1
|
Lymperopoulos A, Rengo G, Koch WJ. Adrenergic nervous system in heart failure: pathophysiology and therapy. Circ Res 2013; 113:739-753. [PMID: 23989716 PMCID: PMC3843360 DOI: 10.1161/circresaha.113.300308] [Citation(s) in RCA: 435] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/28/2013] [Indexed: 12/17/2022] [Imported: 08/29/2023]
Abstract
Heart failure (HF), the leading cause of death in the western world, develops when a cardiac injury or insult impairs the ability of the heart to pump blood and maintain tissue perfusion. It is characterized by a complex interplay of several neurohormonal mechanisms that become activated in the syndrome to try and sustain cardiac output in the face of decompensating function. Perhaps the most prominent among these neurohormonal mechanisms is the adrenergic (or sympathetic) nervous system (ANS), whose activity and outflow are enormously elevated in HF. Acutely, and if the heart works properly, this activation of the ANS will promptly restore cardiac function. However, if the cardiac insult persists over time, chances are the ANS will not be able to maintain cardiac function, the heart will progress into a state of chronic decompensated HF, and the hyperactive ANS will continue to push the heart to work at a level much higher than the cardiac muscle can handle. From that point on, ANS hyperactivity becomes a major problem in HF, conferring significant toxicity to the failing heart and markedly increasing its morbidity and mortality. The present review discusses the role of the ANS in cardiac physiology and in HF pathophysiology, the mechanisms of regulation of ANS activity and how they go awry in chronic HF, methods of measuring ANS activity in HF, the molecular alterations in heart physiology that occur in HF, along with their pharmacological and therapeutic implications, and, finally, drugs and other therapeutic modalities used in HF treatment that target or affect the ANS and its effects on the failing heart.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
435 |
2
|
Lymperopoulos A, Rengo G, Funakoshi H, Eckhart AD, Koch WJ. Adrenal GRK2 upregulation mediates sympathetic overdrive in heart failure. Nat Med 2007; 13:315-323. [PMID: 17322894 DOI: 10.1038/nm1553] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 01/19/2007] [Indexed: 02/06/2023] [Imported: 01/11/2025]
Abstract
Cardiac overstimulation by the sympathetic nervous system (SNS) is a salient characteristic of heart failure, reflected by elevated circulating levels of catecholamines. The success of beta-adrenergic receptor (betaAR) antagonists in heart failure argues for SNS hyperactivity being pathogenic; however, sympatholytic agents targeting alpha2AR-mediated catecholamine inhibition have been unsuccessful. By investigating adrenal adrenergic receptor signaling in heart failure models, we found molecular mechanisms to explain the failure of sympatholytic agents and discovered a new strategy to lower SNS activity. During heart failure, there is substantial alpha2AR dysregulation in the adrenal gland, triggered by increased expression and activity of G protein-coupled receptor kinase 2 (GRK2). Adrenal gland-specific GRK2 inhibition reversed alpha2AR dysregulation in heart failure, resulting in lowered plasma catecholamine levels, improved cardiac betaAR signaling and function, and increased sympatholytic efficacy of a alpha2AR agonist. This is the first demonstration, to our knowledge, of a molecular mechanism for SNS hyperactivity in heart failure, and our study identifies adrenal GRK2 activity as a new sympatholytic target.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
187 |
3
|
Rengo G, Lymperopoulos A, Zincarelli C, Donniacuo M, Soltys S, Rabinowitz JE, Koch WJ. Myocardial adeno-associated virus serotype 6-betaARKct gene therapy improves cardiac function and normalizes the neurohormonal axis in chronic heart failure. Circulation 2009; 119:89-98. [PMID: 19103992 PMCID: PMC2647661 DOI: 10.1161/circulationaha.108.803999] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] [Imported: 01/11/2025]
Abstract
