576
|
Piccionello AP, Sassaroli S, Pennasilico L, Rossi G, Di Cerbo A, Riccio V, Di Bella C, Laghi L, Angelini M, Marini C, Magi GE. Comparative study of 1H-NMR metabolomic profile of canine synovial fluid in patients affected by four progressive stages of spontaneous osteoarthritis. Sci Rep 2024; 14:3627. [PMID: 38351089 PMCID: PMC10864333 DOI: 10.1038/s41598-024-54144-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024] [Imported: 01/06/2025] Open
Abstract
The study aimed to assess the metabolomic profile of the synovial fluid (SF) of dogs affected by spontaneous osteoarthritis (OA) and compare any differences based on disease progression. Sixty client-owned dogs affected by spontaneous OA underwent clinical, radiographic, and cytologic evaluations to confirm the diagnosis. The affected joints were divided into four study groups based on the Kallgreen-Lawrence classification: OA1 (mild), OA2 (moderate), OA3 (severe), and OA4 (extremely severe/deforming). The osteoarthritic joint's SF was subjected to cytologic examination and 1H-NMR analysis. The metabolomic profiles of the study groups' SF samples were statistically compared using one-way ANOVA. Sixty osteoarthritic joints (45 stifles, 10 shoulders and 5 elbows) were included in the study. Fourteen, 28, and 18 joints were included in the OA1, OA2, and OA3 groups, respectively (0 joints in the OA4 group). Metabolomic analysis identified 48 metabolites, five of which were significantly different between study groups: Mannose and betaine were elevated in the OA1 group compared with the OA2 group, and the 2-hydroxyisobutyrate concentration decreased with OA progression; in contrast, isoleucine was less concentrated in mild vs. moderate OA, and lactate increased in severe OA. This study identified different 1H-NMR metabolomic profiles of canine SF in patients with progressive degrees of spontaneous OA, suggesting 1H-NMR metabolomic analysis as a potential alternative method for monitoring OA progression. In addition, the results suggest the therapeutic potentials of the metabolomic pathways that involve mannose, betaine, 2-hydroxyisobutyrate, isoleucine, and lactate.
Collapse
|
research-article |
1 |
|
577
|
Chen J, Lu G, Wang Z, Zhang J, Ding J, Zeng Q, Chai L, Zhao L, Yu H, Li Y. Prediction Models for Dysphagia in Intensive Care Unit after Mechanical Ventilation: A Systematic Review and Meta-analysis. Laryngoscope 2024; 134:517-525. [PMID: 37543979 DOI: 10.1002/lary.30931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/16/2023] [Accepted: 07/13/2023] [Indexed: 08/08/2023] [Imported: 01/06/2025]
Abstract
OBJECTIVE Dysphagia is a common condition that can independently lead to death in patients in the intensive care unit (ICU), particularly those who require mechanical ventilation. Despite extensive research on the predictors of dysphagia development, consistency across these studies is lacking. Therefore, this study aimed to identify predictors and summarize existing prediction models for dysphagia in ICU patients undergoing invasive mechanical ventilation. METHODS We searched five databases: PubMed, EMBASE, Web of Science, Cochrane Library, and the China National Knowledge Infrastructure. Studies that developed a post-extubation dysphagia risk prediction model in ICU were included. A meta-analysis of individual predictor variables was performed with mixed-effects models. The risk of bias was assessed using the prediction model risk of bias assessment tool (PROBAST). RESULTS After screening 1,923 references, we ultimately included nine studies in our analysis. The most commonly identified risk predictors included in the final risk prediction model were the length of indwelling endotracheal tube ≥72 h, Acute Physiology and Chronic Health Evaluation (APACHE) II score ≥15, age ≥65 years, and duration of gastric tube ≥72 h. However, PROBAST analysis revealed a high risk of bias in the performance of these prediction models, mainly because of the lack of external validation, inadequate pre-screening of variables, and improper treatment of continuous and categorical predictors. CONCLUSIONS These models are particularly susceptible to bias because of numerous limitations in their development and inadequate external validation. Future research should focus on externally validating the existing model in ICU patients with varying characteristics. Moreover, assessing the acceptance and effectiveness of the model in clinical practice is needed. LEVEL OF EVIDENCE NA Laryngoscope, 134:517-525, 2024.
