1
|
Cheng TH, Cheng PY, Shih NL, Chen IB, Wang DL, Chen JJ. Involvement of reactive oxygen species in angiotensin II-induced endothelin-1 gene expression in rat cardiac fibroblasts. J Am Coll Cardiol 2003; 42:1845-1854. [PMID: 14642698 DOI: 10.1016/j.jacc.2003.06.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] [Imported: 02/05/2025]
Abstract
OBJECTIVES The aim of this study was to investigate the effects of angiotensin II (Ang II) on fibroblast proliferation and endothelin-1 (ET-1) gene induction, focusing especially on reactive oxygen species (ROS)-mediated signaling in cardiac fibroblasts. BACKGROUND Angiotensin II increases ET-1 expression, which plays an important role in Ang II-induced fibroblast proliferation. Angiotensin II also stimulates ROS generation in cardiac fibroblasts. However, whether ROS are involved in Ang II-induced proliferation and ET-1 expression remains unknown. METHODS Cultured neonatal rat cardiac fibroblasts were stimulated with Ang II, and then [(3)H]thymidine incorporation and the ET-1 gene expression were examined. We also examined the effects of antioxidants on Ang II-induced proliferation and mitogen-activated protein kinase (MAPK) phosphorylation to elucidate the redox-sensitive pathway in fibroblast proliferation and ET-1 gene expression. RESULTS Both AT(1) receptor antagonist (losartan) and ET(A) receptor antagonist (BQ485) inhibited Ang II-increased DNA synthesis. Endothelin-1 gene was induced with Ang II as revealed by Northern blotting and promoter activity assay. Angiotensin II increased intracellular ROS levels, which were inhibited with losartan and antioxidants. Antioxidants further suppressed Ang II-induced ET-1 gene expression, DNA synthesis, and MAPK phosphorylation. PD98059, but not SB203580, fully inhibited Ang II-induced ET-1 expression. Truncation and mutational analysis of the ET-1 gene promoter showed that AP-1 binding site was an important cis-element in Ang II-induced ET-1 gene expression. CONCLUSIONS Our data suggest that ROS are involved in Ang II-induced proliferation and ET-1 gene expression. Our findings imply that the combination of AT(I) and ET(A) receptor antagonists plus antioxidants may be beneficial in preventing the formation of excessive cardiac fibrosis.
Collapse
|
|
22 |
106 |
2
|
Cheng TH, Shih NL, Chen SY, Loh SH, Cheng PY, Tsai CS, Liu SH, Wang DL, Chen JJ. Reactive oxygen species mediate cyclic strain-induced endothelin-1 gene expression via Ras/Raf/extracellular signal-regulated kinase pathway in endothelial cells. J Mol Cell Cardiol 2001; 33:1805-1814. [PMID: 11603923 DOI: 10.1006/jmcc.2001.1444] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] [Imported: 02/05/2025]
Abstract
Endothelin-1 (Et-1) is a peptide synthesized by endothelial cells (ECs) both in culture and in vivo. Cyclic strain induces gene expression of Et-1, however, the molecular mechanisms remain unclear. Since cyclic strain induces a sustained increase in intracellular reactive oxygen species (ROS), we hypothesized that the ROS could be a modulator in strain-induced Et-1 gene expression. Human umbilical vein ECs (HUVECs) subjected to cyclic strain had increased Et-1 secretion. Pretreatment of HUVECs with antioxidants, catalase (300 U/ml) or 1,3-dimethyl-2-thiourea (DMTU, 0.1 mm), abolished the strain-induced Et-1 release. ECs strained for 6 h had elevated Et-1 mRNA levels. In contrast, ECs treated with catalase or DMTU did not have increase Et-1 mRNA levels stimulated by cyclic strain. Bovine aortic ECs (BAECs) transfected with fusion plasmid containing Et-1 5'-flanking sequence (4.4 kb) and chloramphenicol acetyltransferase reporter gene produced a maximal Et-1 promoter activity after undergoing strain for 6 h, whereas pretreatment with catalase decreased this activity. BAECs cotransfected with a dominant negative mutant of Ras (RasN17), Raf-1 (Raf301), or catalytically inactive mutant of extracellular signal-regulated kinase (mERK2) had inhibited strain-induced Et-1 promoter activity, indicating the Ras/Raf/ERK pathway was involved; moreover, ERK phosphorylation was induced in ECs which were strained. This strain-activated ERK phosphorylation was attenuated in the presence of catalase. Functional analysis of the Et-1 promoter with site-directed mutagenesis indicates that the activator protein-1 (AP-1) binding site had to be within 143 base-pairs upstream of transcription initiation site for strain-induced promoter activity. Pretreatment of ECs with catalase also decreased the strain-induced promoter activity in the minimal construct (-143 bp). Our data demonstrate that strain-induced Et-1 gene expression is modulated by ROS via Ras/Raf/ERK signaling pathway, and indicate the responsiveness of the AP-1 binding site for strain-induced Et-1 expression.