BACKGROUND The upregulation of G protein-coupled receptor kinase 2 in failing myocardium appears to contribute to dysfunctional beta-adrenergic receptor (betaAR) signaling and cardiac function. The peptide betaARKct, which can inhibit the activation of G protein-coupled receptor kinase 2 and improve betaAR signaling, has been shown in transgenic models and short-term gene transfer experiments to rescue heart failure (HF). This study was designed to evaluate long-term betaARKct expression in HF with the use of stable myocardial gene delivery with adeno-associated virus serotype 6 (AAV6). METHODS AND RESULTS In HF rats, we delivered betaARKct or green fluorescent protein as a control via AAV6-mediated direct intramyocardial injection. We also treated groups with concurrent administration of the beta-blocker metoprolol. We found robust and long-term transgene expression in the left ventricle at least 12 weeks after delivery. betaARKct significantly improved cardiac contractility and reversed left ventricular remodeling, which was accompanied by a normalization of the neurohormonal (catecholamines and aldosterone) status of the chronic HF animals, including normalization of cardiac betaAR signaling. Addition of metoprolol neither enhanced nor decreased betaARKct-mediated beneficial effects, although metoprolol alone, despite not improving contractility, prevented further deterioration of the left ventricle. CONCLUSIONS Long-term cardiac AAV6-betaARKct gene therapy in HF results in sustained improvement of global cardiac function and reversal of remodeling at least in part as a result of a normalization of the neurohormonal signaling axis. In addition, betaARKct alone improves outcomes more than a beta-blocker alone, whereas both treatments are compatible. These findings show that betaARKct gene therapy can be of long-term therapeutic value in HF.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
166 |
4
|
Drosatos K, Lymperopoulos A, Kennel PJ, Pollak N, Schulze PC, Goldberg IJ. Pathophysiology of sepsis-related cardiac dysfunction: driven by inflammation, energy mismanagement, or both? Curr Heart Fail Rep 2015; 12:130-140. [PMID: 25475180 PMCID: PMC4474734 DOI: 10.1007/s11897-014-0247-z] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] [Imported: 01/11/2025]
Abstract
Sepsis is a systemic inflammatory response that follows bacterial infection. Cardiac dysfunction is an important consequence of sepsis that affects mortality and has been attributed to either elevated inflammation or suppression of both fatty acid and glucose oxidation and eventual ATP depletion. Moreover, cardiac adrenergic signaling is compromised in septic patients and this aggravates further heart function. While anti-inflammatory therapies are important for the treatment of the disease, administration of anti-inflammatory drugs did not improve survival in septic patients. This review article summarizes findings on inflammatory and other mechanisms that are triggered in sepsis and affect cardiac function and mortality. Particularly, it focuses on the effects of the disease in metabolic pathways, as well as in adrenergic signaling and the potential interplay of the latter with inflammation. It is suggested that therapeutic approaches should include combination of anti-inflammatory treatments, stimulation of energy production, and restoration of adrenergic signaling in the heart.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
158 |
5
|
Capote LA, Mendez Perez R, Lymperopoulos A. GPCR signaling and cardiac function. Eur J Pharmacol 2015; 763:143-148. [PMID: 25981298 DOI: 10.1016/j.ejphar.2015.05.019] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 03/30/2015] [Accepted: 05/11/2015] [Indexed: 12/27/2022] [Imported: 08/29/2023]
Abstract
G protein-coupled receptors (GPCRs), such as β-adrenergic and angiotensin II receptors, located in the membranes of all three major cardiac cell types, i.e. myocytes, fibroblasts and endothelial cells, play crucial roles in regulating cardiac function and morphology. Their importance in cardiac physiology and disease is reflected by the fact that, collectively, they represent the direct targets of over a third of the currently approved cardiovascular drugs used in clinical practice. Over the past few decades, advances in elucidation of their structure, function and the signaling pathways they elicit, specifically in the heart, have led to identification of an increasing number of new molecular targets for heart disease therapy. Here, we review these signaling modalities employed by GPCRs known to be expressed in the cardiac myocyte membranes and to directly modulate cardiac contractility. We also highlight drugs and drug classes that directly target these GPCRs to modulate cardiac function, as well as molecules involved in cardiac GPCR signaling that have the potential of becoming novel drug targets for modulation of cardiac function in the future.