Collapse
|
Meta-Analysis |
1 |
|
578
|
Herger S, Wirth W, Eckstein F, Nüesch C, Egloff C, Mündermann A. Anterior cruciate ligament injury and age affect knee cartilage T2 but not thickness. Osteoarthritis Cartilage 2024; 32:1492-1502. [PMID: 38950877 DOI: 10.1016/j.joca.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] [Imported: 01/06/2025]
Abstract
OBJECTIVE To investigate the effect of unilateral anterior cruciate ligament (ACL) injury on cartilage thickness and composition, specifically laminar transverse relaxation time (T2) by magnetic resonance imaging (MRI), in younger and older participants and to compare within-person side differences in these parameters between ACL-injured and healthy controls. DESIGN Quantitative double-echo steady-state 3 Tesla MRI-sequences were acquired in both knees of 85 participants in four groups: 20-30 years: healthy, HEA20-30, n = 24; ACL-injured, ACL20-30, n = 23; 40-60 years: healthy, HEA40-60, n = 24; ACL-injured, ACL40-60, n = 14 (ACL injury 2-10 years prior to study inclusion). Weight-bearing femorotibial cartilages were manually segmented; cartilage T2 and thickness were computed using custom software. Mean and side differences in subregional cartilage thickness, superficial and deep cartilage T2 were compared within and between groups using non-parametric statistics. RESULTS Cartilage thickness did not differ within or between groups. Only the side difference in medial femorotibial cartilage thickness was greater in ACL20-30 than in HEA20-30. Deep zone T2 was longer in the ACL-injured than in the contralateral uninjured knees and than in healthy controls, especially in the lateral compartment. Most ACL-injured participants had side differences in femorotibial deep zone T2 above the threshold derived from controls. CONCLUSION In the ACL-injured knee, early compositional differences in femorotibial cartilage (T2) appear to occur in the deep zone and precede cartilage thickness loss. These results suggest that monitoring laminar T2 after ACL injury may be useful in diagnosing and monitoring early articular cartilage changes.
Collapse
|
|
1 |
|
579
|
Morya VK, Lee HW, Shahid H, Magar AG, Lee JH, Kim JH, Jun L, Noh KC. Application of ChatGPT for Orthopedic Surgeries and Patient Care. Clin Orthop Surg 2024; 16:347-356. [PMID: 38827766 PMCID: PMC11130626 DOI: 10.4055/cios23181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/15/2023] [Accepted: 12/12/2023] [Indexed: 06/05/2024] [Imported: 01/06/2025] Open
Abstract
Artificial intelligence (AI) has rapidly transformed various aspects of life, and the launch of the chatbot "ChatGPT" by OpenAI in November 2022 has garnered significant attention and user appreciation. ChatGPT utilizes natural language processing based on a "generative pre-trained transfer" (GPT) model, specifically the transformer architecture, to generate human-like responses to a wide range of questions and topics. Equipped with approximately 57 billion words and 175 billion parameters from online data, ChatGPT has potential applications in medicine and orthopedics. One of its key strengths is its personalized, easy-to-understand, and adaptive response, which allows it to learn continuously through user interaction. This article discusses how AI, especially ChatGPT, presents numerous opportunities in orthopedics, ranging from preoperative planning and surgical techniques to patient education and medical support. Although ChatGPT's user-friendly responses and adaptive capabilities are laudable, its limitations, including biased responses and ethical concerns, necessitate its cautious and responsible use. Surgeons and healthcare providers should leverage the strengths of the ChatGPT while recognizing its current limitations and verifying critical information through independent research and expert opinions. As AI technology continues to evolve, ChatGPT may become a valuable tool in orthopedic education and patient care, leading to improved outcomes and efficiency in healthcare delivery. The integration of AI into orthopedics offers substantial benefits but requires careful consideration and continuous improvement.
Collapse
|
Review |
1 |
|
580
|
Morris GR, Cao QQ, Wang A, Yoshida M. Patient-Centred Care in ACL Reconstruction and Meniscus Repair and Rehabilitation. ADVANCES IN MEDICAL TECHNOLOGIES AND CLINICAL PRACTICE 2024:359-376. [DOI: 10.4018/979-8-3693-1906-2.ch019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] [Imported: 01/06/2025]
Abstract
There is an inherent risk for anyone who plays competitive sport or engages in strenuous activity that at some juncture they may suffer an injury which will require surgery. This is a situation in which prevention is not always a viable substitute for cure. Beyond the immediate pain and distress that injuries can cause and the difficult decisions that may have to be made with regards to surgery, there is also a wide range of physical and psychological challenges that patients will face and have to overcome during their recovery journeys. This chapter considers the case of an experienced expatriate amateur sports player in China who ruptured his ACL and punctured his meniscus playing football. It explores his experience of the process he then went through as he navigated diagnosis, surgery, and subsequent recovery, considering his rehabilitation motivation and the social identity impact he encountered. It also takes into account patient autonomy, shared decision making, and engagement in medical practice.
Collapse
|
|
1 |
|
581
|
Zhou XC, Wang DX, Zhang CY, Yang YJ, Zhao RB, Liu SY, Ni GX. Exercise promotes osteogenic differentiation by activating the long non-coding RNA H19/microRNA-149 axis. World J Orthop 2024; 15:363-378. [PMID: 38680671 PMCID: PMC11045468 DOI: 10.5312/wjo.v15.i4.363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/04/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024] [Imported: 01/06/2025] Open
Abstract
BACKGROUND Regular physical activity during childhood and adolescence is beneficial to bone development, as evidenced by the ability to increase bone density and peak bone mass by promoting bone formation. AIM To investigate the effects of exercise on bone formation in growing mice and to investigate the underlying mechanisms. METHODS 20 growing mice were randomly divided into two groups: Con group (control group, n = 10) and Ex group (treadmill exercise group, n = 10). Hematoxylin-eosin staining, immunohistochemistry, and micro-CT scanning were used to assess the bone formation-related indexes of the mouse femur. Bioinformatics analysis was used to find potential miRNAs targets of long non-coding RNA H19 (lncRNA H19). RT-qPCR and Western Blot were used to confirm potential miRNA target genes of lncRNA H19 and the role of lncRNA H19 in promoting osteogenic differentiation. RESULTS Compared with the Con group, the expression of bone morphogenetic protein 2 was also significantly increased. The micro-CT results showed that 8 wk moderate-intensity treadmill exercise significantly increased bone mineral density, bone volume fraction, and the number of trabeculae, and decreased trabecular segregation in the femur of mice. Inhibition of lncRNA H19 significantly upregulated the expression of miR-149 and suppressed the expression of markers of osteogenic differentiation. In addition, knockdown of lncRNA H19 significantly downregulated the expression of autophagy markers, which is consistent with the results of autophagy-related protein changes detected in mouse femurs by immunofluorescence. CONCLUSION Appropriate treadmill exercise can effectively stimulate bone formation and promote the increase of bone density and bone volume in growing mice, thus enhancing the peak bone mass of mice. The lncRNA H19/miR-149 axis plays an important regulatory role in osteogenic differentiation.
