1
|
Miyagi Y, Habara T, Hirata R, Hayashi N. Predicting a live birth by artificial intelligence incorporating both the blastocyst image and conventional embryo evaluation parameters. Artif Intell Med Imaging 2020; 1:94-107. [DOI: 10.35711/aimi.v1.i3.94] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The achievement of live birth is the goal of assisted reproductive technology in reproductive medicine. When the selected blastocyst is transferred to the uterus, the degree of implantation of the blastocyst is evaluated by microscopic inspection, and the result is only about 30%-40%, and the method of predicting live birth from the blastocyst image is unknown. Live births correlate with several clinical conventional embryo evaluation parameters (CEE), such as maternal age. Therefore, it is necessary to develop artificial intelligence (AI) that combines blastocyst images and CEE to predict live births.
AIM To develop an AI classifier for blastocyst images and CEE to predict the probability of achieving a live birth.
METHODS A total of 5691 images of blastocysts on the fifth day after oocyte retrieval obtained from consecutive patients from January 2009 to April 2017 with fully deidentified data were retrospectively enrolled with explanations to patients and a website containing additional information with an opt-out option. We have developed a system in which the original architecture of the deep learning neural network is used to predict the probability of live birth from a blastocyst image and CEE.
RESULTS The live birth rate was 0.387 (= 1587/4104 cases). The number of independent clinical information for predicting live birth is 10, which significantly avoids multicollinearity. A single AI classifier is composed of ten layers of convolutional neural networks, and each elementwise layer of ten factors is developed and obtained with 42792 as the number of training data points and 0.001 as the L2 regularization value. The accuracy, sensitivity, specificity, negative predictive value, positive predictive value, Youden J index, and area under the curve values for predicting live birth are 0.743, 0.638, 0.789, 0.831, 0.573, 0.427, and 0.740, respectively. The optimal cut-off point of the receiver operator characteristic curve is 0.207.
CONCLUSION AI classifiers have the potential of predicting live births that humans cannot predict. Artificial intelligence may make progress in assisted reproductive technology.
Collapse
|
Basic Study |
5 |
8 |
2
|
Nadkarni P, Merchant SA. Enhancing medical-imaging artificial intelligence through holistic use of time-tested key imaging and clinical parameters: Future insights. Artif Intell Med Imaging 2022; 3:55-69. [DOI: 10.35711/aimi.v3.i3.55] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/12/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Much of the published literature in Radiology-related Artificial Intelligence (AI) focuses on single tasks, such as identifying the presence or absence or severity of specific lesions. Progress comparable to that achieved for general-purpose computer vision has been hampered by the unavailability of large and diverse radiology datasets containing different types of lesions with possibly multiple kinds of abnormalities in the same image. Also, since a diagnosis is rarely achieved through an image alone, radiology AI must be able to employ diverse strategies that consider all available evidence, not just imaging information. Using key imaging and clinical signs will help improve their accuracy and utility tremendously. Employing strategies that consider all available evidence will be a formidable task; we believe that the combination of human and computer intelligence will be superior to either one alone. Further, unless an AI application is explainable, radiologists will not trust it to be either reliable or bias-free; we discuss some approaches aimed at providing better explanations, as well as regulatory concerns regarding explainability (“transparency”). Finally, we look at federated learning, which allows pooling data from multiple locales while maintaining data privacy to create more generalizable and reliable models, and quantum computing, still prototypical but potentially revolutionary in its computing impact.
Collapse
|
Minireviews |
3 |
3 |
3
|
Verde F, Romeo V, Stanzione A, Maurea S. Current trends of artificial intelligence in cancer imaging. Artif Intell Med Imaging 2020; 1:87-93. [DOI: 10.35711/aimi.v1.i3.87] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
|
Editorial |
5 |
3 |
4
|
Ip WY, Yeung FK, Yung SPF, Yu HCJ, So TH, Vardhanabhuti V. Current landscape and potential future applications of artificial intelligence in medical physics and radiotherapy. Artif Intell Med Imaging 2021; 2:37-55. [DOI: 10.35711/aimi.v2.i2.37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/01/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) has seen tremendous growth over the past decade and stands to disrupts the medical industry. In medicine, this has been applied in medical imaging and other digitised medical disciplines, but in more traditional fields like medical physics, the adoption of AI is still at an early stage. Though AI is anticipated to be better than human in certain tasks, with the rapid growth of AI, there is increasing concerns for its usage. The focus of this paper is on the current landscape and potential future applications of artificial intelligence in medical physics and radiotherapy. Topics on AI for image acquisition, image segmentation, treatment delivery, quality assurance and outcome prediction will be explored as well as the interaction between human and AI. This will give insights into how we should approach and use the technology for enhancing the quality of clinical practice.