Collapse
|
Review |
10 |
116 |
6
|
Lymperopoulos A, Rengo G, Zincarelli C, Kim J, Soltys S, Koch WJ. An adrenal beta-arrestin 1-mediated signaling pathway underlies angiotensin II-induced aldosterone production in vitro and in vivo. Proc Natl Acad Sci U S A 2009; 106:5825-5830. [PMID: 19289825 PMCID: PMC2666999 DOI: 10.1073/pnas.0811706106] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Indexed: 12/25/2022] [Imported: 01/11/2025] Open
Abstract
Aldosterone produces a multitude of effects in vivo, including promotion of postmyocardial infarction adverse cardiac remodeling and heart failure progression. It is produced and secreted by the adrenocortical zona glomerulosa (AZG) cells after angiotensin II (AngII) activation of AngII type 1 receptors (AT(1)Rs). Until now, the general consensus for AngII signaling to aldosterone production has been that it proceeds via activation of G(q/11)-proteins, to which the AT(1)R normally couples. Here, we describe a novel signaling pathway underlying this AT(1)R-dependent aldosterone production mediated by beta-arrestin-1 (betaarr1), a universal heptahelical receptor adapter/scaffolding protein. This pathway results in sustained ERK activation and subsequent up-regulation of steroidogenic acute regulatory protein, a steroid transport protein regulating aldosterone biosynthesis in AZG cells. Also, this betaarr1-mediated pathway appears capable of promoting aldosterone turnover independently of G protein activation, because treatment of AZG cells with SII, an AngII analog that induces betaarr, but not G protein coupling to the AT(1)R, recapitulates the effects of AngII on aldosterone production and secretion. In vivo, increased adrenal betaarr1 activity, by means of adrenal-targeted adenoviral-mediated gene delivery of a betaarr1 transgene, resulted in a marked elevation of circulating aldosterone levels in otherwise normal animals, suggesting that this adrenocortical betaarr1-mediated signaling pathway is operative, and promotes aldosterone production and secretion in vivo, as well. Thus, inhibition of adrenal betaarr1 activity on AT(1)Rs might be of therapeutic value in pathological conditions characterized and aggravated by hyperaldosteronism.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
97 |
7
|
Lymperopoulos A, Rengo G, Gao E, Ebert SN, Dorn GW, Koch WJ. Reduction of sympathetic activity via adrenal-targeted GRK2 gene deletion attenuates heart failure progression and improves cardiac function after myocardial infarction. J Biol Chem 2010; 285:16378-16386. [PMID: 20351116 PMCID: PMC2871505 DOI: 10.1074/jbc.m109.077859] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 03/08/2010] [Indexed: 12/13/2022] [Imported: 08/29/2023] Open
Abstract
Chronic heart failure (HF) is characterized by sympathetic overactivity and enhanced circulating catecholamines (CAs), which significantly increase HF morbidity and mortality. We recently reported that adrenal G protein-coupled receptor kinase 2 (GRK2) is up-regulated in chronic HF, leading to enhanced CA release via desensitization/down-regulation of the chromaffin cell alpha(2)-adrenergic receptors that normally inhibit CA secretion. We also showed that adrenal GRK2 inhibition decreases circulating CAs and improves cardiac inotropic reserve and function. Herein, we hypothesized that adrenal-targeted GRK2 gene deletion before the onset of HF might be beneficial by reducing sympathetic activation. To specifically delete GRK2 in the chromaffin cells of the adrenal gland, we crossed PNMTCre mice, expressing Cre recombinase under the chromaffin cell-specific phenylethanolamine N-methyltransferase (PNMT) gene promoter, with floxedGRK2 mice. After confirming a significant ( approximately 50%) reduction of adrenal GRK2 mRNA and protein levels, the PNMT-driven GRK2 knock-out (KO) offspring underwent myocardial infarction (MI) to induce HF. At 4 weeks post-MI, plasma levels of both norepinephrine and epinephrine were reduced in PNMT-driven GRK2 KO, compared with control mice, suggesting markedly reduced post-MI sympathetic activation. This translated in PNMT-driven GRK2 KO mice into improved cardiac function and dimensions as well as amelioration of abnormal cardiac beta-adrenergic receptor signaling at 4 weeks post-MI. Thus, adrenal-targeted GRK2 gene KO decreases circulating CAs, leading to improved cardiac function and beta-adrenergic reserve in post-MI HF. GRK2 inhibition in the adrenal gland might represent a novel sympatholytic strategy that can aid in blocking HF progression.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
