1
|
Sachdeva M, Taneja S, Sachdeva N. Stem cell-like memory T cells: Role in viral infections and autoimmunity. World J Immunol 2023; 13:11-22. [DOI: 10.5411/wji.v13.i2.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/06/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023] [Imported: 08/14/2023] Open
Abstract
Stem cell-like memory T (TSCM) cells possess stem cell properties including multipotency and self-renewal and are being recognized as emerging players in various human diseases. Advanced technologies such as multiparametric flowcytometry and single cell sequencing have enabled their identification and molecular characterization. In case of chronic viral diseases such as human immunodeficiency virus-1, CD4+ TSCM cells, serve as major reservoirs of the latent virus. However, during immune activation and functional exhaustion of effector T cells, these cells also possess the potential to replenish the pool of functional effector cells to curtail the infection. More recently, these cells are speculated to play important role in protective immunity following acute viral infections such as coronavirus disease 2019 and might be amenable for therapeutics by ex vivo expansion. Similarly, studies are also investigating their pathological role in driving autoimmune responses. However, there are several gaps in the understanding of the role of TSCM cells in viral and autoimmune diseases to make them potential therapeutic targets. In this minireview, we have attempted an updated compilation of the dyadic role of these complex TSCM cells during such human diseases along with their biology and transcriptional programs.
Collapse
Affiliation(s)
- Meenakshi Sachdeva
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Shivangi Taneja
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Naresh Sachdeva
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
2
|
Zouari Mallouli S, Jallouli O, Bouchaala W, Ben Nsir S, Kamoun Feki F, Charfi Triki C. Challenges to associate early onset epilepsy with COVID-19 autoimmune encephalitis: A case report. World J Immunol 2023; 13:1-10. [DOI: 10.5411/wji.v13.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/14/2023] [Accepted: 02/02/2023] [Indexed: 05/30/2023] [Imported: 07/06/2023] Open
Abstract
BACKGROUND Diagnosis of coronavirus disease 2019 (COVID-19)-related neurological events in the pediatric population is challenging. Overlapping clinical picture of children with altered neurological state and inborn errors of metabolism, in addition to the frequency of asymptomatic COVID-19 cases, pose the main challenges for diagnosis. Diagnostic approaches to the onset post-COVID 19 subacute encephalopathy are still troublesome as seronegative autoimmune encephalitis (AIE) is reported.
CASE SUMMARY A 27-mo-old boy was admitted for stormy refractory seizure of polymorphic semiology and altered mental status followed by various neuropsychiatric features that were suggestive of AIE. Brain magnetic resonance imaging and cerebrospinal fluid analysis were normal. Neither the immunological assessment, including viral serologies, antinuclear antibodies, autoimmune antibodies (NMDA, AMPA, CASPR2, LG11, GABARB, Hu, Yo, Ri, CV2, PNMA2, SOX1, Titin, amphiphysin, Recoverin), nor the metabolic assessment for lactate and pyruvate showed significant anomaly. Both positive history of COVID-19 infection and the findings of characteristic repetitive extreme delta brush played a key role in the diagnosis of COVID-19-related AIE. A remarkable improvement in the state of the child was noted after two pulse doses of intravenous Veino-globulin and high dose of intravenous Corticosteroid.
CONCLUSION Diagnostic biomarkers for AIE might aid effective treatment.
Collapse
Affiliation(s)
- Salma Zouari Mallouli
- Department of Child Neurology, Hedi Chaker Sfax University Hospital and Research Laboratory LR19ES15-University of Sfax, Tunisia, Sfax 3029, Tunisia
| | - Olfa Jallouli
- Department of Child Neurology, Hedi Chaker Sfax University Hospital and Research Laboratory LR19ES15-University of Sfax, Tunisia, Sfax 3029, Tunisia
| | - Wafa Bouchaala
- Department of Child Neurology, Hedi Chaker Sfax University Hospital and Research Laboratory LR19ES15-University of Sfax, Tunisia, Sfax 3029, Tunisia
| | - Sihem Ben Nsir
- Department of Child Neurology, Hedi Chaker Sfax University Hospital and Research Laboratory LR19ES15-University of Sfax, Tunisia, Sfax 3029, Tunisia
| | - Fatma Kamoun Feki
- Department of Child Neurology, Hedi Chaker Sfax University Hospital and Research Laboratory LR19ES15-University of Sfax, Tunisia, Sfax 3029, Tunisia
| | - Chahnez Charfi Triki
- Department of Child Neurology, Hedi Chaker Sfax University Hospital and Research Laboratory LR19ES15-University of Sfax, Tunisia, Sfax 3029, Tunisia
| |
Collapse
|
3
|
Biswas S, Ray Banerjee E. Probiotic treatment of inflammatory bowel disease: Its extent and intensity. World J Immunol 2022; 12:15-24. [DOI: 10.5411/wji.v12.i2.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/09/2022] [Accepted: 08/17/2022] [Indexed: 02/05/2023] Open
Abstract
Free radicals (reactive oxygen species, superoxides and hydroxyl radicals) lead to the development of oxidative stress because of imbalance in the amount of antioxidants. Continued development of oxidative stress leads to chronic diseases in humans. The instability in the antioxidant activities and accumulation of oxidative stress due to free radicals may occur in diseases like inflammatory bowel disease (IBD). Antioxidants are substances that inhibit or delay the mechanism of oxidation of molecules mediated by free radicals and also transform into lesser-active derivatives. Probiotics are defined as live microorganisms that show beneficial effects on inflamed intestine and balance the inflammatory immune responses in the gut. Probiotic strains have been reported to scavenge hydroxyl radicals and superoxide anions that are abundantly produced during oxidative stress. The most widely studied probiotic strains are Streptococcus, Bifidobacterium and Lactobacillus. Probiotics cultured in broth have shown some amount of antioxidant activities. Fermented milk and soy milk, which possess starter microorganisms (probiotics), tends to increase the antioxidant activities many-fold. This review aims to discuss the in vivo and in vitro antioxidant activities of specific probiotics with various assays with respect to IBD.
Collapse
Affiliation(s)
- Saheli Biswas
- Department of Zoology, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Ena Ray Banerjee
- Department of Zoology, University of Calcutta, Kolkata 700019, West Bengal, India
| |
Collapse
|
4
|
Abstract
To control the pandemic, efficient vaccines must be applied to the population, including patients with autoimmune diseases. Therefore, one can expect that coronavirus disease 2019 (COVID-19) vaccines may influence the underlying autoimmune processes in these patients. Additionally, it is essential to understand whether COVID-19 vaccines would be effective, safe, and provide long-lasting immunological protection and memory. However, the currently available and approved COVID-19 vaccines turned out to be safe, effective, and reliable in patients with autoimmune inflammatory and rheumatic diseases. Furthermore, most patients said they felt safer after getting vaccinations for COVID-19 and reported enhanced overall quality of life and psychological wellbeing. In general, the COVID-19 vaccines have been highly tolerated by autoimmune patients. Such findings might comfort patients who are reluctant to use COVID-19 vaccines and assist doctors in guiding their patients into receiving vaccinations more easily and quickly.
Collapse
Affiliation(s)
- Tsvetelina Velikova
- Department of Clinical Immunology, University Hospital Lozenetz, Sofia 1407, Bulgaria
- Medical Faculty, Sofia University, Sofia 1407, Bulgaria
| |
Collapse
|
5
|
Velazquez-Soto H, Real F, Jiménez-Martínez MC. Historical evolution, overview, and therapeutic manipulation of co-stimulatory molecules. World J Immunol 2022; 12:1-8. [DOI: 10.5411/wji.v12.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/05/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Co-stimulatory molecules are key mediators in the regulation of immune responses and knowledge of its different families, structure, and functions has improved in recent decades. Understanding the role of co-stimulatory molecules in pathological processes has allowed the development of strategies to modulate cellular functions. Currently, modulation of co-stimulatory and co-inhibitory molecules has been applied in clinical applications as therapeutic targets in diseases and promising results have been achieved.