Collapse
|
Minireviews |
4 |
2 |
5
|
Yakar M, Etiz D. Artificial intelligence in radiation oncology. Artif Intell Med Imaging 2021; 2:13-31. [DOI: 10.35711/aimi.v2.i2.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/30/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
|
Minireviews |
4 |
2 |
6
|
Orlando A, Dimarco M, Cannella R, Bartolotta TV. Breast dynamic contrast-enhanced-magnetic resonance imaging and radiomics: State of art. Artif Intell Med Imaging 2020; 1:6-18. [DOI: 10.35711/aimi.v1.i1.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer represents the most common malignancy in women, being one of the most frequent cause of cancer-related mortality. Ultrasound, mammography, and magnetic resonance imaging (MRI) play a pivotal role in the diagnosis of breast lesions, with different levels of accuracy. Particularly, dynamic contrast-enhanced MRI has shown high diagnostic value in detecting multifocal, multicentric, or contralateral breast cancers. Radiomics is emerging as a promising tool for quantitative tumor evaluation, allowing the extraction of additional quantitative data from radiological imaging acquired with different modalities. Radiomics analysis may provide novel information through the quantification of lesions heterogeneity, that may be relevant in clinical practice for the characterization of breast lesions, prediction of tumor response to systemic therapies and evaluation of prognosis in patients with breast cancers. Several published studies have explored the value of radiomics with good-to-excellent diagnostic and prognostic performances for the evaluation of breast lesions. Particularly, the integrations of radiomics data with other clinical and histopathological parameters have demonstrated to improve the prediction of tumor aggressiveness with high accuracy and provided precise models that will help to guide clinical decisions and patients management. The purpose of this article in to describe the current application of radiomics in breast dynamic contrast-enhanced MRI.
Collapse
|
Review |
5 |
2 |
7
|
Zhao FJ, Fan SQ, Ren JF, von Deneen KM, He XW, Chen XL. Machine learning for diagnosis of coronary artery disease in computed tomography angiography: A survey. Artif Intell Med Imaging 2020; 1:31-39. [DOI: 10.35711/aimi.v1.i1.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Coronary artery disease (CAD) has become a major illness endangering human health. It mainly manifests as atherosclerotic plaques, especially vulnerable plaques without obvious symptoms in the early stage. Once a rupture occurs, it will lead to severe coronary stenosis, which in turn may trigger a major adverse cardiovascular event. Computed tomography angiography (CTA) has become a standard diagnostic tool for early screening of coronary plaque and stenosis due to its advantages in high resolution, noninvasiveness, and three-dimensional imaging. However, manual examination of CTA images by radiologists has been proven to be tedious and time-consuming, which might also lead to intra- and interobserver errors. Nowadays, many machine learning algorithms have enabled the (semi-)automatic diagnosis of CAD by extracting quantitative features from CTA images. This paper provides a survey of these machine learning algorithms for the diagnosis of CAD in CTA images, including coronary artery extraction, coronary plaque detection, vulnerable plaque identification, and coronary stenosis assessment. Most included articles were published within this decade and are found in the Web of Science. We wish to give readers a glimpse of the current status, challenges, and perspectives of these machine learning-based analysis methods for automatic CAD diagnosis.
Collapse
|
Minireviews |
5 |
1 |
8
|
Medjdoub A, Lefebvre F, Saad N, Soudani S, Nassar G. Acoustic concept based on an autonomous capsule and a wideband concentric ring resonator for pathophysiological prevention. Artif Intell Med Imaging 2020; 1:50-64. [DOI: 10.35711/aimi.v1.i1.50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
|
Basic Study |
5 |
1 |
9
|
Yan KX, Liu L, Li H. Application of machine learning in oral and maxillofacial surgery. Artif Intell Med Imaging 2021; 2:104-114. [DOI: 10.35711/aimi.v2.i6.104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023] Open
Abstract
Oral and maxillofacial anatomy is extremely complex, and medical imaging is critical in the diagnosis and treatment of soft and bone tissue lesions. Hence, there exists accumulating imaging data without being properly utilized over the last decades. As a result, problems are emerging regarding how to integrate and interpret a large amount of medical data and alleviate clinicians’ workload. Recently, artificial intelligence has been developing rapidly to analyze complex medical data, and machine learning is one of the specific methods of achieving this goal, which is based on a set of algorithms and previous results. Machine learning has been considered useful in assisting early diagnosis, treatment planning, and prognostic estimation through extracting key features and building mathematical models by computers. Over the past decade, machine learning techniques have been applied to the field of oral and maxillofacial surgery and increasingly achieved expert-level performance. Thus, we hold a positive attitude towards developing machine learning for reducing the number of medical errors, improving the quality of patient care, and optimizing clinical decision-making in oral and maxillofacial surgery. In this review, we explore the clinical application of machine learning in maxillofacial cysts and tumors, maxillofacial defect reconstruction, orthognathic surgery, and dental implant and discuss its current problems and solutions.