Collapse
|
Basic Study |
1 |
|
582
|
Zhou XC, Cao CH, Wang DX, Yang YJ, Deng HL, Liu SY, Ni GX. Tetrathiomolybdate alleviates osteoporosis by activating the PI3K/Akt signaling axis. Eur Cell Mater 2024; 48:17-31. [DOI: 10.22203/ecm.v048a02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2024] [Imported: 01/11/2025] Open
|
|
1 |
|
583
|
Sun Z, Liu H, Yan M, Zeng H, Hu Y, Tian X, Mao D. The effect of multi-component exercise on cognition function in patients with diabetes: A systematic review and meta-analysis. PLoS One 2024; 19:e0304795. [PMID: 38900771 PMCID: PMC11189216 DOI: 10.1371/journal.pone.0304795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/17/2024] [Indexed: 06/22/2024] [Imported: 01/06/2025] Open
Abstract
BACKGROUND This meta-analysis investigated the influence of exercise on cognitive function in people living with diabetes. METHODS Stringent criteria for literature inclusion and exclusion were defined. Searches were conducted across four English databases to gather randomized controlled trials investigating exercise interventions for cognitive function in people living with diabetes. Outcome indicators from 1193 subjects across 12 articles were analyzed using RevMan 5.4 software. RESULTS Exercise intervention demonstrated the ability to mitigate cognitive decline in people living with diabetes, with a combined effect size (standardized mean difference) of 0.91, 95% CI: 0.28, 1.54, P < 0.00001. The intervention effect showed significant modulation by intervention content (I2 = 95%), intervention duration (I2 = 95%), intervention frequency (I2 = 95%), and intervention cycle (I2 = 96%). Among these factors, multi-component exercise, sessions >40 minutes, exercise frequency >4 times per week, and sustained exercise for >6 months were paramount, all with P < 0.05. CONCLUSION Exercise intervention emerges as a viable strategy for delaying cognitive decline in people living with diabetes. Its efficacy is subject to modulation by various variables. Optimal intervention includes multi-component exercise, individual sessions lasting 40-60 minutes, exercising >4 times a week, and continuous exercise for over 6 months.
Collapse
|
Meta-Analysis |
1 |
|
584
|
Li C, Xu W, Li L, Zhou Y, Yao G, Chen G, Xu L, Yang N, Yan Z, Zhu C, Fang S, Qiao Y, Bai J, Li M. Concrete-Inspired Bionic Bone Glue Repairs Osteoporotic Bone Defects by Gluing and Remodeling Aging Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408044. [PMID: 39455287 PMCID: PMC11672322 DOI: 10.1002/advs.202408044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/15/2024] [Indexed: 10/28/2024] [Imported: 01/06/2025]
Abstract
Osteoporotic fractures are characterized by abnormal inflammation, deterioration of the bone microenvironment, weakened mechanical properties, and difficulties in osteogenic differentiation. The chronic inflammatory state characterized by aging macrophages leads to delayed or non-healing of the fracture or even the formation of bone defects. The current bottleneck in clinical treatment is to achieve strong fixation of the comminuted bone fragments and effective regulation of the complex microenvironment of aging macrophages. Inspired by cement and gravel in concrete infrastructure, a biomimetic bone glue with poly(lactic-co-glycolic acid) microspheres is developed and levodopa/oxidized chitosan hydrogel stabilized on an organic-inorganic framework of nanohydroxyapatite, named DOPM. DOPM is characterized via morphological and mechanical characterization techniques, in vitro experiments with bone marrow mesenchymal stromal cells, and in vivo experiments with an aged SD rat model exhibiting osteoporotic bone defects. DOPM exhibited excellent adhesion properties, good biocompatibility, and significant osteogenic differentiation. Transcriptomic analysis revealed that DOPM improved the inflammatory microenvironment by inhibiting the NF-κB signaling pathway and promoting aging macrophage polarization toward M2 macrophages, thus significantly accelerating bone defect repair and regeneration. This biomimetic bone glue, which enhances osteointegration and reestablishes the homeostasis of aging macrophages, has potential applications in the treatment of osteoporotic bone defects.