Collapse
|
|
24 |
89 |
3
|
Cheng TH, Shih NL, Chen SY, Wang DL, Chen JJ. Reactive oxygen species modulate endothelin-I-induced c-fos gene expression in cardiomyocytes. Cardiovasc Res 1999; 41:654-662. [PMID: 10435037 DOI: 10.1016/s0008-6363(98)00275-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] [Imported: 02/05/2025] Open
Abstract
OBJECTIVES Recent evidence indicates that reactive oxygen species (ROS) may act as second messengers in receptor-mediated signaling pathways. The possible role of ROS during Et-1 stimulation in cardiomyocytes was therefore investigated. METHODS Intracellular ROS levels were measured with fluorescence probe 2',7'-dichlorofluorescin diacetate by confocal microscopy in cultured neonatal rat cardiomyocytes. The ROS-inducible c-fos expression was analyzed by Northern blotting and promoter activity. RESULTS Et-1 applied to cardiomyocytes dose-dependently increased intracellular ROS levels. The increase of ROS levels was attenuated by pretreating cardiomyocytes with Et-A receptor antagonist-BQ485, but not with Et-B receptor antagonist. Cardiomyocytes pretreated with catalase or an antioxidant N-acetylcysteine (NAC) reduced Et-1-induced ROS levels. Et-1 or H2O2 treatment of cardiomyocytes rapidly induced the expression of an immediate early gene c-fos. Et-1-treated cardiomyocytes enhanced the c-fos gene expression as revealed by functional analysis using a reporter gene construct containing c-fos promoter region (-2.25 kb) and reporter gene chloramphenicol acetyltransferase. The induction of mRNA levels and the promoter activities of c-fos gene by Et-1 or H2O2 were abolished by pretreating cardiomyocytes with catalase or NAC. Cells transiently transfected with the dominant positive mutant of p21ras (RasL61) led to a significant increase in intracellular ROS. Concomitantly, the mRNA levels and the promoter activities of c-fos were also induced. In contrast, cells transfected with the dominant negative mutant of Ras (RasN17) inhibited Et-1-induced ROS. Consistently, the increase of c-fos mRNA levels and promoter activities by Et-1 were also inhibited. CONCLUSIONS These findings clearly indicate that Et-1 treatment to cardiomyocytes can induce ROS via Ras pathway and the increased ROS are involved in the increase of c-fos expression. Our studies thus emphasize the importance of ROS as second messengers in Et-1-induced responses on cardiomyocytes.