Collapse
|
Minireviews |
4 |
1 |
10
|
Xiao B. Acute pancreatitis: A pictorial review of early pancreatic fluid collections. Artif Intell Med Imaging 2020; 1:40-49. [DOI: 10.35711/aimi.v1.i1.40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis is a common acute inflammatory disease involving the pancreas and peripancreatic tissues or remote organs. The revised Atlanta classification 2012 of acute pancreatitis divides patients into mild, moderately severe and severe groups. Major changes of the classification include acute fluid collection terminology. However, some inappropriate terms of the radiological diagnosis reports in the daily clinical work or available literature may still be found. The aim of this review article is: to present an image-rich overview of different morphologic characteristics of the early-stage (within 4 wk after symptom onset) local complications associated with acute pancreatitis by computed tomography or magnetic resonance imaging; to clarify confusing imaging concepts for pancreatic fluid collections and underline standardised reporting nomenclature; to assist communication among treating physicians; and to facilitate the implications for clinical management decision-making.
Collapse
|
Minireviews |
5 |
1 |
11
|
Tekin AB, Yassa M. Implementation of lung ultrasound in the triage of pregnant women during the SARS-CoV-2 pandemics. Artif Intell Med Imaging 2021; 2:56-63. [DOI: 10.35711/aimi.v2.i3.56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/06/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
|
Opinion Review |
4 |
1 |
12
|
Jiang ZY, Qi LS, Li JT, Cui N, Li W, Liu W, Wang KZ. Radiomics: Status quo and future challenges. Artif Intell Med Imaging 2022; 3:87-96. [DOI: 10.35711/aimi.v3.i4.87] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Noninvasive imaging (computed tomography, magnetic resonance imaging, endoscopic ultrasonography, and positron emission tomography) as an important part of the clinical workflow in the clinic, but it still provides limited information for diagnosis, treatment effect evaluation and prognosis prediction. In addition, judgment and diagnoses made by experts are usually based on multiple years of experience and subjective impression which lead to variable results in the same case. With accumulation of medical imaging data, radiomics emerges as a relatively new approach for analysis. Via artificial intelligence techniques, high-throughput quantitative data which is invisible to the naked eyes extracted from original images can be used in the process of patients’ management. Several studies have evaluated radiomics combined with clinical factors, pathological, or genetic information would assist in the diagnosis, particularly in the prediction of biological characteristics, risk of recurrence, and survival with encouraging results. In various clinical settings, there are limitations and challenges needing to be overcome before transformation. Therefore, we summarize the concepts and method of radiomics including image acquisition, region of interest segmentation, feature extraction and model development. We also set forth the current applications of radiomics in clinical routine. At last, the limitations and related deficiencies of radiomics are pointed out to direct the future opportunities and development.
Collapse
|
Minireviews |
3 |
1 |
13
|
Fromherz MR, Makary MS. Artificial intelligence: Advances and new frontiers in medical imaging. Artif Intell Med Imaging 2022; 3:33-41. [DOI: 10.35711/aimi.v3.i2.33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/20/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
|
Minireviews |
3 |
1 |
14
|
De Rosa L, L'Abbate S, Kusmic C, Faita F. Applications of artificial intelligence in lung ultrasound: Review of deep learning methods for COVID-19 fighting. Artif Intell Med Imaging 2022; 3:42-54. [DOI: 10.35711/aimi.v3.i2.42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/22/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The pandemic outbreak of the novel coronavirus disease (COVID-19) has highlighted the need to combine rapid, non-invasive and widely accessible techniques with the least risk of patient’s cross-infection to achieve a successful early detection and surveillance of the disease. In this regard, the lung ultrasound (LUS) technique has been proved invaluable in both the differential diagnosis and the follow-up of COVID-19 patients, and its potential may be destined to evolve. Recently, indeed, LUS has been empowered through the development of automated image processing techniques.
AIM To provide a systematic review of the application of artificial intelligence (AI) technology in medical LUS analysis of COVID-19 patients using the preferred reporting items of systematic reviews and meta-analysis (PRISMA) guidelines.