Collapse
Affiliation(s)
- Henry Velazquez-Soto
- Department of Immunology and Research Unit, Institute of Ophthalmology “Conde de Valenciana”, Mexico City 06800, Mexico
| | - Fernanda Real
- Department of Immunology and Research Unit, Institute of Ophthalmology “Conde de Valenciana”, Mexico City 06800, Mexico
| | - Maria C Jiménez-Martínez
- Department of Immunology and Research Unit, Institute of Ophthalmology “Conde de Valenciana”, Mexico City 06800, Mexico
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| |
Collapse
|
6
|
Peruhova M, Peshevska-Sekulovska M, Velikova T. Interactions between human microbiome, liver diseases, and immunosuppression after liver transplant. World J Immunol 2021; 11:11-16. [DOI: 10.5411/wji.v11.i2.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/16/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023] Open
Abstract
In liver transplant patients, solid tumors and post-transplant lymphoproliferative disorders have emerged as significant long-term mortality causes. In addition, it is assumed that de novo malignancy after liver transplantation (LT) is the second-leading cause of death after cardiovascular complications. Well-established risk factors for post-transplant lymphoproliferative disorders and solid tumors are calcineurin inhibitors, tacrolimus, and cyclosporine, the cornerstones of all immunosuppressive therapies used after LT. The loss of immunocompetence facilitated by the host immune system due to prolonged immunosuppressive therapy leads to cancer development, including LT patients. Furthermore, various mechanisms such as bacterial dysbiosis, activation through microbe-associated molecular patterns, leaky gut, and bacterial metabolites can drive cancer-promoting liver inflammation, fibrosis, and genotoxicity. Therefore, changes in human microbiota composition may contribute further to de novo carcinogenesis associated with the severe immunosuppression after LT.
Collapse
Affiliation(s)
- Milena Peruhova
- Department of Gastroenterology, University Hospital Lozenetz, Sofia 1407, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | | | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
- Department of Clinical Immunology, University Hospital Lozenetz, Sofia 1407, Bulgaria
| |
Collapse
|
7
|
García-González J, Marhuenda-Castillo S, Romero-Carretero S, Beltrán-García J. New era of personalized medicine: Advanced therapy medicinal products in Europe. World J Immunol 2021; 11:1-10. [DOI: 10.5411/wji.v11.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Advanced therapy medicinal products are human medical therapies based on genes, cells, or tissues, and due to their characteristics, they offer new innovative opportunities for the treatment of diseases and injuries, especially for diseases beyond the reach of traditional approaches. These therapies are at the forefront of innovation and have historically been very controversial, although in the last decade they have gained prominence while the number of new advanced therapies has increased every year. In this regard, despite the controversy they may generate, they are expected to dominate the market in the coming decades. Technologies based on advanced therapies are the present and future of medicine and bring us closer to the long-awaited precision medicine. Here we review the field as it stands today, with a focus on the molecular mechanisms that guided the different advanced therapies approved by the European Medicines Agency, their current status, and their legal approval.
Collapse
Affiliation(s)
| | | | | | - Jesús Beltrán-García
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia 46010, Spain
- Center for Biomedical Research in Rare Diseases Network (CIBERER), Carlos III Health Institute, Valencia 46010, Spain
- INCLIVA Institute of Sanitary Research, Valencia 46010, Spain
| |
Collapse
|
8
|
Pandya P, Isakov N. PICOT promotes T lymphocyte proliferation by down-regulating cyclin D2 expression. World J Immunol 2020; 10:1-12. [DOI: 10.5411/wji.v10.i1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
The mammalian protein kinase C-interacting cousin of thioredoxin (PICOT; also termed glutaredoxin 3) is a multi-domain monothiol glutaredoxin that is involved in a wide variety of signaling pathways and biological processes. PICOT is required for normal and transformed cell growth and is critical for embryonic development. Recent studies in T lymphocytes demonstrated that PICOT can translocate to the nucleus and interact with embryonic ectoderm development, a polycomb group protein and a core component of the polycomb repressive complex 2, which contributes to the maintenance of transcriptional repression and chromatin remodeling. Furthermore, PICOT was found to interact with chromatin-bound embryonic ectoderm development and alter the extent of histone 3 lysine 27 trimethylation at the promoter region of selected polycomb repressive complex 2 target genes. PICOT knockdown in Jurkat T cells led to increased histone 3 lysine 27 trimethylation at the promoter region of CCND2, a cell cycle-regulating gene which encodes the cyclin D2 protein. As a result, the expression levels of CCND2 mRNA and protein levels were reduced, concomitantly with inhibition of the cell growth rate. Analysis of multiple data sets from the Cancer Genome Atlas revealed that a high expression of PICOT correlated with a low expression of CCND2 in a large number of human cancers. In addition, this parameter correlated with poor patient survival, suggesting that the ratio between PICOT/CCND2 mRNA levels might serve as a predictor of patient survival in selected types of human cancer.
Collapse
Affiliation(s)
- Pinakin Pandya
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
- Department of Computational and System biology, UPMC Hillman Cancer Center, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15232, United States
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
9
|
Bevelacqua JJ, Welsh J, Mortazavi SMJ. On the immunological limitations of hibernation and synthetic torpor as a supporting technique for astronauts’ radioprotection in deep space missions. World J Immunol 2019; 9:1-4. [DOI: 10.5411/wji.v9.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 11/29/2019] [Accepted: 12/14/2019] [Indexed: 02/05/2023] Open
Abstract
Although human hibernation has been introduced as an effective technique in space exploration, there are concerns regarding the intrinsic risks of the approach (i.e., synthetic torpor) and other factors involved in this procedure. Besides concerns about the brain changes and the state of consciousness during hibernation, an "Achilles heel" of the hibernation is the negative impact of torpor on factors such as the number of circulating leukocytes, complement levels, response to lipopolysaccharides, phagocytotic capacity, cytokine production, lymphocyte proliferation, and antibody production. Moreover, increased virulence of bacteria in deep space can significantly increase the risk of infection. The increased infection risk during long-term space missions with the combined effects of radiation and microgravity affect the astronauts’ immune system. With these additional immune system stressors, torpor-induced extra-immunosuppression can be potentially life threatening for astronauts.
Collapse
Affiliation(s)
| | - James Welsh
- Department of Radiation Oncology, Loyola Stritch School of Medicine, Hines VA Hospital Chicago, Chicago, IL 60153, United States
| | - Seyed Mohammad Javad Mortazavi
- Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Department of Diagnostic Imaging, Fox Chase Cancer Center, Philadelphia, PA 19111, United States
| |
Collapse
|
10
|
Abstract
The immune system plays a pivotal role in defending our body from invading pathogens and in surveillance against cancer. While most cells that acquire mutations are detected and destroyed by immunocytes, a small number of transformed cells succeed in evading immune destruction by inhibiting immune checkpoint regulatory pathways, leading to suppression of anti-cancer immune responses. Under normal conditions, immune checkpoint receptors maintain self-tolerance, prevent immunopathology, and regulate overall immune homeostasis. However, their skewed activation by cancer cells may lead to the suppression of nascent anti-tumor immunity and the promotion of tumor growth. Discovering the role of immune checkpoints in cancer and understanding their mode of operation has led to the development of novel strategies for cancer immunotherapy, which are based on the intervention or blockade of immune checkpoint-regulated pathways. Clinical studies have demonstrated that immune checkpoint co-inhibitory receptor-blocking antibodies can revert tumor-induced immunosuppression and augment overall anti-tumor immunity. These antibodies induced durable clinical responses and unprecedented therapeutic benefits in multiple types of malignancies. Although immune checkpoint inhibitors have revolutionized cancer therapy, the clinical benefits of these drugs have been limited to subsets of cancer patients and treatments frequently associated with a unique spectrum of toxicities, termed immune-related adverse events. Future discoveries of novel immune checkpoint receptors, identification of new prognostic and predictive biomarkers, and improvement of combination therapies are likely to boost the success rate of cancer immunotherapy and increase the survival rates of patients with different types of cancers.
Collapse
Affiliation(s)
- Noah Isakov
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University, Beer Sheva 84105, Israel
| |
Collapse
|
11
|
Janket SJ, Qureshi M, Bascones-Martinez A, González-Febles J, Meurman JH. Holistic paradigm in carcinogenesis: Genetics, epigenetics, immunity, inflammation and oral infections. World J Immunol 2017; 7:11-23. [DOI: 10.5411/wji.v7.i2.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 02/25/2017] [Accepted: 04/07/2017] [Indexed: 02/05/2023] Open
Abstract
Recent debate among the experts of cancer research regarding the main causes of carcinogenesis encouraged us to review the etiology of cancer pathogenesis. The somatic mutation theory attributes carcinogenesis to random errors in DNA multiplication while the tissue organization field theory ascribes causation to environmental factors. We recognize complexity in cancer pathogenesis and accept the premise of both DNA multiplication errors and environmental factors in cancer development. Furthermore, it should also be noted that the combination of these factors and the relative importance of the each differ in various types of cancers. For example, in some cancers, genetics plays a prominent role while in others environment such as obesity plays a much stronger role. Additionally, the cancer mitigating factors should also be considered. The balance of cancer-enhancing and cancer-suppressing forces determines the cancer incidence. Ultimately, identifying the lifestyle factors that revise somatic mutations or epigenetic alterations will lead to a clear understanding of pathogenic mechanisms of cancer and to the optimal preventive strategies. This narrative review evaluates the published evidence on carcinogenesis pertaining to the whole organism (thus, holistic) incorporating genetics, epigenetics, immunology, inflammation and infections with emphasis on oral infections.