Collapse
|
research-article |
1 |
|
585
|
Ni GX, Lei L, Zhou YZ. Correction: Intensity-dependent effect of treadmill running on lubricin metabolism of rat articular cartilage. Arthritis Res Ther 2025; 27:45. [PMID: 40038772 PMCID: PMC11877723 DOI: 10.1186/s13075-025-03521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] [Imported: 04/02/2025] Open
|
Published Erratum |
1 |
|
586
|
Li JT, Zeng N, Yan ZP, Liao T, Chen X, Ni GX. Nuclear magnetic resonance-based metabolomic study of rat serum after anterior cruciate ligament injury. Sci Rep 2023; 13:19321. [PMID: 37935794 PMCID: PMC10630467 DOI: 10.1038/s41598-023-46540-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] [Imported: 01/06/2025] Open
Abstract
Anterior cruciate ligament (ACL) injury, a common sports injury, is associated with a high risk of subsequent osteoarthritis (OA), which can cause serious pain and disability. Understanding the detailed mechanism underlying the predisposition of knee with ACL injury to secondary OA at an early stage is key to preventing future degradation and progression to a clinically significant disease. A total of 56 male Sprague Dawley rats (age, 8 weeks; weight, 180-220 g) were randomly divided into three experimental groups: control, ACL transection (ACLT; where surgical procedure was performed with ACLT), and sham (where surgical procedure was performed without ACLT). The ACLT and sham groups were further divided into three subgroups based on when the rats were sacrificed: 4, 8, and 12 weeks after the surgical procedure. The control group and the aforementioned subgroups contained 8 rats each. We used nuclear magnetic resonance (NMR)-based metabolomic analysis to analyze rat serum samples for the metabolic characteristics and the underlying mechanisms. In total, 28 metabolites were identified in the NMR spectra of the rat sera. At 4 and 8 weeks postoperatively, the sham group demonstrated metabolic profiles different from those of the ACLT group. However, this difference was not observed 12 weeks postoperatively. In total, five metabolites (acetate, succinate, sn-glycero-3-phosphocholine, glucose, and phenylalanine) and five metabolic pathways (phenylalanine, tyrosine, and tryptophan biosynthesis; phenylalanine metabolism; pyruvate metabolism; starch and sucrose metabolism; and histidine metabolism) demonstrated significant differences between the ACLT and sham groups. ACL injury was noted to considerably affect biochemical homeostasis and metabolism; however, these metabolic changes persisted briefly. Moreover, glucose was a characteristic metabolite, and several energy-related metabolic pathways were significantly disturbed. Therefore, an ACL injury may lead to considerable impairments in energy metabolism. Abnormal glucose levels facilitate chondrocyte function impairment and thereby lead to OA progression. Furthermore, lactate may aid in identifying metabolic changes specific to knee trauma not related to an ACL injury. Overall, the metabolic changes in rat serum after an ACL injury were closely related to disturbances in energy metabolism and amino acid metabolism. The current results may aid in understanding the pathogenesis of posttraumatic osteoarthritis.
Collapse
|
research-article |
2 |
|
587
|
Duta L, Grumezescu V. The Effect of Doping on the Electrical and Dielectric Properties of Hydroxyapatite for Medical Applications: From Powders to Thin Films. MATERIALS (BASEL, SWITZERLAND) 2024; 17:640. [PMID: 38591446 PMCID: PMC10856152 DOI: 10.3390/ma17030640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 04/10/2024] [Imported: 01/06/2025]
Abstract
Recently, the favorable electrical properties of biomaterials have been acknowledged as crucial for various medical applications, including both bone healing and growth processes. This review will specifically concentrate on calcium phosphate (CaP)-based bioceramics, with a notable emphasis on hydroxyapatite (HA), among the diverse range of synthetic biomaterials. HA is currently the subject of extensive research in the medical field, particularly in dentistry and orthopedics. The existing literature encompasses numerous studies exploring the physical-chemical, mechanical, and biological properties of HA-based materials produced in various forms (i.e., powders, pellets, and/or thin films) using various physical and chemical vapor deposition techniques. In comparison, there is a relative scarcity of research on the electrical and dielectric properties of HA, which have been demonstrated to be essential for understanding dipole polarization and surface charge. It is noteworthy that these electrical and dielectric properties also offer valuable insights into the structure and functioning of biological tissues and cells. In this respect, electrical impedance studies on living tissues have been performed to assess the condition of cell membranes and estimate cell shape and size. The need to fill the gap and correlate the physical-chemical, mechanical, and biological characteristics with the electrical and dielectric properties could represent a step forward in providing new avenues for the development of the next-generation of high-performance HA-doped biomaterials for future top medical applications. Therefore, this review focuses on the electrical and dielectric properties of HA-based biomaterials, covering a range from powders and pellets to thin films, with a particular emphasis on the impact of the various dopants used. Therefore, it will be revealed that each dopant possesses unique properties capable of enhancing the overall characteristics of the produced structures. Considering that the electrical and dielectric properties of HA-based biomaterials have not been extensively explored thus far, the aim of this review is to compile and thoroughly discuss the latest research findings in the field, with special attention given to biomedical applications.