METHODS A literature search was performed for relevant studies published from March 2020 - outbreak of the pandemic - to 30 September 2021. Seventeen articles were included in the result synthesis of this paper.
RESULTS As part of the review, we presented the main characteristics related to AI techniques, in particular deep learning (DL), adopted in the selected articles. A survey was carried out on the type of architectures used, availability of the source code, network weights and open access datasets, use of data augmentation, use of the transfer learning strategy, type of input data and training/test datasets, and explainability.
CONCLUSION Finally, this review highlighted the existing challenges, including the lack of large datasets of reliable COVID-19-based LUS images to test the effectiveness of DL methods and the ethical/regulatory issues associated with the adoption of automated systems in real clinical scenarios.
Collapse
|
Systematic Reviews |
3 |
1 |
15
|
Chen BB. Artificial intelligence in pancreatic disease. Artif Intell Med Imaging 2020; 1:19-30. [DOI: 10.35711/aimi.v1.i1.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
|
Minireviews |
5 |
1 |
16
|
Choudhury S, Chohan A, Dadhwal R, Vakil AP, Franco R, Taweesedt PT. Applications of artificial intelligence in common pulmonary diseases. Artif Intell Med Imaging 2022; 3:1-7. [DOI: 10.35711/aimi.v3.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) is a branch of computer science where machines are trained to imitate human-level intelligence and perform well-defined tasks. AI can provide accurate results as well as analyze vast amounts of data that cannot be analyzed via conventional statistical methods. AI has been utilized in pulmonary medicine for almost two decades and its utilization continues to expand. AI can help in making diagnoses and predicting outcomes in pulmonary diseases based on clinical data, chest imaging, lung pathology, and pulmonary function testing. AI-based applications enable physicians to use enormous amounts of data and improve their precision in the treatment of pulmonary diseases. Given the growing role of AI in pulmonary medicine, it is important for practitioners caring for patients with pulmonary diseases to understand how AI can work in order to implement it into clinical practices and improve patient care. The goal of this mini-review is to discuss the use of AI in pulmonary medicine and imaging in cases of obstructive lung disease, interstitial lung disease, infections, nodules, and lung cancer.
Collapse
|
Minireviews |
3 |
1 |
17
|
Chen XL, Yan TY, Wang N, von Deneen KM. Rising role of artificial intelligence in image reconstruction for biomedical imaging. Artif Intell Med Imaging 2020; 1:1-5. [DOI: 10.35711/aimi.v1.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
In this editorial, we review recent progress on the applications of artificial intelligence (AI) in image reconstruction for biomedical imaging. Because it abandons prior information of traditional artificial design and adopts a completely data-driven mode to obtain deeper prior information via learning, AI technology plays an increasingly important role in biomedical image reconstruction. The combination of AI technology and the biomedical image reconstruction method has become a hotspot in the field. Favoring AI, the performance of biomedical image reconstruction has been improved in terms of accuracy, resolution, imaging speed, etc. We specifically focus on how to use AI technology to improve the performance of biomedical image reconstruction, and propose possible future directions in this field.
Collapse
|
Editorial |
5 |
1 |
18
|
Cao X, Li K, Xu XL, Deneen KMV, Geng GH, Chen XL. Development of tomographic reconstruction for three-dimensional optical imaging: From the inversion of light propagation to artificial intelligence. Artif Intell Med Imaging 2020; 1:78-86. [DOI: 10.35711/aimi.v1.i2.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/01/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Optical molecular tomography (OMT) is an imaging modality which uses an optical signal, especially near-infrared light, to reconstruct the three-dimensional information of the light source in biological tissue. With the advantages of being low-cost, noninvasive and having high sensitivity, OMT has been applied in preclinical and clinical research. However, due to its serious ill-posedness and ill-condition, the solution of OMT requires heavy data analysis and the reconstruction quality is limited. Recently, the artificial intelligence (commonly known as AI)-based methods have been proposed to provide a different tool to solve the OMT problem. In this paper, we review the progress on OMT algorithms, from conventional methods to AI-based methods, and we also give a prospective towards future developments in this domain.
Collapse
|
Minireviews |
5 |
|
19
|
Jin ZC, Zhong BY. Application of radiomics in hepatocellular carcinoma: A review. Artif Intell Med Imaging 2021; 2:64-72. [DOI: 10.35711/aimi.v2.i3.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/19/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer with low 5-year survival rate. The high molecular heterogeneity in HCC poses huge challenges for clinical practice or trial design and has become a major barrier to improving the management of HCC. However, current clinical practice based on single bioptic or archived tumor tissue has been deficient in identifying useful biomarkers. The concept of radiomics was first proposed in 2012 and is different from the traditional imaging analysis based on the qualitative or semi-quantitative analysis by radiologists. Radiomics refers to high-throughput extraction of large amounts number of high-dimensional quantitative features from medical images through machine learning or deep learning algorithms. Using the radiomics method could quantify tumoral phenotypes and heterogeneity, which may provide benefits in clinical decision-making at a lower cost. Here, we review the workflow and application of radiomics in HCC.