Collapse
|
|
26 |
76 |
4
|
Cheng TH, Lin JW, Chao HH, Chen YL, Chen CH, Chan P, Liu JC. Uric acid activates extracellular signal-regulated kinases and thereafter endothelin-1 expression in rat cardiac fibroblasts. Int J Cardiol 2010; 139:42-49. [PMID: 18945502 DOI: 10.1016/j.ijcard.2008.09.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 07/20/2008] [Accepted: 09/02/2008] [Indexed: 11/26/2022] [Imported: 02/05/2025]
Abstract
BACKGROUND The association between hyperuricemia and cardiovascular diseases has long been recognized. Elevated levels of uric acid may have a causal role in hypertension and cardiovascular diseases. However, the direct effect of uric acid on cardiac cells remains unclear. Therefore, this study was aimed to examine the effect of uric acid in rat cardiac fibroblasts and to identify the putative underlying signaling pathways. METHODS Cultured rat cardiac fibroblasts were stimulated with uric acid; cell proliferation and endothelin-1 (ET-1) gene expression were examined. The effect of uric acid on NADPH oxidase activity, reactive oxygen species (ROS) formation, and extracellular signal-regulated kinases (ERK) phosphorylation were tested to elucidate the intracellular mechanism of uric acid in ET-1 gene expression. RESULTS Uric acid-increased cell proliferation and ET-1 gene expression. Uric acid also increased NADPH oxidase activity, ROS formation, ERK phosphorylation, and activator protein-1 (AP-1)-mediated reporter activity. Antioxidants suppressed uric acid-induced ET-1 gene expression, and ERK phosphorylation, and AP-1 reporter activities. Mutational analysis of the ET-1 gene promoter showed that AP-1 binding site was an important cis-element in uric acid-induced ET-1 gene expression. CONCLUSIONS These results suggest that uric acid-induced ET-1 gene expression, partially by the activation of ERK pathway via ROS generation in cardiac fibroblasts.
Collapse
|
|
15 |
54 |
5
|
Cheng TH, Shih NL, Chen CH, Lin H, Liu JC, Chao HH, Liou JY, Chen YL, Tsai HW, Chen YS, Cheng CF, Chen JJ. Role of mitogen-activated protein kinase pathway in reactive oxygen species-mediated endothelin-1-induced beta-myosin heavy chain gene expression and cardiomyocyte hypertrophy. J Biomed Sci 2005; 12:123-133. [PMID: 15864745 DOI: 10.1007/s11373-004-8168-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Accepted: 08/11/2004] [Indexed: 10/25/2022] [Imported: 02/05/2025] Open
Abstract
Endothelin-1 (ET-1) has been found to increase cardiac beta-myosin heavy chain (beta-MyHC) gene expression and induce hypertrophy in cardiomyocytes. ET-1 has been demonstrated to increase intracellular reactive oxygen species (ROS) in cardiomyocytes. The exact molecular mechanism by which ROS regulate ET-1-induced beta-MyHC gene expression and hypertrophy in cardiomyocytes, however, has not yet been fully described. We aim to elucidate the molecular regulatory mechanism of ROS on ET-1-induced beta-MyHC gene expression and hypertrophic signaling in neonatal rat cardiomyocytes. Following stimulation with ET-1, cultured neonatal rat cardiomyocytes were examined for 3H-leucine incorporation and beta-MyHC promoter activities. The effects of antioxidant pretreatment on ET-1-induced cardiac hypertrophy and mitogen-activated protein kinase (MAPKs) phosphorylation were studied to elucidate the redox-sensitive pathway in cardiomyocyte hypertrophy and beta-MyHC gene expression. ET-1 increased 3H-leucine incorporation and beta-MyHC promoter activities, which were blocked by the specific ET(A) receptor antagonist BQ-485. Antioxidants significantly reduced ET-1-induced 3H-leucine incorporation, beta-MyHC gene promoter activities and MAPK (extracellular signal-regulated kinase, p38, and c-Jun NH2 -terminal kinase) phosphorylation. Both PD98059 and SB203580 inhibited ET-1-increased 3H-leucine incorporation and beta-MyHC promoter activities. Co-transfection of the dominant negative mutant of Ras, Raf, and MEK1 decreased the ET-1-induced beta-MyHC promoter activities, suggesting that the Ras-Raf-MAPK pathway is required for ET-1 action. Truncation analysis of the beta-MyHC gene promoter showed that the activator protein-2 (AP-2)/specificity protein-1 (SP-1) binding site(s) were(was) important cis-element(s) in ET-1-induced beta-MyHC gene expression. Moreover, ET-1-induced AP-2 and SP-1 binding activities were also inhibited by antioxidant. These data demonstrate the involvement of ROS in ET-1-induced hypertrophic responses and beta-MyHC expression. ROS mediate ET-1-induced activation of MAPK pathways, which culminates in hypertrophic responses and beta-MyHC expression.