Collapse
|
Review |
1 |
|
588
|
White E, Okoro S, Tabbaa A, Rodriguez AN, Sheth B, Horn A, Razi AE, Abdelgawad AA. Risk factors associated with subtalar fusion within 5 years following calcaneal ORIF. Foot (Edinb) 2025; 62:102154. [PMID: 39708409 DOI: 10.1016/j.foot.2024.102154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/01/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024] [Imported: 01/06/2025]
Abstract
BACKGROUND Although most calcaneal fractures are managed with open reduction internal fixation (ORIF), they can ultimately lead to subtalar arthritis and pain requiring subtalar fusion when conservative treatments prove ineffective. Understanding the risk factors associated with subtalar fusion (STF) after calcaneal ORIF is crucial for optimizing patient outcomes and treatment strategies. This study aimed to comprehensively evaluate these risk factors and their association with the incidence of STF, including patient demographics, medical comorbidities, same day and 90-day reimbursement data. METHODS A retrospective analysis was performed using the PearlDiver Mariner 157 national claims database from January 1st, 2010 to October 31st, 2021. Patients who underwent calcaneal ORIF, identified using Current Procedural Terminology (CPT) and ICD Procedure Codes were queried for 5-year rates of STF and reimbursement data. Patient demographics and comorbidities were recorded, and multivariate logistic regression was employed to determine the association of risk factors with STF. RESULTS Patients with STF had a higher proportion of alcohol abuse (21.3 % vs. 16.2 %), depression (58.1 % vs. 43.1 %), drug abuse (29.1 % vs. 19.7 %), obesity (40.3 % vs. 28 %) and tobacco use (62.2 % vs. 50.3 %), all exhibiting a p-value of less than 0.001. Those with depression (OR: 1.54; 99 % CI:1.29-1.84; P < 0.001) and obesity (OR:1.58; 99 % CI: 1.32-1.88; P < 0.001) as comorbidities had a higher odds ratio of association with STF following calcaneal ORIF. CONCLUSION Patients who ultimately require STF within 5 years of calcaneal ORIF had higher rates of alcohol abuse, tobacco use, drug use, obesity, and depression. There was no significant difference observed between those with and without STF in average same-day and 90-day reimbursements and demographics.
Collapse
|
|
1 |
|
589
|
Zhou XC, Ni GX. O-linked β-N-acetylglucosaminylation may be a key regulatory factor in promoting osteogenic differentiation of bone marrow mesenchymal stromal cells. World J Stem Cells 2024; 16:228-231. [PMID: 38577231 PMCID: PMC10989286 DOI: 10.4252/wjsc.v16.i3.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/02/2024] [Accepted: 02/29/2024] [Indexed: 03/25/2024] [Imported: 01/11/2025] Open
Abstract
Cumulative evidence suggests that O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) plays an important regulatory role in pathophysiological processes. Although the regulatory mechanisms of O-GlcNAcylation in tumors have been gradually elucidated, the potential mechanisms of O-GlcNAcylation in bone metabolism, particularly, in the osteogenic differentiation of bone marrow mesenchymal stromal cells (BMSCs) remains unexplored. In this study, the literature related to O-GlcNAcylation and BMSC osteogenic differentiation was reviewed, assuming that it could trigger more scholars to focus on research related to O-GlcNAcylation and bone metabolism and provide insights into the development of novel therapeutic targets for bone metabolism disorders such as osteoporosis.
Collapse
|
Editorial |
1 |
|
590
|
Wang Z, Mao X, Guo Z, Huang H, Che G, Li T. Prevalence and factor associated with depressive symptoms in patients with osteoarthritis: A cross-sectional study. J Psychosom Res 2025; 189:112018. [PMID: 39721308 DOI: 10.1016/j.jpsychores.2024.112018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/10/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024] [Imported: 01/06/2025]
Abstract
OBJECTIVE Osteoarthritis (OA) is a prevalent degenerative joint condition. Among OA patients, depressive symptoms are the most frequent psychiatric disorder, negatively impacting both prognosis and quality of life. This study analyzed the independent factors associated with the development of depressive symptoms in patients with OA and constructed a nomogram to assess the risk of developing depressive symptoms. METHODS An analysis was conducted on data from 2093 OA patients in the NHANES database, covering 2007 to 2014. A training set and a validation set were randomly assigned to participants in a 7:3 ratio. Variables significantly associated with depressive symptoms in OA patients were identified using the least absolute shrinkage and selection operator (LASSO) and multivariable logistic regression analyses and nomograms were constructed. Its performance and clinical relevance were assessed using receiver operating characteristic (ROC) curves, C indices, calibration curves, and decision curves. RESULTS Among the 2093 OA patients, 357 were assessed as having depressive symptoms. There are eight independent relevant factors, which are gender, age, poverty-to-income ratio (PIR), race, educational attainment, smoking status, diabetes, and sleep disorder. The AUC values of the training and validation sets were 0.718 (95 %CI: 0.683-0.752) and 0.733 (95 %CI: 0.678-0.788). Calibration and decision curve analyses showed that this nomogram exhibits high accuracy, good discrimination, and potential clinical benefits on both training and validation sets. CONCLUSIONS We screened to obtain factors associated with depressive symptoms in patients with OA. Dynamic nomograms enable the combination of individual relevant factors for better assessing and managing high-risk OA groups.