Collapse
|
Minireviews |
4 |
|
20
|
Wei MT, Chen Y, Quan SY, Pan JY, Wong RJ, Friedland S. Evaluation of computer aided detection during colonoscopy among Veterans: Randomized clinical trial. Artif Intell Med Imaging 2023; 4:1-9. [DOI: 10.35711/aimi.v4.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/10/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] [Imported: 12/05/2023] Open
Abstract
BACKGROUND There has been significant interest in use of computer aided detection (CADe) devices in colonoscopy to improve polyp detection and reduce miss rate.
AIM To investigate the use of CADe amongst veterans.
METHODS Between September 2020 and December 2021, we performed a randomized controlled trial to evaluate the impact of CADe. Patients at Veterans Affairs Palo Alto Health Care System presenting for screening or low-risk surveillance were randomized to colonoscopy performed with or without CADe. Primary outcomes of interest included adenoma detection rate (ADR), adenomas per colonoscopy (APC), and adenomas per extraction. In addition, we measured serrated polyps per colonoscopy, non-adenomatous, non-serrated polyps per colonoscopy, serrated polyp detection rate, and procedural time.
RESULTS A total of 244 patients were enrolled (124 with CADe), with similar patient characteristics (age, sex, body mass index, indication) between the two groups. Use of CADe was found to have decreased number of adenomas (1.79 vs 2.53, P = 0.030) per colonoscopy compared to without CADe. There was no significant difference in number of serrated polyps or non-adenomatous non-serrated polyps per colonoscopy between the two groups. Overall, use of CADe was found to have lower ADR (68.5% vs 80.0%, P = 0.041) compared to without use of CADe. Serrated polyp detection rate was lower with CADe (3.2% vs 7.5%) compared to without CADe, but this was not statistically significant (P = 0.137). There was no significant difference in withdrawal and procedure times between the two groups or in detection of adenomas per extraction (71.4% vs 73.1%, P = 0.613). No adverse events were identified.
CONCLUSION While several randomized controlled trials have demonstrated improved ADR and APC with use of CADe, in this RCT performed at a center with high ADR, use of CADe was found to have decreased APC and ADR. Further studies are needed to understand the true impact of CADe on performance quality among endoscopists as well as determine criteria for endoscopists to consider when choosing to adopt CADe in their practices.
Collapse
|
Clinical Trials Study |
2 |
|
21
|
Li GY, Wang CY, Lv J. Current status of deep learning in abdominal image reconstruction. Artif Intell Med Imaging 2021; 2:86-94. [DOI: 10.35711/aimi.v2.i4.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/24/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
|
Minireviews |
4 |
|
22
|
Zhang ZZ, Guo Y, Hou Y. Artificial intelligence in coronary computed tomography angiography. Artif Intell Med Imaging 2021; 2:73-85. [DOI: 10.35711/aimi.v2.i3.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/20/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023] Open
|
Minireviews |
4 |
|
23
|
Bediwy AS, Al-Biltagi M, Nazeer JA, Saeed NK. Chest ultrasound in neonates: What neonatologists should know. Artif Intell Med Imaging 2022; 3:8-20. [DOI: 10.35711/aimi.v3.i1.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/12/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
|
Minireviews |
3 |
|
24
|
Yoo BS, Houston KV, D'Souza SM, Elmahdi A, Davis I, Vilela A, Parekh PJ, Johnson DA. Advances and horizons for artificial intelligence of endoscopic screening and surveillance of gastric and esophageal disease. Artif Intell Med Imaging 2022; 3:70-86. [DOI: 10.35711/aimi.v3.i3.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/18/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
|
Minireviews |
3 |
|
25
|
Tahara H. Pictorial research of pancreas with artificial intelligence and simulacra in the works of Fellini. Artif Intell Med Imaging 2021; 2:115-117. [DOI: 10.35711/aimi.v2.i6.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/26/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023] Open
Abstract
This is the consideration recalled from my reading of Acute pancreatitis: A pictorial review of early pancreatic fluid collections by Xiao. This perspective related to the works of Fellini might be able to contribute the future development of the research of pancreatic diseases.
Collapse
|
Letter to the Editor |
4 |
|