Collapse
|
12
|
Vargas TR, Martin F, Apetoh L. Role of interleukin-1-family cytokines on effector CD4 T cell differentiation. World J Immunol 2017; 7:24-31. [DOI: 10.5411/wji.v7.i2.24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/30/2017] [Accepted: 04/17/2017] [Indexed: 02/05/2023] Open
Abstract
The ability of CD4 T cells to differentiate into various effector or regulatory T cell subsets explains the successful adaptation of immune responses to different types of infectious pathogens. Immune responses in the context of cancer are also shaped by CD4 T cells, which can directly affect cancer prognosis in patients. While the proinflammatory mediator interleukin (IL)-1β was initially shown to enhance Th2 cell responses, recent findings support a predominant role of two other members of the IL-1 family, IL-18 and IL-33, on the production of Th1 and Th2-derived cytokines. In addition, IL-1β was found to profoundly affect the biology of two recently identified CD4 T cell subsets, Th17 and Th9 cells. IL-1β is critical for Th17 cell differentiation and it enhances the production of IL-9 and IL-21 by Th9 cells, thus increasing their anticancer properties. We will here review the mechanisms accounting for the ability of IL-1 cytokines to affect the differentiation of CD4 effector T cells with a focus on Th17 and Th9 cells. The physiopathological relevance of IL-1-driven effects on CD4 T cells will also be discussed.
Collapse
|
13
|
Santos S, Faria R. Penicillamine and auto-immunity: Relationship or coincidence? World J Immunol 2017; 7:9-10. [DOI: 10.5411/wji.v7.i1.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/02/2016] [Accepted: 12/28/2016] [Indexed: 02/05/2023] Open
Abstract
Drug induced lupus is an established and recognised entity, and penicillamine is one of the drugs that induce it. But the uncertainty remains: Could penicillamine trigger autoimmunity in a broad-spectrum or in a particular way?
Collapse
|
14
|
Ushio A, Arakaki R, Yamada A, Saito M, Tsunematsu T, Kudo Y, Ishimaru N. Crucial roles of macrophages in the pathogenesis of autoimmune disease. World J Immunol 2017; 7:1-8. [DOI: 10.5411/wji.v7.i1.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 11/18/2016] [Accepted: 12/09/2016] [Indexed: 02/05/2023] Open
Abstract
Macrophages are key players in various immune responses. In addition to functions in innate immunity such as antigen phagocytosis and cytokine production, antigen presentation by macrophage represents a link between innate and acquired immunity. During inflammatory processes, naïve monocytes differentiate into pro-inflammatory M1 and anti-inflammatory M2 macrophages. Resident monocytes/macrophages contribute to immune response that maintains tissue-specific homeostasis. In the target organs of autoimmune diseases, macrophages have dual functions in both the induction and suppression of autoimmune responses, which are mediated by production of various cytokines and chemokines, or by interaction with other immune cells. This review focuses on selected autoimmune diseases, such as systemic lupus erythematosus, multiple sclerosis, rheumatoid arthritis, and Sjögren’s syndrome, to illustrate the key roles of macrophages in the cellular or molecular pathogenesis of autoimmunity. In addition, the contribution of macrophages to each autoimmune disease is compared.
Collapse
|
15
|
Weston RM, Stover CM. Myeloid derived suppressor cells in breast cancer: A novel therapeutic target? World J Immunol 2016; 6:119-125. [DOI: 10.5411/wji.v6.i3.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/16/2016] [Accepted: 10/27/2016] [Indexed: 02/05/2023] Open
Abstract
The relationship of the immune system and tumour cells is complex; although recognised that the immune system can protect the host against tumour development, the immune system also facilitates tumour progression through immune suppression. Pro-inflammatory mediators associated with chronic inflammation are responsible for the expansion and activation of myeloid derived suppressor cells (MDSCs); a heterogeneous group of cells that originates from myeloid progenitor cells but does not complete the final stages of differentiation. A causal relationship between chronic inflammation and tumour progression relies on the accumulation and maintenance of MDSCs as its linchpin; responsible for immunosuppression through the down-regulation of anti-tumour responses. MDSCs cause immunosuppression through a number of mechanisms; inhibiting the proliferation of CD4+ and CD8+ T cells, blocking natural killer cell activation and limiting dendritic cell maturation and function. As well as using various mechanisms to inhibit adaptive and immune responses, MDSCs also have non-immunological functions that aid tumour spread; including directly promoting tumour proliferation and metastasis by having an important role in tumour angiogenesis, secretion of matrix metalloproteinases and induction of epithelial-mesenchymal transition. Breast cancer is the most common cancer among women in the United Kingdom with 44540 new cases of invasive carcinoma in 2013 and results in the second highest cancer mortality rate in women, with 11600 deaths in 2012. Considering this, the need for novel therapeutic interventions is higher than ever. This review summarises the rationale for the targeting of MDSCs in breast cancer as a realistic avenue to increase survival from breast cancer.
Collapse
|
16
|
Redhu NS, Gounni AS. IgE regulates airway smooth muscle phenotype: Future perspectives in allergic asthma. World J Immunol 2016; 6:126-130. [DOI: 10.5411/wji.v6.i3.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 08/15/2016] [Accepted: 10/27/2016] [Indexed: 02/05/2023] Open
Abstract
The purpose of this commentary is to highlight the emerging role of IgE on airway smooth muscle (ASM) cells function through activation of the high-affinity Fc receptor for IgE. We discuss the potential implications of IgE-mediated ASM sensitization in airway inflammation and remodeling, the hallmark features of allergic asthma.
Collapse
|
17
|
Di Rosa M, Brundo VM, Malaguarnera L. New insights on chitinases immunologic activities. World J Immunol 2016; 6:96-104. [DOI: 10.5411/wji.v6.i2.96] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/29/2015] [Accepted: 04/11/2016] [Indexed: 02/05/2023] Open
Abstract
Mammalian chitinases and the related chilectins (ChiLs) belong to the GH18 family, which hydrolyse the glycosidic bond of chitin by a substrate-assisted mechanism. Chitin the fundamental component in the coating of numerous living species is the most abundant natural biopolymer. Mounting evidence suggest that the function of the majority of the mammalian chitinases is not exclusive to catalyze the hydrolysis of chitin producing pathogens, but include crucial role specific in the immunologic activities. The chitinases and chitinase-like proteins are expressed in response to different proinflammatory cues in various tissues by activated macrophages, neutrophils and in different monocyte-derived cell lines. The mechanism and molecular interaction of chitinases in relation to immune regulation embrace bacterial infection, inflammation, dismetabolic and degenerative disease. The aim of this review is to update the reader with regard to the role of chitinases proposed in the recent innate and adaptive immunity literature. The deep scrutiny of this family of enzymes could be a useful base for further studies addressed to the development of potential procedure directing these molecules as diagnostic and prognostic markers for numerous immune and inflammatory diseases.
Collapse
|
18
|
Liu WJ, Luo Y. Regulatory T cells suppress autoreactive CD4 + T cell response to bladder epithelial antigen. World J Immunol 2016; 6:105-118. [DOI: 10.5411/wji.v6.i2.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/26/2016] [Accepted: 06/29/2016] [Indexed: 02/05/2023] Open
Abstract
AIM: To investigate the role of regulatory T (Treg) cells in CD4+ T cell-mediated bladder autoimmune inflammation.
METHODS: Urothelium-ovalbumin (URO-OVA)/OT-II mice, a double transgenic line that expresses the membrane form of the model antigen (Ag) OVA as a self-Ag on the urothelium and the OVA-specific CD4+ T cell receptor specific for the I-Ab/OVA323-339 epitope in the periphery, were developed to provide an autoimmune environment for investigation of the role of Treg cells in bladder autoimmune inflammation. To facilitate Treg cell analysis, we further developed URO-OVAGFP-Foxp3/OT-II mice, a derived line of URO-OVA/OT-II mice that express the green fluorescent protein (GFP)-forkhead box protein P3 (Foxp3) fusion protein.
RESULTS: URO-OVA/OT-II mice failed to develop bladder inflammation despite the presence of autoreactive CD4+ T cells. By monitoring GFP-positive cells, bladder infiltration of CD4+ Treg cells was observed in URO-OVAGFP-Foxp3/OT-II mice. The infiltrating Treg cells were functionally active and expressed Treg cell effector molecule as well as marker mRNAs including transforming growth factor-β, interleukin (IL)-10, fibrinogen-like protein 2, and glucocorticoid-induced tumor necrosis factor receptor (GITR). Studies further revealed that Treg cells from URO-OVAGFP-Foxp3/OT-II mice were suppressive and inhibited autoreactive CD4+ T cell proliferation and interferon (IFN)-γ production in response to OVA Ag stimulation. Depletion of GITR-positive cells led to spontaneous development of bladder inflammation and expression of inflammatory factor mRNAs for IFN-γ, IL-6, tumor necrosis factor-α and nerve growth factor in URO-OVAGFP-Foxp3/OT-II mice.