Collapse
|
|
20 |
47 |
6
|
Cheng TH, Liu JC, Lin H, Shih NL, Chen YL, Huang MT, Chan P, Cheng CF, Chen JJ. Inhibitory effect of resveratrol on angiotensin II-induced cardiomyocyte hypertrophy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2004; 369:239-244. [PMID: 14663554 DOI: 10.1007/s00210-003-0849-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2003] [Accepted: 10/27/2003] [Indexed: 10/26/2022] [Imported: 02/05/2025]
Abstract
Resveratrol is proposed to account in part for the protective effect of red wine on the cardiovascular system. Angiotensin II (Ang II) is a potent hypertrophic stimulus in cardiomyocytes. In this study, we determined the effect of resveratrol on Ang II-induced cardiomyocyte hypertrophy. Cultured neonatal rat cardiomyocytes were stimulated with Ang II, and [3H]leucine incorporation and beta-myosin heavy chain (beta-MyHC) promoter activity were examined. Intracellular reactive oxygen species (ROS) were measured by a redox-sensitive fluorescent dye, 2' 7'-dichlorofluorescin diacetate, and the extracellular signal-regulated kinase (ERK) phosphorylation was examined by Western blotting. Resveratrol inhibited Ang II-increased intracellular ROS levels. Furthermore, resveratrol, as well as the antioxidant N-acetyl-cysteine, decreased Ang II- or H2O2-increased protein synthesis, beta-MyHC promoter activity, and ERK phosphorylation. In summary, we demonstrate for the first time that resveratrol inhibits Ang II-induced cardiomyocyte hypertrophy via attenuation of ROS generation.
Collapse
MESH Headings
- Acetylcysteine/pharmacology
- Angiotensin II/metabolism
- Angiotensin II/pharmacology
- Animals
- Animals, Newborn
- Antioxidants/pharmacology
- Cells, Cultured
- Hypertrophy/prevention & control
- Leucine/metabolism
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myosin Heavy Chains/genetics
- Phosphorylation
- Promoter Regions, Genetic
- Rats
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Resveratrol
- Stilbenes/pharmacology
- Transfection
- Ventricular Myosins/genetics
Collapse
|
|
21 |
33 |
7
|
Cheng TH, Chang CY, Wei J, Lin CI. Effects of endothelin 1 on calcium and sodium currents in isolated human cardiac myocytes. Can J Physiol Pharmacol 1995; 73:1774-1783. [PMID: 8834492 DOI: 10.1139/y95-242] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] [Imported: 02/05/2025]
Abstract
We have used the whole-cell voltage-clamp technique to study the effects of endothelin 1 (ET-1, 10 nM) on L-type Ca2+ currents and voltage-dependent Na+ inward currents in human cardiac cells. Myocytes were enzymatically isolated from atrial specimens obtained during open-heart surgery and from human ventricular tissues of explanted hearts. Extracellular application of ET-1 decreased the peak amplitude of Ca2+ currents by 26 +/- 6% (n = 13) in atrial myocytes and by 19 +/- 3% (n = 8) in ventricular myocytes. In three atrial cells, treatment with 1 microM BQ123 prevented the decrease in Ca2+ currents induced by ET-1. When GTP (0.2 mM) was added to the dialyzing pipette solution, ET-1 still caused a small decline by 12 +/- 5% (n = 16), in peak Ca2+ currents, in atrial myocytes. When Ca2+ currents were increased (+210 +/- 19%) by a beta-adrenoceptor agonist (0.1 microM isoproterenol) or by the phosphodiesterase inhibitor isobutylmethylxanthine (10 microM), ET-1 reduced Ca2+ currents by 35 +/- 6% (n = 4) and 30 +/- 4% (n = 5), respectively. In human ventricular myocytes in the presence of 1 microM isoproterenol, which increased the peak Ca2+ currents by 150 +/- 30%, ET-1 also induced a drastic reduction in Ca2+ currents, by 40 +/- 11% (n = 5). The tetrodotoxin-sensitive Na+ currents measured in the presence of 5 mM [Na]o were significantly enhanced (+28 +/- 7%) by ET-1 in five atrial myocytes. The stimulatory effect of ET-1 on Na+ currents was partially reversible. The present findings in human cardiac cells show that ET-1 did not enhance the Ca2+ currents in the absence or presence of internal GTP. The positive inotropic actions induced by ET-1 in human heart may be mediated mainly by signal-transduction pathways other than the G-protein-adenylyl cyclase-cAMP system.