92 |
8
|
Rengo G, Lymperopoulos A, Leosco D, Koch WJ. GRK2 as a novel gene therapy target in heart failure. J Mol Cell Cardiol 2011; 50:785-92. [PMID: 20800067 PMCID: PMC3005526 DOI: 10.1016/j.yjmcc.2010.08.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 08/16/2010] [Accepted: 08/17/2010] [Indexed: 12/13/2022] [Imported: 01/11/2025]
Abstract
Despite significant advances in pharmacological and clinical treatment, heart failure (HF) remains a leading cause of morbidity and mortality worldwide. HF is a chronic and progressive clinical syndrome characterized by a reduction in left ventricular (LV) ejection fraction and adverse remodeling of the myocardium. The past several years have seen remarkable progress using animal models in unraveling the cellular and molecular mechanisms underlying HF pathogenesis and progression. These studies have revealed potentially novel therapeutic targets/strategies. The application of cardiac gene transfer, which allows for the manipulation of targets in cardiomyocytes, appears to be a promising therapeutic tool in HF. β-adrenergic receptor (βAR) dysfunction represents a hallmark abnormality of chronic HF, and increased G protein-coupled receptor kinase 2 (GRK2) levels/activity in failing myocardium is among these alterations. In the past 15years, several animal studies have shown that expression of a peptide inhibitor of GRK2 (βARKct) can improve the contractile function of failing myocardium including promoting reverse remodeling of the LV. Therefore, data support the use of the βARKct as a promising candidate for therapeutic application in human HF. Importantly, recent studies in cardiac-specific GRK2 knockout mice have corroborated GRK2 being pathological in failing myocytes. The purpose of this review is to discuss: 1) the alterations of βAR signaling that occur in HF, 2) the evidence from transgenic mouse studies investigating the impact of GRK2 manipulation in failing myocardium, 3) the therapeutic efficacy of in vivo βARKct gene therapy in HF, and 4) the intriguing possibility of lowering HF-related sympathetic nervous system hyperactivity by inhibiting GRK2 activity in the adrenal gland. This article is part of a Special Section entitled "Special Section: Cardiovascular Gene Therapy".
Collapse
|
Review |
14 |
91 |
9
|
Lymperopoulos A, Rengo G, Koch WJ. Adrenal adrenoceptors in heart failure: fine-tuning cardiac stimulation. Trends Mol Med 2007; 13:503-511. [PMID: 17981507 DOI: 10.1016/j.molmed.2007.10.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 09/27/2007] [Accepted: 10/01/2007] [Indexed: 12/20/2022] [Imported: 01/11/2025]
Abstract
Chronic heart failure (HF) is characterized by sympathetic hyperactivity reflected by increased circulating catecholamines (CAs), which contributes significantly to its morbidity and mortality. Therefore, sympatholytic treatments, that is, treatments that reduce sympathetic hyperactivity, are being pursued currently for the treatment of HF. Secretion of CAs from the adrenal gland, which is a major source of CAs, is regulated by alpha(2)-adrenoceptors (alpha(2)ARs), which inhibit, and by beta-adrenoceptors (betaARs), which enhance CA secretion. All ARs are G-protein-coupled receptors (GPCRs), whose signaling and function are regulated tightly by the family of GPCR kinases (GRKs). Despite the enormous potential of adrenal ARs for the regulation of sympathetic outflow, elucidation of their properties has only begun recently. Here, recent advances regarding the roles of adrenal ARs in the regulation of sympathetic outflow in HF and the regulatory properties of ARs are discussed, along with the potential benefits and challenges of harnessing their function for HF therapy.
Collapse
|
Review |
18 |
88 |
10
|
Bathgate-Siryk A, Dabul S, Pandya K, Walklett K, Rengo G, Cannavo A, De Lucia C, Liccardo D, Gao E, Leosco D, Koch WJ, Lymperopoulos A. Negative impact of β-arrestin-1 on post-myocardial infarction heart failure via cardiac and adrenal-dependent neurohormonal mechanisms. Hypertension 2014; 63:404-412. [PMID: 24218435 PMCID: PMC3889868 DOI: 10.1161/hypertensionaha.113.02043] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/16/2013] [Indexed: 12/20/2022] [Imported: 08/29/2023]