CONCLUSION: Treg cells specific for bladder epithelial Ag play an important role in immunological homeostasis and the control of CD4+ T cell-mediated bladder autoimmune inflammation.
Collapse
|
19
|
Siad S, Byrne S, Mukamolova G, Stover C. Intracellular localisation of Mycobacterium marinum in mast cells. World J Immunol 2016; 6:83-95. [DOI: 10.5411/wji.v6.i1.83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/30/2015] [Accepted: 02/16/2016] [Indexed: 02/05/2023] Open
Abstract
AIM: To study the bacteriocidal or bacteriostatic role of mast cells during infection with Mycobacterium.
METHODS: Mycobacterium marinum (M. marinum) (BAA-535/M strain) was investigated for its ability to grow at a temperature relevant to the mammalian host. Primary mast cells were differentiated from bone marrows of mice, a human mast cell line (HMC-1) and a human monocytic cell line (MonoMac6) were maintained in culture. Mice were stimulated by intraperitoneal injection of heat-killed M. marinum to study cytochemically the degranulation of peritoneal mast cells. HMC-1 cells were stimulated with M. marinum to analyse mRNA expression for inflammatory reactant genes, while HMC-1 and primary mouse mast cells were infected with M. marinum to establish in parallel cell viability (lactate dehydrogenase release and cell counts) and viable mycobacterial counts. Flow cytometry was used to assess intracellular presence of fluorescein isothiocyanate labelled M. marinum after trypan blue quenching and to measure the extent of infection-induced apoptosis or necrosis in HMC-1. A GFP expressing recombinant M. marinum strain was used to assess intracellular location by fluorescence microscopy. Light microscopy of osmium tetroxide and Gram Twort stained sections of 0.5 μm and transmission electron microscopy were undertaken as sensitive methods.
RESULTS: Since its isolation, M. marinum has adapted to grow at 37 °C. This study found that M. marinum infects HMC-1 cells and primary murine mast cells, where they survive, replicate, and cause dose dependent cell damage over the analysis period of up to 120 h. Amikacin was an effective aminoglycoside antibiotic to eliminate extracellular or membrane attached M. marinum in order to adequately quantify the intracellular bacterial loads. In vivo, intraperitoneal injection of heat-killed M. marinum led to the release of mast cell granules in mice. HMC-1 cells stimulated with M. marinum showed a biphasic pattern of increased mRNA expression for LL-37 and COX-2/TNF-α during 24 h of stimulation. In HMC-1, M. marinum localised to the cytoplasm whereas in primary mast cells, M. marinum were found in vacuoles.
CONCLUSION: The effector role of mast cells in infection with M. marinum can be studied in vitro and in vivo.
Collapse
|
20
|
Caso R, Miller G. Role of tumor associated macrophages in regulating pancreatic cancer progression. World J Immunol 2016; 6:9-18. [DOI: 10.5411/wji.v6.i1.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/24/2015] [Accepted: 01/04/2016] [Indexed: 02/05/2023] Open
Abstract
Pancreatic cancer has an overall 5-year survival rate of less than 5%. Unfortunately, patient survival has not substantially improved in the last couple of decades despite advances in treatment modalities that have been successful in other cancer types. The poor response of pancreatic cancer to therapy is a major obstacle faced by clinicians. Increasing attention is being paid to how tumor cells and non-tumor cells influence each other in the pancreatic tumor microenvironment. Tumor-associated macrophages (TAMs) are a highlight in this field because of their vast presence in the tumor microenvironment. TAMs promote angiogenesis, metastasis, and suppress the anti-tumor immune response. Here we review the current understanding of the role of TAMs in regulating the progression of pancreatic cancer.
Collapse
|
21
|
Kanner-Acerbo E, Lowe J. Review of immunological responses to porcine coronaviruses and implications on population based control strategies in epidemic and endemic infections. World J Immunol 2016; 6:60-66. [DOI: 10.5411/wji.v6.i1.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 10/06/2015] [Accepted: 03/16/2016] [Indexed: 02/05/2023] Open
Abstract
Five major porcine coronaviruses (COVs) have been identified which cause severe gastrointestinal (GI) and respiratory disease in pigs. They include transmissible gastroenteritis (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus, porcine respiratory coronavirus, and porcine hemagglutinating encephalomyelitis. These diseases, especially TGEV and PEDV, have caused epidemics in Europe, Asia, and the Americas over the past 50 years, causing significant economic losses to swine producers. As pigs are a major protein source worldwide there is great interest in understanding, controlling, and preventing these diseases. These diseases have no cure, and current vaccines are not fully protective. On-farm prevention and biosecurity are difficult to enforce and have not stopped the spread of these diseases between herds. Recent advances in the immunology of porcine COVs has revealed that the immune response to porcine COVs shares many similarities with the response to human COVs, leading to increased interest in pigs as models for human disease. Highlights of these advances include the key role of local antigen presenting cells in the gastrointestinal tract in stimulating a protective immune response. This understanding has lead to new proposed vaccines. Advances in the understanding of the ways the viruses evade and degrade the host immune system have also lead to novel proposed therapies. Many of these therapies are in the early development stages, as researchers attempt to create efficacious, cost-effective, and practical therapies for these diseases.
Collapse
|
22
|
Kloc M, Kubiak JZ, Li XC, Ghobrial RM. Noncanonical intercellular communication in immune response. World J Immunol 2016; 6:67-74. [DOI: 10.5411/wji.v6.i1.67] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/06/2015] [Accepted: 12/18/2015] [Indexed: 02/05/2023] Open
Abstract
The classical view of signaling between cells of immune system includes two major routes of intercellular communication: Through the release of extracellular molecules or a direct interaction between membrane bound receptor and its membrane bound ligand, which initiate a cascade of signaling in target cell. However, recent studies indicate that besides these canonical modes of signaling there are also noncanonical routs of intercellular communications through membrane stripping/membrane exchange/trogocytosis, extracellular traps, exosomes and ectososmes/microparticles. In this review we discuss what are the components of noncanonical pathways of signaling and what role they play in immune cells interactions.
Collapse
|
23
|
Tsekovska R, Sredovska-Bozhinov A, Niwa T, Ivanov I, Mironova R. Maillard reaction and immunogenicity of protein therapeutics. World J Immunol 2016; 6:19-38. [DOI: 10.5411/wji.v6.i1.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 11/24/2015] [Accepted: 12/14/2015] [Indexed: 02/05/2023] Open
Abstract
The recombinant DNA technology enabled the production of a variety of human therapeutic proteins. Accumulated clinical experience, however, indicates that the formation of antibodies against such proteins is a general phenomenon rather than an exception. The immunogenicity of therapeutic proteins results in inefficient therapy and in the development of undesired, sometimes life-threatening, side reactions. The human proteins, designed for clinical application, usually have the same amino acid sequence as their native prototypes and it is not yet fully clear what the reasons for their immunogenicity are. In previous studies we have demonstrated for the first time that interferon-β (IFN-β) pharmaceuticals, used for treatment of patients with multiple sclerosis, do contain advanced glycation end products (AGEs) that contribute to IFN-β immunogenicity. AGEs are the final products of a chemical reaction known as the Maillard reaction or glycation, which implication in protein drugs’ immunogenicity has been overlooked so far. Therefore, the aim of the present article is to provide a comprehensive overview on the Maillard reaction with emphasis on experimental data and theoretical consideration telling us why the Maillard reaction warrants special attention in the context of the well-documented protein drugs’ immunogenicity.
Collapse
|
24
|
Abstract
The methods and strategies used to screen for syphilis and to confirm initially reactive results can vary significantly across clinical laboratories. While the performance characteristics of these different approaches have been evaluated by multiple studies, there is not, as of yet, a single, universally recommended algorithm for syphilis testing. To clarify the currently available options for syphilis testing, this update will summarize the clinical challenges to diagnosis, review the specific performance characteristics of treponemal and non-treponemal tests, and finally, summarize select studies published over the past decade which have evaluated these approaches. Specifically, this review will discuss the traditional and reverse sequence syphilis screening algorithms commonly used in the United States, alongside a discussion of the European Centre for Disease Prevention and Control syphilis algorithm. Ultimately, in the United States, the decision of which algorithm to use is largely dependent on laboratory resources, the local incidence of syphilis and patient demographics.