Collapse
|
|
30 |
23 |
8
|
Cheng TH, Shih NL, Chen SY, Lin JW, Chen YL, Chen CH, Lin H, Cheng CF, Chiu WT, Wang DL, Chen JJ. Nitric oxide inhibits endothelin-1-induced cardiomyocyte hypertrophy through cGMP-mediated suppression of extracellular-signal regulated kinase phosphorylation. Mol Pharmacol 2005; 68:1183-1192. [PMID: 16049167 DOI: 10.1124/mol.105.014449] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] [Imported: 02/05/2025] Open
Abstract
Cardiac hypertrophy is a compensatory mechanism in response to a variety of cardiovascular diseases. Recently, reactive oxygen species and nitric oxide (NO) have been demonstrated to be involved in the pathogenesis of atherosclerosis; however, the role of these free radicals in the development of cardiac hypertrophy remains unclear. In this study, we investigate NO modulation of cellular signaling in endothelin-1 (ET-1)-induced cardiomyocyte hypertrophy in culture. ET-1 treatment of cardiomyocytes increased constitutive NO synthase activity and induced NO production via the stimulation of ET-receptor subtype ET(B). Using Northern blot analysis and chloramphenicol acetyltransferase assay, we found that NO suppressed the ET-1-induced increase in c-fos mRNA level and promoter activity. In contrast, ET-1 stimulation of c-fos expression was augmented by depletion of endogenous NO generation with the addition of NO scavenger PTIO into cardiomyocytes. Cells cotransfected with the dominant negative and positive mutants of signaling molecules revealed that the Ras/Raf/extracellular-signal regulated kinase (ERK) signaling pathway is involved in ET-induced c-fos gene expression. Furthermore, NO directly inhibited ET-1-induced ERK phosphorylation and activation in a cGMP-dependent manner, indicating that NO modulates ET-1-induced c-fos expression via its inhibitory effect on ERK signaling pathway. The ET-1-stimulated activator protein-1 (AP-1) DNA binding activity and AP-1-mediated reporter activity were attenuated by NO. In addition, NO also significantly inhibited ET-1-stimulated promoter activity of hypertrophic marker gene beta-myosin heavy chain and the enhanced protein synthesis. Taken together, our findings provide the molecular basis of NO as a negative regulator in ET-1-induced cardiac hypertrophy.