Collapse
|
|
1 |
|
591
|
Panichi V, Costantini S, Grasso M, Arciola CR, Dolzani P. Innate Immunity and Synovitis: Key Players in Osteoarthritis Progression. Int J Mol Sci 2024; 25:12082. [PMID: 39596150 PMCID: PMC11594236 DOI: 10.3390/ijms252212082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] [Imported: 01/06/2025] Open
Abstract
Osteoarthritis (OA) is a chronic progressive disease of the joint. Although representing the most frequent cause of disability in the elderly, OA remains partly obscure in its pathogenic mechanisms and is still the orphan of resolutive therapies. The concept of what was once considered a "wear and tear" of articular cartilage is now that of an inflammation-related disease that affects over time the whole joint. The attention is increasingly focused on the synovium. Even from the earliest clinical stages, synovial inflammation (or synovitis) is a crucial factor involved in OA progression and a major player in pain onset. The release of inflammatory molecules in the synovium mediates disease progression and worsening of clinical features. The activation of synovial tissue-resident cells recalls innate immunity cells from the bloodstream, creating a proinflammatory milieu that fuels and maintains a damaging condition of low-grade inflammation in the joint. In such a context, cellular and molecular inflammatory behaviors in the synovium could be the primum movens of the structural and functional alterations of the whole joint. This paper focuses on and discusses the involvement of innate immunity cells in synovitis and their role in the progression of OA.
Collapse
|
Review |
1 |
|
592
|
Li B, Yang Z, Li Y, Zhang J, Li C, Lv N. Exploration beyond osteoarthritis: the association and mechanism of its related comorbidities. Front Endocrinol (Lausanne) 2024; 15:1352671. [PMID: 38779455 PMCID: PMC11110169 DOI: 10.3389/fendo.2024.1352671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/12/2024] [Indexed: 05/25/2024] [Imported: 01/06/2025] Open
Abstract
Osteoarthritis is the most prevalent age-related degenerative joint disease and a leading cause of pain and disability in aged people. Its etiology is multifaceted, involving factors such as biomechanics, pro-inflammatory mediators, genetics, and metabolism. Beyond its evident impact on joint functionality and the erosion of patients' quality of life, OA exhibits symbiotic relationships with various systemic diseases, giving rise to various complications. This review reveals OA's extensive impact, encompassing osteoporosis, sarcopenia, cardiovascular diseases, diabetes mellitus, neurological disorders, mental health, and even cancer. Shared inflammatory processes, genetic factors, and lifestyle elements link OA to these systemic conditions. Consequently, recognizing these connections and addressing them offers opportunities to enhance patient care and reduce the burden of associated diseases, emphasizing the need for a holistic approach to managing OA and its complications.
Collapse
|
Review |
1 |
|
593
|
Ramanathan S, Lin YC, Thirumurugan S, Hu CC, Duann YF, Chung RJ. Poly(methyl methacrylate) in Orthopedics: Strategies, Challenges, and Prospects in Bone Tissue Engineering. Polymers (Basel) 2024; 16:367. [PMID: 38337256 PMCID: PMC10857151 DOI: 10.3390/polym16030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] [Imported: 01/06/2025] Open
Abstract
Poly(methyl methacrylate) (PMMA) is widely used in orthopedic applications, including bone cement in total joint replacement surgery, bone fillers, and bone substitutes due to its affordability, biocompatibility, and processability. However, the bone regeneration efficiency of PMMA is limited because of its lack of bioactivity, poor osseointegration, and non-degradability. The use of bone cement also has disadvantages such as methyl methacrylate (MMA) release and high exothermic temperature during the polymerization of PMMA, which can cause thermal necrosis. To address these problems, various strategies have been adopted, such as surface modification techniques and the incorporation of various bioactive agents and biopolymers into PMMA. In this review, the physicochemical properties and synthesis methods of PMMA are discussed, with a special focus on the utilization of various PMMA composites in bone tissue engineering. Additionally, the challenges involved in incorporating PMMA into regenerative medicine are discussed with suitable research findings with the intention of providing insightful advice to support its successful clinical applications.
Collapse
|
Review |
1 |
|
594
|
Ruan H, Zhu T, Ma T, Liu Y, Zheng J. Short-term high-fat diet post-ACLT surgery activates chondrocyte AMPK pathway and slows articular cartilage degeneration in rats. J Funct Foods 2025; 124:106609. [DOI: 10.1016/j.jff.2024.106609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] [Imported: 01/06/2025] Open
|
|
1 |
|
595
|
Jiang S, Xie W, Knapstein PR, Donat A, Albertsen LC, Sevecke J, Erdmann C, Appelt J, Fuchs M, Hildebrandt A, Maleitzke T, Frosch KH, Baranowsky A, Keller J. Transcript-dependent effects of the CALCA gene on the progression of post-traumatic osteoarthritis in mice. Commun Biol 2024; 7:223. [PMID: 38396204 PMCID: PMC10891124 DOI: 10.1038/s42003-024-05889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/06/2024] [Indexed: 02/25/2024] [Imported: 01/06/2025] Open
Abstract
Osteoarthritis represents a chronic degenerative joint disease with exceptional clinical relevance. Polymorphisms of the CALCA gene, giving rise to either a procalcitonin/calcitonin (PCT/CT) or a calcitonin gene-related peptide alpha (αCGRP) transcript by alternative splicing, were reported to be associated with the development of osteoarthritis. The objective of this study was to investigate the role of both PCT/CT and αCGRP transcripts in a mouse model of post-traumatic osteoarthritis (ptOA). WT, αCGRP-/- and CALCA-/- mice were subjected to anterior cruciate ligament transection (ACLT) to induce ptOA of the knee. Mice were sacrificed 4 and 8 weeks post-surgery, followed by micro-CT and histological evaluation. Here we show that the expression of both PCT/CT and αCGRP transcripts is induced in ptOA knees. CALCA-/- mice show increased cartilage degeneration and subchondral bone loss with elevated osteoclast numbers compared to αCGRP-/- and WT mice. Osteophyte formation is reduced to the same extent in CALCA-/- and αCGRP-/- mice compared to WT controls, while a reduced synovitis score is noticed exclusively in mice lacking CALCA. Our data show that expression of the PCT/CT transcript protects from the progression of ptOA, while αCGRP promotes osteophyte formation, suggesting that CALCA-encoded peptides may represent novel targets for the treatment of ptOA.