Abstract
β-Arrestin (βarr)-1 and β-arrestin-2 (βarrs) are universal G-protein-coupled receptor adapter proteins that negatively regulate cardiac β-adrenergic receptor (βAR) function via βAR desensitization and downregulation. In addition, they mediate G-protein-independent βAR signaling, which might be beneficial, for example, antiapoptotic, for the heart. However, the specific role(s) of each βarr isoform in cardiac βAR dysfunction, the molecular hallmark of chronic heart failure (HF), remains unknown. Furthermore, adrenal βarr1 exacerbates HF by chronically enhancing adrenal production and hence circulating levels of aldosterone and catecholamines. Herein, we sought to delineate specific roles of βarr1 in post-myocardial infarction (MI) HF by testing the effects of βarr1 genetic deletion on normal and post-MI cardiac function and morphology. We studied βarr1 knockout (βarr1KO) mice alongside wild-type controls under normal conditions and after surgical MI. Normal (sham-operated) βarr1KO mice display enhanced βAR-dependent contractility and post-MI βarr1KO mice enhanced overall cardiac function (and βAR-dependent contractility) compared with wild type. Post-MI βarr1KO mice also show increased survival and decreased cardiac infarct size, apoptosis, and adverse remodeling, as well as circulating catecholamines and aldosterone, compared with post-MI wild type. The underlying mechanisms, on one hand, improved cardiac βAR signaling and function, as evidenced by increased βAR density and procontractile signaling, via reduced cardiac βAR desensitization because of cardiac βarr1 absence, and, on the other hand, decreased production leading to lower circulating levels of catecholamines and aldosterone because of adrenal βarr1 absence. Thus, βarr1, via both cardiac and adrenal effects, is detrimental for cardiac structure and function and significantly exacerbates post-MI HF.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
86 |
11
|
McCrink KA, Maning J, Vu A, Jafferjee M, Marrero C, Brill A, Bathgate-Siryk A, Dabul S, Koch WJ, Lymperopoulos A. β-Arrestin2 Improves Post-Myocardial Infarction Heart Failure via Sarco(endo)plasmic Reticulum Ca 2+-ATPase-Dependent Positive Inotropy in Cardiomyocytes. Hypertension 2017; 70:972-981. [PMID: 28874462 DOI: 10.1161/hypertensionaha.117.09817] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/25/2017] [Accepted: 07/14/2017] [Indexed: 12/21/2022] [Imported: 08/29/2023]
Abstract
Heart failure is the leading cause of death in the Western world, and new and innovative treatments are needed. The GPCR (G protein-coupled receptor) adapter proteins βarr (β-arrestin)-1 and βarr-2 are functionally distinct in the heart. βarr1 is cardiotoxic, decreasing contractility by opposing β1AR (adrenergic receptor) signaling and promoting apoptosis/inflammation post-myocardial infarction (MI). Conversely, βarr2 inhibits apoptosis/inflammation post-MI but its effects on cardiac function are not well understood. Herein, we sought to investigate whether βarr2 actually increases cardiac contractility. Via proteomic investigations in transgenic mouse hearts and in H9c2 rat cardiomyocytes, we have uncovered that βarr2 directly interacts with SERCA2a (sarco[endo]plasmic reticulum Ca2+-ATPase) in vivo and in vitro in a β1AR-dependent manner. This interaction causes acute SERCA2a SUMO (small ubiquitin-like modifier)-ylation, increasing SERCA2a activity and thus, cardiac contractility. βarr1 lacks this effect. Moreover, βarr2 does not desensitize β1AR cAMP-dependent procontractile signaling in cardiomyocytes, again contrary to βarr1. In vivo, post-MI heart failure mice overexpressing cardiac βarr2 have markedly improved cardiac function, apoptosis, inflammation, and adverse remodeling markers, as well as increased SERCA2a SUMOylation, levels, and activity, compared with control animals. Notably, βarr2 is capable of ameliorating cardiac function and remodeling post-MI despite not increasing cardiac βAR number or cAMP levels in vivo. In conclusion, enhancement of cardiac βarr2 levels/signaling via cardiac-specific gene transfer augments cardiac function safely, that is, while attenuating post-MI remodeling. Thus, cardiac βarr2 gene transfer might be a novel, safe positive inotropic therapy for both acute and chronic post-MI heart failure.