Collapse
|
|
20 |
22 |
9
|
Cheng TH, Leung YM, Cheung CW, Chen CH, Chen YL, Wong KL. Propofol depresses angiotensin II-induced cell proliferation in rat cardiac fibroblasts. Anesthesiology 2010; 112:108-118. [PMID: 20032702 DOI: 10.1097/01.anes.0000365960.74268.21] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] [Imported: 02/05/2025]
Abstract
BACKGROUND Propofol may have beneficial effects on the prevention of angiotensin II (Ang II)-induced cardiac fibroblast proliferation via its antioxidative properties. The authors hypothesized that propofol may alter Ang II-induced cell proliferation and aimed to identify the putative underlying signaling pathways in rat cardiac fibroblasts. METHODS Cultured rat cardiac fibroblasts were pretreated with propofol then stimulated with Ang II; cell proliferation and endothelin-1 gene expression were examined. The effect of propofol on Ang II-induced nicotinamide adenine dinucleotide phosphate-oxidase activity, reactive oxygen species formation, extracellular signal-regulated kinase phosphorylation, and activator protein 1-mediated reporter activity were also examined. The effect of propofol on nitric oxide production and protein kinase B and endothelial nitric oxide synthase phosphorylations were also tested to elucidate the intracellular mechanism of propofol in proliferation. RESULTS Ang II (100 nm) increased cell proliferation and endothelin-1 expression, which were partially inhibited by propofol (10 or 30 microm). Propofol also inhibited Ang II-increased nicotinamide adenine dinucleotide phosphate-oxidase activity, reactive oxygen species formation, extracellular signal-regulated kinase phosphorylation, and activator protein 1-mediated reporter activity. Propofol was also found to increase nitric oxide generation and protein kinase B and nitric oxide synthase phosphorylations. Nitric oxide synthase inhibitor (N-nitro-L-arginine methylester) and the short interfering RNA transfection for protein kinase B or endothelial nitric oxide synthase markedly attenuated the inhibitory effect of propofol on Ang II-induced cell proliferation. CONCLUSIONS The authors' results suggest that propofol prevents cardiac fibroblast proliferation by interfering with the generation of reactive oxygen species and involves the activation of the protein kinase B-endothelial nitric oxide synthase-nitric oxide pathway.
Collapse
|
|
15 |
16 |
10
|
Cheng TH, Lee FY, Wei J, Lin CI. Comparison of calcium-current in isolated atrial myocytes from failing and nonfailing human hearts. Mol Cell Biochem 1996; 157:157-162. [PMID: 8739242 DOI: 10.1007/bf00227894] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] [Imported: 02/05/2025]
Abstract
To identify possible alterations of the L-type calcium currents (I(Ca),L) in cardiomyopathy, I(Ca),L were recorded in atrial myocytes dissociated from the nonfailing heart (NF) of patients undergoing corrective open-heart surgery and explanted failing heart (FH) of patients with dilated cardiomyopathy undergoing heart transplantation. The patch-clamp technique was applied in the single-electrode whole-cell mode. The electrophysiological properties of I(Ca),L, including cell capacitance and current density, were similar in atrial myocytes from both groups of patients. Further to identify possible alterations of the myocardial beta-adrenergic pathway in cardiomyopathy, we examined the effects of isoproterenol, forskolin, 8-Br-cAMP and IBMX on I(Ca),L in both groups of atrial myocytes. Perfusion of isoproterenol (1 microM) significantly increased the peak I(Ca),L by 515 +/- 44% in 6 atrial myocytes from NF but increased only by 135 +/- 25% in 27 atrial myocytes from FH. However, forskolin (1 microM) or 8-Br-cAMP (0.1 mM) increased the peak I(Ca),L to a similar extent in atrial myocytes from NF and FH. IBMX (20 microM) also induced a comparable increase in the peak I(Ca),L by 213 +/- 31% (n = 5) and 207 +/- 59% (n = 4) in atrial myocytes from NF and FH, respectively. The above findings suggest that in atrial myocytes obtained from FH the beta-adrenoceptor numbers might be decreased but no impairment of the signal transduction cascade occurred beyond the GTP binding proteins level.