Collapse
|
research-article |
1 |
|
596
|
Choi SH, Kim HC, Jang SG, Lee YJ, Heo JY, Kweon GR, Ryu MJ. Effects of a Combination of Polynucleotide and Hyaluronic Acid for Treating Osteoarthritis. Int J Mol Sci 2024; 25:1714. [PMID: 38338992 PMCID: PMC10855695 DOI: 10.3390/ijms25031714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] [Imported: 01/06/2025] Open
Abstract
Knee osteoarthritis (OA), an age-related degenerative disease characterized by severe pain and disability, is treated using polynucleotides (PNs) and hyaluronic acid (HA). The intra-articular (IA) injection of HA has been studied extensively in both animal models and in humans; however, the efficacy and mechanisms of action remain unclear. In addition, there has been a paucity of research regarding the use of PN alone or in combination with HA in OA. To investigate the effect of the combined injection of PN and HA in vivo, pathological and behavioral changes were assessed in an OA model. Anterior cruciate ligament transection and medial meniscectomy were performed in Sprague-Dawley rats to create the OA animal model. The locomotor activity improved following PNHA injection, while the OARSI grade improved in the medial tibia and femur. In mild OA, TNFα levels decreased histologically in the PN, HA, and PNHA groups but only the PNHA group showed behavioral improvement in terms of distance. In conclusion, PNHA exhibited anti-inflammatory effects during OA progression and improved locomotor activity regardless of the OARSI grade.
Collapse
|
research-article |
1 |
|
597
|
Guo Y, Cheng T, Yang Z, Huang Y, Li M, Wang T. A systematic review and meta-analysis of balance training in patients with chronic ankle instability. Syst Rev 2024; 13:64. [PMID: 38347564 PMCID: PMC10860262 DOI: 10.1186/s13643-024-02455-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] [Imported: 01/06/2025] Open
Abstract
BACKGROUND Chronic ankle instability (CAI) is a common yet serious problem for elder patients. This meta-analysis aimed to evaluate the effects of balance training for CAI, to provide evidence for the clinical treatment, and care of CAI patients. METHODS Two investigators searched PubMed, EMBASE, Science Direct, Web of Science, Cochrane Library, China National Knowledge Infrastructure, Wanfang, and Weipu Databases up to May 20, 2023, for randomized controlled trials (RCTs) on the effects of balance training for CAI. The mean difference (MD) with 95% confidence intervals (95%CIs) was calculated for each outcome with a fixed or random effect model. Review Manager 5.3 software was used for meta-analysis. RESULTS Nine RCTs involving 341 patients were included. Meta-analysis results showed that compared with blank controls, balanced training treatment of CAI could significantly improve the score of CAI [MD = 3.95, 95% CI (3.26, 4.64), P < 0.00001], SEBT-PM [MD = 4.94, 95% CI (1.88, 8.00), P = 0.002], SEBT-PL [MD = 5.19, 95% CI (1.57, 8.81), P = 0.005], and FAAM Sports [MD = 17.74, 95% CI (14.36, 21.11), P < 0.00001]. Compared with strength training, balance training treatment of CAI improved the score of CAIT [MD = 2.36, 95% CI (0.29, 4.44), P = 0.03], FAAM-ADL [MD = 4.06, 95% CI (1.30, 6.83), P = 0.004]. CONCLUSION The analysis outcomes indicate that balance training enhances daily activity capability, motor function, and dynamic balance to different extents. Additionally, when comparing the results of balance training and strength training, no significant difference was observed between the two methods in improving the dynamic stability of CAI patients. However, it is noteworthy that balance training exhibits a more pronounced impact on enhancing functional scale scores.