Collapse
|
25
|
Abstract
The prevalence of allergic diseases including atopic dermatitis, asthma, allergic rhinitis (AR) and food allergy is increasing worldwide and they cause a big economic and social burden. Understanding of reasons that contribute to the etiology of allergic diseases as well as new treatment approaches are very important for the follow-up and prevention of these diseases. In recent years, probiotics seem to be promising for allergic diseases. The effect of probiotics in the prevention and treatment of eczema is more extensively studied, but little is known about the association of the microbial flora of the host and allergic airway diseases and the efficacy of probiotics in decreasing the symptoms of patients with asthma and rhinitis. Hitherto, there is no strong evidence for use of probiotics in the treatment of eczema; however, administration of probiotics in breastfeeding mothers in the prenatal period and infants in the postnatal period can be accepted as a safe and helpful option in the prevention of eczema. In contrast, there is not yet reliable evidence or recommendations on use of probiotics for the prevention or treatment of asthma, AR, food allergy, and anaphylaxis currently. More standardized studies should be performed with different strains of probiotics to evaluate the protective and therapeutic effects of probiotics on other allergic diseases as well as eczema. In this review, the relationship between allergy and probiotics is handled in the light of current literature.
Collapse
|
26
|
Abstract
Effective adaptive immune responses rely upon appropriate activation of T cells by antigenic peptide-major histocompatibility complex on the surface of antigen presenting cells (APCs). Activation relies on additional signals including co-stimulatory molecules on the surface of the APCs that promote T cell expansion. The immune response is further sculpted by the cytokine environment. However, T cells also respond to other environmental signals including hormones, neurotransmitters, and vitamins. In this review, we summarize the mechanisms through which vitamins A and D impact immune responses, particularly in the context of T cell responses.
Collapse
|
27
|
Shankar SP, Griffith M, Forrester JV, Kuffová L. Dendritic cells and the extracellular matrix: A challenge for maintaining tolerance/homeostasis. World J Immunol 2015; 5:113-130. [DOI: 10.5411/wji.v5.i3.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/18/2015] [Accepted: 11/11/2015] [Indexed: 02/05/2023] Open
Abstract
The importance of the extracellular matrix (ECM) in contributing to structural, mechanical, functional and tissue-specific features in the body is well appreciated. While the ECM was previously considered to be a passive bystander, it is now evident that it plays active, dynamic and flexible roles in shaping cell survival, differentiation, migration and death to varying extents depending on the specific site in the body. Dendritic cells (DCs) are recognized as potent antigen presenting cells present in many tissues and in blood, continuously scrutinizing the microenvironment for antigens and mounting local and systemic host responses against harmful agents. DCs also play pivotal roles in maintaining homeostasis to harmless self-antigens, critical for preventing autoimmunity. What is less understood are the complex interactions between DCs and the ECM in maintaining this balance between steady-state tissue residence and DC activation during inflammation. DCs are finely tuned to inflammation-induced variations in fragment length, accessible epitopes and post-translational modifications of individual ECM components and correspondingly interpret these changes appropriately by adjusting their profiles of cognate binding receptors and downstream immune activation. The successful design and composition of novel ECM-based mimetics in regenerative medicine and other applications rely on our improved understanding of DC-ECM interplay in homeostasis and the challenges involved in maintaining it.
Collapse
|
28
|
Abstract
Helicobacter pylori (H. pylori) infection has often no clinical signs and is one of the most common bacterial infections. All infected subjects have histology of active chronic gastritis. In some cases patients develop peptic ulcer and minority of them develop gastric cancer. Gastric cancer is multifactorial disease, thus various progressions of H. pylori infection and disease are dependent on the host genetic factors, the characteristics of the individual’s immune response, environmental factors, and different bacterial virulence factors of the individual bacterial strains. Eradication of the bacteria plays a crucial role in the treatment of these cases however antibiotic therapy does not always help. Bacteria often develop resistance to antibiotics so we recommend that not only screening for H. pylori also the strain determination should have some diagnostic value, especially in the patients who already developed gastritis. Furthermore, for such patients assessment of disease progression (atrophic or metaplastic gastritis) could be followed by polymorphism determination. Until now we cannot predict the disease based only on single polymorphism. Bacteria successfully neutralize the responses of the immune systems using different enzymes or even components of the host immune response. However, the influence of immune system and its components could represent new ways of treatments and could help to eradicate the infection.
Collapse
|
29
|
Schalkwyk MCIV, Maher J. Chimeric antigen receptors: On the road to realising their full potential. World J Immunol 2015; 5:86-94. [DOI: 10.5411/wji.v5.i3.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/01/2015] [Accepted: 10/13/2015] [Indexed: 02/05/2023] Open
Abstract
Chimeric antigen receptors (CARs) are fusion molecules that may be genetically delivered ex-vivo to T-cells and other immune cell populations, thereby conferring specificity for native target antigens found on the surface of tumour and other target cell types. Antigen recognition by CARs is neither restricted by nor dependent upon human leukocyte antigen antigen expression, favouring widespread use of this technology across transplantation barriers. Signalling is delivered by a designer endodomain that provides a tailored and target-dependent activation signal to polyclonal circulating T-cells. Recent clinical data emphasise the enormous promise of this emerging immunotherapeutic strategy for B-cell malignancy, notably acute lymphoblastic leukaemia. In that context, CARs are generally targeted against the ubiquitous B-cell antigen, CD19. However, CAR T-cell immunotherapy is limited by potential for severe on-target toxicity, notably due to cytokine release syndrome. Furthermore, efficacy in the context of solid tumours remains unproven, owing in part to lack of availability of safe tumour-specific targets, inadequate CAR T-cell homing and hostility of the tumour microenvironment to immune effector deployment. Manufacture and commercial development of this strategy also impose new challenges not encountered with more traditional drug products. Finally, there is increasing interest in the application of this technology to the treatment of non-malignant disease states, such as autoimmunity, chronic infection and in the suppression of allograft rejection. Here, we consider the background and direction of travel of this emerging and highly promising treatment for malignant and other disease types.
Collapse
|
30
|
Korbelik M. Impact of cell death manipulation on the efficacy of photodynamic therapy-generated cancer vaccines. World J Immunol 2015; 5:95-98. [DOI: 10.5411/wji.v5.i3.95] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/09/2015] [Accepted: 08/03/2015] [Indexed: 02/05/2023] Open
Abstract
The main task of cancer vaccines is to deliver tumor-specific antigens to antigen-presenting cells for immune recognition that can lead to potent and durable immune response against treated tumor. Using photodynamic therapy (PDT)-generated vaccines as an example of autologous whole-cell cancer vaccines, the importance is discussed of the expression of death-associated molecules on cancer vaccine cells. This aspect appears critical for the optimal capture of vaccine cells by host’s sentinel phagocytes in order that the tumor antigenic material is processed and presented for immune recognition and elimination of targeted malignancy. It is shown that changing death pattern of vaccine cells by agents modulating apoptosis, autophagy or necrosis can significantly alter the therapeutic impact of PDT-generated vaccines. Improved therapeutic effect was observed with inhibitors of necrosis/necroptosis using IM-54, necrostatin-1 or necrostatin-7, as well as with lethal autophagy inducer STF62247. In contrast, reduced vaccine potency was found in case of treating vaccine cells with apoptosis inhibitors or lethal autophagy inhibitor spautin-1. Therefore, PDT-generated cancer vaccine cells undergoing apoptosis or lethal autophagy are much more likely to produce therapeutic benefit than vaccine cells that are necrotic. These findings warrant further detailed examination of the strategy using cell death modulating agents for the enhancement of the efficacy of cancer vaccines.
Collapse
|
31
|
Abstract
In this review, we have focused on the effects of exercise on infection or antibody production. In the past, exercise immunologists largely focused on exercise and its effects on infection. Research on the effects of exercise on antibody response began in the 1970s with a primary focus on whether regular exercise helps to minimize the risk of infection. Positive results from these early studies indicated that exercise affects higher survival rate. Based on the results of these studies, researchers then investigated the exercise-induced elevation of plasma antibody levels. It has been suggested that exercise of moderate intensity could be a helpful and effective adjuvant for human health. Other studies have examined the effects of exercise on antibody-producing cells, and the levels of protection conferred by the produced antibodies. We have attempted to summarize the current understanding of exercise-induced elevations in plasma antibody levels. We also propose some future directions for investigating the relationship between exercise and antibody response.