Collapse
|
Comparative Study |
29 |
14 |
11
|
Cheng TH, Chen JJW, Shih NL, Lin JW, Liu JC, Chen YL, Chen CH, Chen JJ. Mechanical stretch induces endothelial nitric oxide synthase gene expression in neonatal rat cardiomyocytes. Clin Exp Pharmacol Physiol 2009; 36:559-566. [PMID: 19673940 DOI: 10.1111/j.1440-1681.2008.05100.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] [Imported: 02/05/2025]
Abstract
1. Mechanical stretch leads to cardiac hypertrophy and may ultimately cause heart failure. However, the effect of mechanical stretch on gene induction in cardiomyocytes remains to be determined. 2. In the present study, we compared transcript profiles of mechanically stretched neonatal rat cardiomyocytes with those of unstretched cells using cDNA microarrays. The microarrays contained probes for 480 known genes, including those involved in signal transduction, cell cycle regulation, the cytoskeleton and cell motility. Eighteen genes, including the eNOS gene, were identified as having significantly differential expression in response to mechanical stretch in cardiomyocytes. 3. Northern and western blot analysis further quantified the expression of the eNOS gene. Mechanical stretch increased constitutive NOS activity and nitric oxide (NO) production. The NO donor s-nitroso-N-acetylpenicillamine (SNAP) inhibited mechanical stretch-stimulated protein synthesis, as measured by [3H]-leucine uptake. In addition, cardiomyocytes were infected with adenoviral vectors encoding cDNA for eNOS (Ad-eNOS) and a phosphoglycerate kinase (PGK) empty vector (Ad-PGK). In contrast with Ad-PGK-infected cells, in cardiomyocytes infected with Ad-eNOS, there was increased calcium-dependent NOS activity and nitrite production. Cardiomyocytes infected with Ad-eNOS exhibited diminished mechanical stretch-stimulated protein synthesis. In contrast, in eNOS-knockdown cells, the increased eNOS protein levels and NOS activity induced by mechanical stretch were abolished, but protein synthesis was enhanced. 4. The results of the present study indicate that eNOS gene expression is induced by mechanical stretch, leading to increased constitutive NOS activity and NO production, which may be a negative regulator in cardiomyocyte hypertrophy.
Collapse
|
|
16 |
12 |
12
|
Cheng TH, Chen JJ, Chen CH, Wong KL. Effects of propofol on cyclic strain-induced endothelin-1 expression in human umbilical vein endothelial cells. Anesthesiology 2009; 110:74-80. [PMID: 19104173 DOI: 10.1097/aln.0b013e318190b51c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] [Imported: 02/05/2025]
Abstract
BACKGROUND Propofol is one of the most popular intravenous induction agents of general anesthesia. Experimental results revealed that propofol exerted hypotensive and antioxidative effects. However, the intracellular mechanism of propofol remains to be delineated. The aims of this study were to test the hypothesis that propofol may alter strain-induced endothelin-1 (ET-1) secretion and nitric oxide production, and to identify the putative underlying signaling pathways in human umbilical vein endothelial cells. METHODS Cultured human umbilical vein endothelial cells were exposed to cyclic strain in the presence of propofol, and ET-1 expression was examined by Northern blotting and enzyme-linked immunosorbent assay kit. Activation of extracellular signal-regulated protein kinase, endothelial nitric oxide synthase, and protein kinase B were assessed by Western blot analysis. RESULTS The authors show that propofol inhibits strain-induced ET-1 expression, strain-increased reactive oxygen species formation, and extracellular signal-regulated protein kinase phosphorylation. On the contrary, nitric oxide production, endothelial nitric oxide synthase activity, and protein kinase B phosphorylation were enhanced by propofol treatment. Furthermore, in the presence of PTIO, a nitric oxide scavenger, and KT5823, a specific inhibitor of cyclic guanosine monophosphate-dependent protein kinase, the inhibitory effect of propofol on strain-induced extracellular signal-regulated protein kinase phosphorylation and ET-1 release was reversed. CONCLUSIONS The authors demonstrate for the first time that propofol inhibits strain-induced ET-1 secretion and enhances strain-increased nitric oxide production in human umbilical vein endothelial cells. Thus, this study delivers important new insight into the molecular pathways that may contribute to the proposed hypotensive effects of propofol in the cardiovascular system.
Collapse
|
Comparative Study |
16 |
10 |