Collapse
|
|
8 |
77 |
12
|
Lymperopoulos A, Rengo G, Zincarelli C, Kim J, Koch WJ. Adrenal beta-arrestin 1 inhibition in vivo attenuates post-myocardial infarction progression to heart failure and adverse remodeling via reduction of circulating aldosterone levels. J Am Coll Cardiol 2011; 57:356-65. [PMID: 21232674 PMCID: PMC3087631 DOI: 10.1016/j.jacc.2010.08.635] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 08/13/2010] [Accepted: 08/17/2010] [Indexed: 12/31/2022] [Imported: 08/29/2023]
Abstract
OBJECTIVES We investigated whether adrenal beta-arrestin 1 (βarr1)-mediated aldosterone production plays any role in post-myocardial infarction (MI) heart failure (HF) progression. BACKGROUND Heart failure represents 1 of the most significant health problems worldwide, and new and innovative treatments are needed. Aldosterone contributes significantly to HF progression after MI by accelerating adverse cardiac remodeling and ventricular dysfunction. It is produced by the adrenal cortex after angiotensin II activation of angiotensin II type 1 receptors (AT₁Rs), G protein-coupled receptors that also signal independently of G proteins. The G protein-independent signaling is mediated by βarr1 and βarr2. We recently reported that adrenal βarr1 promotes AT₁R-dependent aldosterone production leading to elevated circulating aldosterone levels in vivo. METHODS Adrenal-targeted, adenoviral-mediated gene delivery in vivo in 2-week post-MI rats, a time point around which circulating aldosterone significantly increases to accelerate HF progression, was performed to either increase the expression of adrenal βarr1 or inhibit its function via expression of a βarr1 C-terminal-derived peptide fragment. RESULTS We found that adrenal βarr1 overexpression promotes aldosterone elevation after MI, resulting in accelerated cardiac adverse remodeling and deterioration of ventricular function. Importantly, these detrimental effects of aldosterone are prevented when adrenal βarr1 is inhibited in vivo, which markedly decreases circulating aldosterone after MI. Finally, the prototypic AT₁R antagonist losartan seems unable to lower this adrenal βarr1-driven aldosterone elevation. CONCLUSIONS Adrenal βarr1 inhibition, either directly or with AT₁R "biased" antagonists that prevent receptor-βarr1 coupling, might be of therapeutic value for curbing HF-exacerbating hyperaldosteronism.
Collapse
|
Comparative Study |
14 |
71 |
13
|
Lymperopoulos A, Rengo G, Zincarelli C, Soltys S, Koch WJ. Modulation of adrenal catecholamine secretion by in vivo gene transfer and manipulation of G protein-coupled receptor kinase-2 activity. Mol Ther 2008; 16:302-307. [PMID: 18223549 DOI: 10.1038/sj.mt.6300371] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] [Imported: 01/11/2025] Open
Abstract
We recently reported that the upregulation of adrenal G protein-coupled receptor kinase-2 (GRK2) causes enhanced catecholamine (CA) secretion by desensitizing sympatho-inhibitory alpha (2)-adrenergic receptors (alpha (2)ARs) of chromaffin cells, and thereby aggravating heart failure (HF). In this study, we sought to develop an efficient and reproducible in vivo adrenal gene transfer method to determine whether manipulation of adrenal GRK2 levels/activity regulates physiological CA secretion in rats. We specifically investigated two different in vivo gene delivery methods: direct injection into the suprarenal glands, and retrograde delivery through the suprarenal veins. We delivered adenoviral (Ad) vectors containing either GRK2 or an inhibitor of GRK2 activity, the beta ARKct. We found both delivery approaches equally effective at supporting robust (>80% of the whole organ) and adrenal-restricted transgene expression, in the cortical region as well as in the medullar region. Additionally, rats with AdGRK2-infected adrenals exhibit enhanced plasma CA levels when compared with control rats (AdGFP-injected adrenals), whereas plasma CA levels after Ad beta ARKct infection were significantly lower. Finally, in isolated chromaffin cells, alpha (2)ARs of AdGRK2-infected cells failed to inhibit CA secretion whereas Ad beta ARKct-infected cells showed normal alpha (2)AR responsiveness. These results not only indicate that in vivo adrenal gene transfer is an effective way of manipulating adrenal gland signalling, but also identify GRK2 as a critically important molecule involved in CA secretion.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
67 |
14
|