Collapse
|
32
|
Crispín JC, Rosetti F, Hernández-Molina G. Lessons from Sjögren’s syndrome etiopathogenesis: Novel cellular and molecular targets. World J Immunol 2015; 5:152-159. [DOI: 10.5411/wji.v5.i3.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/22/2015] [Accepted: 11/17/2015] [Indexed: 02/05/2023] Open
Abstract
Sjögren’s syndrome (SS) is a systemic autoimmune disease that affects primarily the lacrimal and salivary glands. In addition to a systemic autoimmune response directed against ubiquitous antigens (such as Ro and La antigens), patients with SS mount a localized response that affects the epithelial component of exocrine glands leading to the establishment of a destructive inflammatory infiltrate comprised of activated T and B cells. Local chemokine and cytokine production drive the recruitment and local activation of immune cells that cause injury to acinar cells. CD4 T cells with different functional differentiation programs including Th1 (IFN-γ), Th2 (IL-13, IL-4) and Th17 (IL-17, IL-21, IL-22) as well as diverse cytokine signaling pathways, are involved at the initiation, perpetuation, and progression of the disease. Which factors initiate this response and allow it to become chronic are unknown. Proposed mechanisms include viral infections and acinar cell apoptosis. Moreover risk-conferring genetic variants, probably through the facilitation of innate and adaptive immune activation, most certainly contribute to the creation of an underlying environment that fosters tolerance loss and facilitates perpetuation of the autoimmune response. In this review, we describe the mechanisms through which the immune response causes SS and emphasize the pathways that are amenable of being targeted with therapeutic purposes.
Collapse
|
33
|
Smith SM, Carew NT, Milcarek C. RNA polymerases in plasma cells trav-ELL2 the beat of a different drum. World J Immunol 2015; 5:99-112. [DOI: 10.5411/wji.v5.i3.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/19/2015] [Accepted: 11/17/2015] [Indexed: 02/05/2023] Open
Abstract
There is a major transformation in gene expression between mature B cells (including follicular, marginal zone, and germinal center cells) and antibody secreting cells (ASCs), i.e., ASCs, (including plasma blasts, splenic plasma cells, and long-lived bone marrow plasma cells). This significant change-over occurs to accommodate the massive amount of secretory-specific immunoglobulin that ASCs make and the export processes itself. It is well known that there is an up-regulation of a small number of ASC-specific transcription factors Prdm1 (B-lymphocyte-induced maturation protein 1), interferon regulatory factor 4, and Xbp1, and the reciprocal down-regulation of Pax5, Bcl6 and Bach2, which maintain the B cell program. Less well appreciated are the major alterations in transcription elongation and RNA processing occurring between B cells and ASCs. The three ELL family members ELL1, 2 and 3 have different protein sequences and potentially distinct cellular roles in transcription elongation. ELL1 is involved in DNA repair and small RNAs while ELL3 was previously described as either testis or stem-cell specific. After B cell stimulation to ASCs, ELL3 levels fall precipitously while ELL1 falls off slightly. ELL2 is induced at least 10-fold in ASCs relative to B cells. All of these changes cause the RNA Polymerase II in ASCs to acquire different properties, leading to differences in RNA processing and histone modifications.
Collapse
|
34
|
Belhareth R, Mège JL. Macrophage populations and self-renewal: Changing the paradigm. World J Immunol 2015; 5:131-141. [DOI: 10.5411/wji.v5.i3.131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/27/2015] [Accepted: 10/27/2015] [Indexed: 02/05/2023] Open
Abstract
The origin of macrophages has been considered since several decades to be a continuum from bone marrow (BM) to tissue via monocytes as precursors. The development of new tools such as genetic lineage tracing, parabiosis and BM chimeras changed the paradigm of macrophage origin. In steady state, most resident macrophages are of embryonic origin, whereas a monocyte origin remains prominent in pathological conditions. The findings of a proliferation of mature macrophages will oblige us to reappraise the relationship between proliferation and differentiation in macrophages. This review is based on the recent explosion of high impact articles on macrophage biology. It summarizes new data on the origin of macrophages and their self-renewal potential in steady states. While monocytes are required for intestinal macrophage development, the microglia is independent of monocyte influx and skin macrophages provide an excellent model of the balance between monocyte input and self-renewal. In addition, macrophage proliferation requires intrinsic and extrinsic factors including growth factors and cytokines. It also analyzes the impact of this new paradigm in human diseases such as athrosclerosis, cancer, infectious diseases and neurodegenerative diseases. In atherosclerosis, the finding of macrophage proliferation within the lesions will change our understanding of disease pathophysiology, this new paradigm may have therapeutical impact in the future.
Collapse
|
35
|
Porter E, Ma DC, Alvarez S, Faull KF. Antimicrobial lipids: Emerging effector molecules of innate host defense. World J Immunol 2015; 5:51-61. [DOI: 10.5411/wji.v5.i2.51] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/28/2015] [Accepted: 07/17/2015] [Indexed: 02/05/2023] Open
Abstract
The antimicrobial properties of host derived lipids have become increasingly recognized and evidence is mounting that antimicrobial lipids (AMLs), like antimicrobial peptides, are effector molecules of the innate immune system and are regulated by its conserved pathways. This review, with primary focus on the human body, provides some background on the biochemistry of lipids, summarizes their biological functions, expands on their antimicrobial properties and site-specific composition, presents modes of synergism with antimicrobial peptides, and highlights the more recent reports on the regulation of AML production as well as bacterial resistance mechanisms. Based on extant data a concept of innate epithelial defense is proposed where epithelial cells, in response to microbial products and proinflammatory cytokines and through activation of conserved innate signaling pathways, increase their lipid uptake and up-regulate transcription of enzymes involved in lipid biosynthesis, and induce transcription of antimicrobial peptides as well as cytokines and chemokines. The subsequently secreted antimicrobial peptides and lipids then attack and eliminate the invader, assisted by or in synergism with other antimicrobial molecules delivered by other defense cells that have been recruited to the site of infection, in most of the cases. This review invites reconsideration of the interpretation of cholesteryl ester accumulation in macrophage lipid droplets in response to infection as a solely proinflammatory event, and proposes a direct antimicrobial role of lipid droplet- associated cholesteryl esters. Finally, for the interested, but new- to- the-field investigator some starting points for the characterization of AMLs are provided. Before it is possible to utilize AMLs for anti-infectious therapeutic and prophylactic approaches, we need to better understand pathogen responses to these lipids and their role in the pathogenesis of chronic infectious disease.
Collapse
|
36
|
Varela-Calviño R, Cordero OJ. Stem and immune cells in colorectal primary tumour: Number and function of subsets may diagnose metastasis. World J Immunol 2015; 5:68-77. [DOI: 10.5411/wji.v5.i2.68] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/27/2015] [Accepted: 07/17/2015] [Indexed: 02/05/2023] Open
Abstract
An important percentage of colorectal cancer (CRC) patients will develop metastasis, mainly in the liver, even after a successful curative resection. This leads to a very high mortality rate if metastasis is not detected early on. Disseminated cancer cells develop from metastatic stem cells (MetSCs). Recent knowledge has accumulated about these cells particularly in CRC, so they may now be tracked from the removed primary tumour. This approach could be especially important in prognosis of metastasis because it is becoming clear that metastasis does not particularly rely on testable driver mutations. Among the many traits supporting an epigenetic amplification of cell survival and self-renewal mechanisms of MetSCs, the role of many immune cell populations present in tumour tissues is becoming clear. The amount of tumour-infiltrating lymphocytes (T, B and natural killer cells), dendritic cells and some regulatory populations have already shown prognostic value or to be correlated with disease-free survival time, mainly in immunohistochemistry studies of unique cell populations. Parallel analyses of these immune cell populations together with MetSCs in the primary tumour of patients, with later follow-up data of the patients, will define the usefulness of specific combinations of both immune and MetSCs cell populations. It is expected that these combinations, together to different biomarkers in the form of an immune score, may predict future tumour recurrences, metastases and/or mortality in CRC. It will also support the future design of improved immunotherapeutic approaches against metastasis.
Collapse
|
37
|
Hardy B, Raiter A. GRP78 expression beyond cellular stress: A biomarker for tumor manipulation. World J Immunol 2015; 5:78-85. [DOI: 10.5411/wji.v5.i2.78] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 01/14/2015] [Accepted: 06/08/2015] [Indexed: 02/05/2023] Open
Abstract
Physiological stress takes place in the endoplasmic reticulum (ER) of cells where activation and up-regulation of genes and proteins are primarily induced to enhance pro-survival mechanisms such as the unfolded protein response (UPR). A dominant protein in the UPR response is the heat shock GRP78 protein. Although GRP78 is primarily located in the ER, under certain conditions it is transported to the cell surface, where it acts as a receptor inducing pathways of cell signaling such as proliferation or apoptosis. In the prolonged chronic stress transportation of the GRP78 from the ER to the cell membrane is a major event where in addition to the presentation of the GRP78 as a receptor to various ligands, it also marks the cells that will proceed to apoptotic pathways. In the normal cell that under stress acquires cell surface GRP78 and in the tumor cell that already presents cell surface GRP78, cell surface GRP78 is an apoptotic flag. The internalization of GRP78 from the cell surface in normal cells by ligands such as peptides will enhance cell survival and alleviate cardiovascular ischemic diseases. The absence of cell surface GRP78 in the tumor cells portends proliferative and metastatic tumors. Pharmacological induction of cell surface GRP78 will induce the process of apoptosis and might be used as a therapeutic modality for cancer treatment.