Collapse
|
Meta-Analysis |
1 |
|
598
|
Azami P, Ashraf A, Yousefi O, Hosseinpour A, Nasiri A. Impact of treadmill running on distal femoral cartilage thickness: a cross-sectional study of professional athletes and healthy controls. BMC Sports Sci Med Rehabil 2024; 16:104. [PMID: 38711058 PMCID: PMC11071246 DOI: 10.1186/s13102-024-00896-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/02/2024] [Indexed: 05/08/2024] [Imported: 01/06/2025]
Abstract
PURPOSE This present study aimed to assess the impact of treadmill running on distal femoral cartilage thickness. METHODS Professional athletes aged 20 to 40 years with a history of treadmill running (minimum 75 min per week for the past three months or more) and age-, sex-, and body mass index (BMI)-matched healthy controls were recruited. Demographics and clinical features of participants were recorded. Athletes were divided into subgroup 1 with less than 12 months of treadmill running and subgroup 2 with 12 months or more of treadmill running. Distal femoral cartilage thicknesses were measured at the midpoints of the right medial condyle (RMC), right intercondylar area (RIA), right lateral condyle (RLC), left medial condyle (LMC), left intercondylar area (LIA), and left lateral condyle (LLC) via ultrasonography. RESULT A total of 72 athletes (mean age: 29.6 ± 6.6 years) and 72 controls (mean age: 31.9 ± 6.7 years) were enrolled. Athletes had significantly thinner cartilages in the RLC (2.21 ± 0.38 vs. 2.39 ± 0.31 cm, p = 0.002), LLC (2.28 ± 0.37 vs. 2.46 ± 0.35 cm, p = 0.004), and LMC (2.28 ± 0.42 vs. 2.42 ± 0.36 cm, p = 0.039) compared with the control group. Furthermore, cartilage thickness was significantly thinner in subgroup 2 athletes compared with the control group in the RLC (2.13 ± 0.34 vs. 2.39 ± 0.31 cm, p = 0.001), LLC (2.22 ± 0.31 vs. 2.46 ± 0.35 cm, p = 0.005), and LMC (2.21 ± 0.46 vs. 2.42 ± 0.36 cm, p = 0.027); however, subgroup 1 athletes did not have such differences. There was a weak negative correlation between total months of treadmill running and cartilage thickness in the RLC (r = - 0.0236, p = 0.046) and LLC (r = - 0.0233, p = 0.049). No significant correlation was found between the distal femoral cartilage thickness at different sites and the patients' demographic features, including age, BMI, speed and incline of treadmill running, and minutes of running per session and week (p > 0.05). CONCLUSION Compared with healthy controls, professional athletes with a history of long-term high-intensity treadmill running had thinner femoral cartilages. The duration (months) of treadmill running was weakly negatively correlated with distal femoral cartilage thickness. Longitudinal studies with prolonged follow-ups are needed to clarify how treadmill running affects femoral cartilage thickness in athletes.
Collapse
|
research-article |
1 |
|
599
|
Fernandes E Oliveira HF, Addison O, Yogui FC, Cruz MAE, Nogueira LFB, Okamoto R, Souza ACG, Ramos AP, Verri FR. Strontium-containing mineralized phospholipid coatings improve osseointegration in osteoporotic rats. J Biomed Mater Res A 2025; 113:e37782. [PMID: 39360796 DOI: 10.1002/jbm.a.37782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/25/2024] [Accepted: 07/23/2024] [Indexed: 12/26/2024] [Imported: 01/06/2025]
Abstract
Surface treatments play an important role in enhancing the osseointegration of Titanium (Ti) and its alloys. This study introduces a method employing biomimetic hydroxyapatite (Hap) deposition guided by molecularly organized phospholipids, affixed to the metal implant surface. Using the Langmuir-Blodgett technique, phospholipids were deposited onto Ti-screws by using CaCl2 or CaCl2/SrCl2 aqueous solution in the subphase of a Langmuir trough in the target proportion (i.e. 10 and 90 mol% of Sr2+ in relation of Ca2+) followed by immersion in phosphate buffer and in supersaturated simulated body fluid. Coating composition and morphology were evaluated using infrared spectroscopy and scanning electron microscopy, respectively, while contact angle measurements assessed coating wettability and surface energy. Randomized screws were then implanted into the tibias of healthy and osteoporotic female rats (G1: Control-Machined, G2: Hap, G3: HapSr10, G4: HapSr90). Osseointegration, assessed 60 days post-implantation, included reverse torque, fluorochrome area, bone tissue-screw contact area, and linear extent of bone-screw contact. Results, grouped by surface treatment (Machined, Hap, HapSr10, HapSr90), revealed that the deposition of Hap, HapSr10, and HapSr90 resulted in thin and rough coatings composed of hydroxyapatite (Hap) on the screw surface with nanoscale pores. The coatings resulted in increased wettability and surface energy of Ti surfaces. The minerals are chemically similar to natural bone apatite as revealed by FTIR analysis. In vivo analyses indicated higher torque values for strontium-containing surfaces in the osteoporotic group (p = 0.02) and, in the control group superior torque for screw removal on the Hap surface (p = 0.023). Hydroxyapatite-treated surfaces enhance morphology, composition, and reactivity, promoting screw osseointegration in healthy and osteoporotic female rats. The incorporation of strontium into the mineral phase has been proposed to not only stimulate osteoblast activity but also reduce osteoclastic resorption, which may explain the improved outcomes observed here in experimental osteoporotic conditions.
Collapse
|
|
1 |
|
600
|
Azuero Gonzalez RA, Diaz Otero FA, Ramirez-Velandia F, Cruz Amaya O, Hortua Moreno AF, Patiño Guerrero RE, Dario Ramirez Giraldo I. Early experience using 3-D printed locking drill guides for transpedicular screw fixation in scoliosis. INTERDISCIPLINARY NEUROSURGERY 2024; 36:101956. [DOI: 10.1016/j.inat.2024.101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] [Imported: 01/06/2025] Open
|
|
1 |
|