Salazar NC, Vallejos X, Siryk A, Rengo G, Cannavo A, Liccardo D, De Lucia C, Gao E, Leosco D, Koch WJ, Lymperopoulos A. GRK2 blockade with βARKct is essential for cardiac β2-adrenergic receptor signaling towards increased contractility. Cell Commun Signal 2013; 11:64. [PMID: 23984976 PMCID: PMC3846709 DOI: 10.1186/1478-811x-11-64] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/23/2013] [Indexed: 01/12/2023] [Imported: 08/29/2023] Open
Abstract
BACKGROUND β1- and β2-adrenergic receptors (ARs) play distinct roles in the heart, e.g. β1AR is pro-contractile and pro-apoptotic but β2AR anti-apoptotic and only weakly pro-contractile. G protein coupled receptor kinase (GRK)-2 desensitizes and opposes βAR pro-contractile signaling by phosphorylating the receptor and inducing beta-arrestin (βarr) binding. We posited herein that GRK2 blockade might enhance the pro-contractile signaling of the β2AR subtype in the heart. We tested the effects of cardiac-targeted GRK2 inhibition in vivo exclusively on β2AR signaling under normal conditions and in heart failure (HF). RESULTS We crossed β1AR knockout (B1KO) mice with cardiac-specific transgenic mice expressing the βARKct, a known GRK2 inhibitor, and studied the offspring under normal conditions and in post-myocardial infarction (MI). βARKct expression in vivo proved essential for β2AR-dependent contractile function, as β2AR stimulation with isoproterenol fails to increase contractility in either healthy or post-MI B1KO mice and it only does so in the presence of βARKct. The main underlying mechanism for this is blockade of the interaction of phosphodiesterase (PDE) type 4D with the cardiac β2AR, which is normally mediated by the actions of GRK2 and βarrs on the receptor. The molecular "brake" that PDE4D poses on β2AR signaling to contractility stimulation is thus "released". Regarding the other beneficial functions of cardiac β2AR, βARKct increased overall survival of the post-MI B1KO mice progressing to HF, via a decrease in cardiac apoptosis and an increase in wound healing-associated inflammation early (at 24 hrs) post-MI. However, these effects disappear by 4 weeks post-MI, and, in their place, upregulation of the other major GRK in the heart, GRK5, is observed. CONCLUSIONS GRK2 inhibition in vivo with βARKct is absolutely essential for cardiac β2AR pro-contractile signaling and function. In addition, β2AR anti-apoptotic signaling in post-MI HF is augmented by βARKct, although this effect is short-lived.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
62 |
15
|
Lymperopoulos A, Suster MS, Borges JI. Short-Chain Fatty Acid Receptors and Cardiovascular Function. Int J Mol Sci 2022; 23:3303. [PMID: 35328722 PMCID: PMC8952772 DOI: 10.3390/ijms23063303] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] [Imported: 08/29/2023] Open
Abstract
Increasing experimental and clinical evidence points toward a very important role for the gut microbiome and its associated metabolism in human health and disease, including in cardiovascular disorders. Free fatty acids (FFAs) are metabolically produced and utilized as energy substrates during almost every biological process in the human body. Contrary to long- and medium-chain FFAs, which are mainly synthesized from dietary triglycerides, short-chain FFAs (SCFAs) derive from the gut microbiota-mediated fermentation of indigestible dietary fiber. Originally thought to serve only as energy sources, FFAs are now known to act as ligands for a specific group of cell surface receptors called FFA receptors (FFARs), thereby inducing intracellular signaling to exert a variety of cellular and tissue effects. All FFARs are G protein-coupled receptors (GPCRs) that play integral roles in the regulation of metabolism, immunity, inflammation, hormone/neurotransmitter secretion, etc. Four different FFAR types are known to date, with FFAR1 (formerly known as GPR40) and FFAR4 (formerly known as GPR120) mediating long- and medium-chain FFA actions, while FFAR3 (formerly GPR41) and FFAR2 (formerly GPR43) are essentially the SCFA receptors (SCFARs), responding to all SCFAs, including acetic acid, propionic acid, and butyric acid. As with various other organ systems/tissues, the important roles the SCFARs (FFAR2 and FFAR3) play in physiology and in various disorders of the cardiovascular system have been revealed over the last fifteen years. In this review, we discuss the cardiovascular implications of some key (patho)physiological functions of SCFAR signaling pathways, particularly those regulating the neurohormonal control of circulation and adipose tissue homeostasis. Wherever appropriate, we also highlight the potential of these receptors as therapeutic targets for cardiovascular disorders.