Collapse
|
38
|
Dantec CL, Brooks WH, Renaudineau Y. Epigenomic revolution in autoimmune diseases. World J Immunol 2015; 5:62-67. [DOI: 10.5411/wji.v5.i2.62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/01/2015] [Accepted: 05/06/2015] [Indexed: 02/05/2023] Open
Abstract
Autoimmunity is believed to develop when genetically predisposed individuals undergo epigenetic modifications in response to environmental factors. Recent advances in the understanding of epigenetic mechanisms suggest, in autoimmune diseases, a multi-step process involving environmental factors (e.g., drugs, stress) and endogenous factors (e.g., cytokines, gender), both leading to the deregulation of the epigenetic machinery (DNA methylation, histone modifications, miRNA), that in turn specifically affects the immune system and/or the target organ(s). Such effect is reinforced in those patients with risk variants mapping to epigenetically-controlled regulators of immune cells. As a consequence, autoreactive lymphocytes and autoantibodies are produced leading to the development of the autoimmune disease. Potential new therapeutic strategies and biomarkers are also addressed.
Collapse
|
39
|
Romero-Adrian TB, Leal-Montiel J, Fernández G, Valecillo A. Role of cytokines and other factors involved in the Mycobacterium tuberculosis infection. World J Immunol 2015; 5:16-50. [DOI: 10.5411/wji.v5.i1.16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 11/18/2014] [Accepted: 02/09/2015] [Indexed: 02/05/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a pathogen that is widely distributed geographically and continues to be a major threat to world health. Bacterial virulence factors, nutritional state, host genetic condition and immune response play an important role in the evolution of the infection. The genetically diverse Mtb strains from different lineages have been shown to induce variable immune system response. The modern and ancient lineages strains induce different cytokines patterns. The immunity to Mtb depends on Th1-cell activity [interferon-γ (IFN-γ), interleukin-12 (IL-12) and tumor necrosis factor-α (TNF-α)]. IL-1β directly kills Mtb in murine and human macrophages. IL-6 is a requirement in host resistance to Mtb infection. IFN-γ, TNF-α, IL-12 and IL-17 are participants in Mycobacterium-induced granuloma formation. Other regulating proteins as IL-27 and IL-10 can prevent extensive immunopathology. CXCL 8 enhances the capacity of the neutrophil to kill Mtb. CXCL13 and CCL19 have been identified as participants in the formation of granuloma and control the Mtb infection. Treg cells are increased in patients with active tuberculosis (TB) but decrease with anti-TB treatment. The increment of these cells causes down- regulation of adaptive immune response facilitating the persistence of the bacterial infection. Predominance of Th2 phenotype cytokines increases the severity of TB. The evolution of the Mtb infection will depend of the cytokines network and of the influence of other factors aforementioned.
Collapse
|
40
|
Patel MA, Kim JE, Ruzevick J, Lim M. Present and future of immune checkpoint blockade: Monotherapy to adjuvant approaches. World J Immunol 2015; 5:1-15. [DOI: 10.5411/wji.v5.i1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/23/2014] [Accepted: 11/19/2014] [Indexed: 02/05/2023] Open
Abstract
Immune regulation of aggressive tumor growth is often outpaced by tumor up-regulation of ligands that inhibit effector immune responses through the activation of immune checkpoints. A few of such checkpoints include programmed death-1 (PD-1), cytotoxic T lymphocyte associated antigen-4 (CTLA-4), lymphocyte activation gene-3, T-cell immunoglobulin and mucin protein-3, Glucocorticoid-induced TNFR family-related receptor (GITR), and killer cell immunoglobulin like receptor. With the exception of GITR, after binding to their respective ligands these checkpoints induce down-modulation of immune responses to prevent autoimmunity. However, such immune mechanisms are co-opted by tumors to allow rapid tumor cell proliferation. Pre-clinical studies in antibody blockade of PD-1 and CTLA-4 have led to promising augmentation of effector immune responses in murine tumor models, and human antibodies against PD-1 and CTLA-4 alone or in combination have demonstrated tumor regression in clinical trials. The development of immune checkpoint blockade as a potential future immunotherapy has led to increasing interest in combining treatment modalities. Combination checkpoint blockade with chemotherapy and radiation therapy has shown synergistic effects in pre-clinical and clinical studies, and combination checkpoint blockade with bacterial vaccine vectors have produced increased effector immune responses in pre-clinical models. The future of immune checkpoint blockade may be as a powerful adjuvant alongside the current standard of care.
Collapse
|
41
|
Abstract
Cluster of differentiation 74 (CD74) performs multiple roles in B cells, T cells, and antigen-presenting cells within the immune system; it also participates in major histocompatibility complex class II-restricted antigen presentation and inflammation. Recently, a role for CD74 in carcinogenesis has been described. CD74 promotes cell proliferation and motility and prevents cell death in a macrophage migration inhibitory factor-dependent manner. Its roles as an accessory signal receptor on the cell surface and the ability to interact with other signaling molecules make CD74 an attractive therapeutic target for the treatment of cancer. This review focuses on the original role of CD74 in the immune system and its emerging tumor-related functions. First, the structure of CD74 will be summarized. Second, the current understandings about the expression, cellular localization, molecular mechanisms and signaling pathways of CD74 in immunity and cancer will be reviewed. Third, the examples that suggest CD74 is a promising molecular therapeutic target are reviewed and discussed. Although the safety and efficacy of CD74-targeted strategies are under development, deeply understanding of the regulation of CD74 will hold promise for the use of CD74 as a therapeutic target and may develop the CD74-targeted therapeutic agents such as neutralized antibody and compounds.
Collapse
|
42
|
Ka MB, Olive D, Mege JL. Modulation of monocyte subsets in infectious diseases. World J Immunol 2014; 4:185-193. [DOI: 10.5411/wji.v4.i3.185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 07/10/2014] [Accepted: 08/31/2014] [Indexed: 02/05/2023] Open
Abstract
Monocytes are effector immune cells but a precise analysis of their role in immune response has been precluded by their heterogeneity. Indeed, human monocytes are composed of at least three different subsets with different phenotypic characteristics and functional properties, the so-called classical, intermediate and non-classical monocytes. A review of the literature shows that these monocyte subsets are differently affected during viral, bacterial, parasitic and fungal infections. The expansion of the CD16+ compartment (intermediate and non-classical monocytes) is typically observed in the majority of infectious diseases and the increased proportion of CD16+ monocytes is likely related to their activation through their direct interaction with the pathogen or the inflammatory context. In contrast, the number of non-classical and intermediate monocytes is decreased in Q fever endocarditis, suggesting that complex mechanisms govern the equilibrium among monocyte subsets. The measurement of monocyte subsets would be useful in better understanding of the role of monocyte activation in the pathophysiology of infectious diseases.
Collapse
|
43
|
Abstract
Drug induced liver injury (DILI) is a common condition of increasing incidence. Many environmental and genetic factors are involved in its pathogenesis, and immunological mechanisms are also thought to contribute to the development and severity of DILI. This review summarizes current understanding of the immunological pathogenesis of DILI and discusses the perspective for clinical applications.
Collapse
|
44
|
Yukselen A, Kendirli SG. Subcutaneous and sublingual immunotherapy: Where do we stand? World J Immunol 2014; 4:130-140. [DOI: 10.5411/wji.v4.i3.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 05/01/2014] [Accepted: 07/14/2014] [Indexed: 02/05/2023] Open
Abstract
Though symptoms of allergic diseases can be reduced by the use of drugs such as corticosteroids, antihistamines or leukotrien antagonists, the only treatment directed to change the natural course of allergic disease is allergen-specific immunotherapy (SIT). Its efficacy can last years after the cessassion of the treatment. SIT brings on regulatory T cells with the capacity to generate interleukin-10 and transforming growth factor-b, restricts activation of mast cells and basophils, and shifts antibody isotype from IgE to the noninflammatory type immunoglobulin G4. Subcutaneous (SCIT) and sublingual (SLIT) immunotherapy are the two most used ways at the present for applying SIT. These two treatments were demonstrated to be effective on reducing symptoms and medication use, in prevention of new sensitizations and in protecting from progression of rhinitis to asthma. The safety of SLIT appears to be better than SCIT although there have been a few head to head comparisons. In order to overcome compliance problems or possible systemic side effects which may be faced during this long-term treatment, recent investigations have been focused on the implementation of allergens in quite efficacious and safer ways.
