition of LCS increased the anticancer efficacy of capecitabine at a lower dose than is currently used in human patients.
Collapse
|
|
7 |
4 |