Collapse
|
45
|
Nishimura T, Saeki M, Kaminuma O, Takaiwa F, Hiroi T. Transgenic plants for allergen-specific immunotherapy. World J Immunol 2014; 4:141-148. [DOI: 10.5411/wji.v4.i3.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/14/2014] [Accepted: 09/10/2014] [Indexed: 02/05/2023] Open
Abstract
Allergen-specific immunotherapy (IT) is an effective treatment for allergic diseases. Although subcutaneous and sublingual ITs are currently used, safer, easier, and more effective IT is under development. Induction of immune tolerance by oral administration of allergen has been proven, though oral IT has not been applied clinically. It is mainly because a large amount of purified allergen is required to induce oral tolerance. To overcome this problem, plants, peculiarly rice, have been investigated as allergen vehicles for oral IT. Rice can store a considerable amount of expressed allergen in its seeds and the accumulated allergen is stable and resistant to gastrointestinal digestion. Therefore, we have developed transgenic rice seeds (Tg rice) in which major epitopes of cedar pollen or house dust mites are expressed. We are establishing Tg rice with demonstrated efficacy in murine models of allergic rhinitis and bronchial asthma by oral administration at practical doses. In addition, the amount, distribution, and allergenicity of the expressed allergen have been improved in our Tg rice. Rice-based oral IT is a promising new concept in IT for the treatment of allergic diseases.
Collapse
|
46
|
Kim D, Park GB, Hur DY. Apoptotic signaling through reactive oxygen species in cancer cells. World J Immunol 2014; 4:158-173. [DOI: 10.5411/wji.v4.i3.158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/03/2014] [Accepted: 10/16/2014] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS) take part in diverse biological processes like cell growth, programmed cell death, cell senescence, and maintenance of the transformed state through regulation of signal transduction. Cancer cells adapt to new higher ROS circumstance. Sometimes, ROS induce cancer cell proliferation. Meanwhile, elevated ROS render cancer cells vulnerable to oxidative stress-induced cell death. However, this prominent character of cancer cells allows acquiring a resistance to oxidative stress conditions relative to normal cells. Activated signaling pathways that increase the level of intracellular ROS in cancer cells not only render up-regulation of several genes involved in cellular proliferation and evasion of apoptosis but also cause cancer cells and cancer stem cells to develop a high metabolic rate. In over the past several decades, many studies have indicated that ROS play a critical role as the secondary messenger of tumorigenesis and metastasis in cancer from both in vitro and in vivo. Here we summarize the role of ROS and anti-oxidants in contributing to or preventing cancer. In addition, we review the activated signaling pathways that make cancer cells susceptible to death.
Collapse
|
47
|
Moura MC, Pereira E, Braz V, Eloy C, Lopes J, Carneiro F, Araújo JP. Autoimmune hepatitis in a patient infected by HIV-1 and under highly active antiretroviral treatment: Case report and literature review. World J Immunol 2014; 4:194-198. [DOI: 10.5411/wji.v4.i3.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 10/12/2014] [Accepted: 10/29/2014] [Indexed: 02/05/2023] Open
Abstract
Liver disease has recently been described as an important cause of morbidity and mortality in patients infected with human immunodeficiency virus (HIV). Liver test changes are useful surrogates of the burden of liver disease. Previous studies have shown that transaminase elevations are frequent among these patients. The cause of those changes is harder to establish in HIV-patients. We present a 61-year-old caucasian male, diagnosed with HIV type 1 infection since 1998, under highly active antiretroviral treatment (HAART), with virological suppression and immunological recovery. He presented in a follow-up laboratory workup high values of transaminases, arthralgia at the hip joints and hepatomegaly. Liver function tests were normal. The antibodies to hepatitis viruses were negative. However, autoimmune study and liver biopsy were compatible with autoimmune hepatitis (AIH). The AIH is a rare diagnosis in HIV-infected patients perhaps because the elevation of transaminases and changes in liver function tests are often associated to HAART or to other possible liver diseases, namely viral hepatitis and non-alcoholic steatohepatitis. The diagnosis may be underestimated. There are no specific recommendations available for the treatment of HIV-associated AIH although the immunosupression with slower tapering seems the most reasonable approach.
Collapse
|
48
|
Abstract
Intraocular inflammation is an important cause of blindness both in the developing and developed world. Corticosteroids play a pivotal role in the treatment of intraocular inflammation. Lately, therapy by immunosuppression has taken the center stage for patients with severe intraocular inflammation. However, the side effects of immunosuppressive drugs are oncogenic, infectious, and hematological. Recently, biologic response modifiers specifically targeting suppression of the immune effector responses have revolutionized the treatment of intraocular inflammation. Anti-tumour necrosis factor agents are etanercept, infliximab, and adalimumab. Newer drugs include certolizumab and golimumab. Infliximab has been found to be superior to corticosteroids in treating retinal vasculitis. Anti-interlenkin therapies include rituximab, daclizumab, anakinra, tocilizumab and secukinumab. Rituximab has been proven to be quite effective. Other biologics used are interferons and abatacept. However, there are several limitations and side effects associated with their use.
Collapse
|
49
|
Fernández A, Oliver L, Alvarez R, Fernández LE, Mesa C. GM3-containing nanoparticles in immunosuppressed hosts: Effect on myeloid-derived suppressor cells. World J Immunol 2014; 4:98-106. [DOI: 10.5411/wji.v4.i2.98] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 05/27/2014] [Accepted: 06/27/2014] [Indexed: 02/05/2023] Open
Abstract
Cancer vaccines to date have not broadly achieved a significant impact on the overall survival of patients. The negative effect on the immune system of the tumor itself and conventional anti-tumor treatments such as chemotherapy is, undoubtedly, a key reason for these disappointing results. Myeloid-derived suppressor cells (MDSCs) are considered a central node of the immunosuppressive network associated with tumors. These cells inhibit the effector function of natural killer and CD8+ T cells, expand regulatory T cells and can differentiate into tumor-associated macrophages within the tumor microenvironment. Thus, overcoming the suppressive effects of MDSCs is likely to be critical for cancer immunotherapy to generate effective anti-tumor immune responses. However, the capacity of cancer vaccines and particularly their adjuvants to overcome this inhibitory population has not been well characterized. Very small size proteoliposomes (VSSP) is a nanoparticulated adjuvant specifically designed to be formulated with vaccines used in the treatment of immunocompromised patients. This adjuvant contains immunostimulatory bacterial signals together with GM3 ganglioside. VSSP promotes dendritic cell maturation, antigen cross-presentation to CD8+ T cells, Th1 polarization, and enhances CD8+ T cell response in tumor-free mice. Currently, four cancer vaccines using VSSP as the adjuvant are in Phase I and II clinical trials. In this review, we summarize our work characterizing the unique ability of VSSP to stimulate antigen-specific CD8+ T cell responses in two immunocompromised scenarios; in tumor-bearing mice and during chemotherapy-induced leukopenia. Particular emphasis has been placed on the interaction of these nanoparticles with MDSCs, as well as comparison with other cancer vaccine adjuvants currently in preclinical or clinical studies.
Collapse
|
50
|
Loreto &ES, Tondolo JSM, Zanette RA, Alves SH, Santurio JM. Update on pythiosis immunobiology and immunotherapy. World J Immunol 2014; 4:88-97. [DOI: 10.5411/wji.v4.i2.88] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/06/2014] [Accepted: 06/11/2014] [Indexed: 02/05/2023] Open
Abstract
Pythiosis is an invasive, ulcerative, pyogranulomatous disease caused by Pythium insidiosum, a fungus-like oomycete that has been reported to affect humans, horses, dogs, and other mammals mainly in tropical and subtropical areas of the world. The disease is characterized by an eosinophilic granulomatous and a Th2 immune response which in turn helps to protect the fungus from the host cells. Pythiosis can present clinically in subcutaneous, gastrointestinal, and vascular tissues or in a systemically disseminated form depending on the species and site of infection. Changes in iron metabolism and anemia are commonly observed. The diagnosis is accomplished through clinical and pathological features, laboratory characteristics of cultures, serological and molecular tests. Treatment includes radical surgery, antimicrobial drugs, immunotherapy or a combination of these treatments. Immunotherapy is a practical and non-invasive alternative for treating pythiosis which is believed to promote a switch from a Th2 to Th1 immune response, resulting in a favorable clinical response. This therapy has demonstrated cure rates above 70% and 55% in horses and humans but low cure rates in dogs and cats. Despite the curative properties of this type of immunotherapy, the antibodies that are produced do not prevent host reinfection. Thus, development of effective adjuvants and new diagnostic techniques for early disease diagnosis are of utmost importance. The aim of this review was to promote pythiosis awareness and to provide an update about the immunotherapy and immunobiology of this disease.
Collapse
|