Collapse
|
Review |
3 |
62 |
16
|
Lymperopoulos A, Rengo G, Koch WJ. GRK2 inhibition in heart failure: something old, something new. Curr Pharm Des 2012; 18:186-191. [PMID: 22229578 DOI: 10.2174/138161212799040510] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 11/09/2011] [Indexed: 11/22/2022] [Imported: 08/29/2023]
Abstract
Despite significant advances in pharmacological and clinical treatment, heart failure (HF) remains the number one killer disease in the western world. HF is a chronic and progressive clinical syndrome mainly characterized by reduction in left ventricular ejection fraction and adverse remodeling of the myocardium. One of its hallmark molecular abnormalities is elevation of cardiac G protein-coupled receptor (GPCR) kinase (GRK)-2, originally termed beta-adrenergic receptor kinase-1 (βARK1), a member of the GRK family of serine/threonine protein kinases which phosphorylate and desensitize GPCRs. Up-regulated GRK2 in the heart underlies the diminished contractile responsiveness of the heart to positive inotropes, as it abrogates the pro-contractile signaling of various important cardiac receptors: mainly β-adrenergic receptors (βARs), but also angiotensin II type 1 receptors (AT(1)Rs), etc. Thus, cardiac-specific GRK2 inhibition via various transgenic approaches is postulated to combat chronic HF symptoms by increasing cardiac function, and even be salutary in some cases by increasing survival. This has been extensively documented over the past 15 years through a vast series of preclinical studies on animals of all sizes and shapes, from small mice up to large rabbits and pigs closely resembling human physiology, and genetically manipulated to have cardiac GRK2 inhibited or deleted, transiently or permanently. However, over the past several years, it has become increasingly clear that GRK2, like other members of the GRK family, exerts additional effects that can aggravate HF, in addition to merely blunt cardiac contractility by opposing cardiac βAR G protein-mediated signaling. One of these newly discovered cardiotoxic effects of GRK2, uncovered by our laboratory, is promotion by adrenal GRK2 of sympathetic hyperactivity of the failing heart, a significant morbidity factor in HF, targeted therapeutically nowadays by the use of beta-blockers in HF pharmacotherapy. Thus, new avenues for therapeutic exploitation of GRK2 inhibition in HF treatment might be possible in the near future. The present review gives first a brief account of what has already been documented about the benefits of cardiac GRK2 genetic manipulation in HF as a positive inotropic therapy for the disease, and then goes on to discuss in detail the intriguing new possibility that has emerged of lowering GRK2 activity in the adrenal gland, which could constitute a novel sympatholytic therapy for HF that helps relieve the devastatingly cardiotoxic sympathetic overload of the failing heart.
Collapse
|
Review |
13 |
59 |
17
|
Rengo G, Perrone-Filardi P, Femminella GD, Liccardo D, Zincarelli C, de Lucia C, Pagano G, Marsico F, Lymperopoulos A, Leosco D. Targeting the β-adrenergic receptor system through G-protein-coupled receptor kinase 2: a new paradigm for therapy and prognostic evaluation in heart failure: from bench to bedside. Circ Heart Fail 2012; 5:385-391. [PMID: 22589366 DOI: 10.1161/circheartfailure.112.966895] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/13/2012] [Indexed: 01/14/2023] [Imported: 01/11/2025]
|
Review |
13 |
58 |
18
|
Drosatos K, Bharadwaj KG, Lymperopoulos A, Ikeda S, Khan R, Hu Y, Agarwal R, Yu S, Jiang H, Steinberg SF, Blaner WS, Koch WJ, Goldberg IJ. Cardiomyocyte lipids impair β-adrenergic receptor function via PKC activation. Am J Physiol Endocrinol Metab 2011; 300:E489-99. [PMID: 21139071 PMCID: PMC3064003 DOI: 10.1152/ajpendo.00569.2010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/03/2010] [Indexed: 12/16/2022] [Imported: 01/11/2025]
Abstract
Normal hearts have increased contractility in response to catecholamines. Because several lipids activate PKCs, we hypothesized that excess cellular lipids would inhibit cardiomyocyte responsiveness to adrenergic stimuli. Cardiomyocytes treated with saturated free fatty acids, ceramide, and diacylglycerol had reduced cellular cAMP response to isoproterenol. This was associated with increased PKC activation and reduction of β-adrenergic receptor (β-AR) density. Pharmacological and genetic PKC inhibition prevented both palmitate-induced β-AR insensitivity and the accompanying reduction in cell surface β-ARs. Mice with excess lipid uptake due to either cardiac-specific overexpression of anchored lipoprotein lipase, PPARγ, or acyl-CoA synthetase-1 or high-fat diet showed reduced inotropic responsiveness to dobutamine. This was associated with activation of protein kinase C (PKC)α or PKCδ. Thus, several lipids that are increased in the setting of lipotoxicity can produce abnormalities in β-AR responsiveness. This can be attributed to PKC activation and reduced β-AR levels.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
55 |
19
|
Rengo G, Lymperopoulos A, Zincarelli C, Femminella G, Liccardo D, Pagano G, de Lucia C, Cannavo A, Gargiulo P, Ferrara N, Perrone Filardi P, Koch W, Leosco D. Blockade of β-adrenoceptors restores the GRK2-mediated adrenal α(2) -adrenoceptor-catecholamine production axis in heart failure. Br J Pharmacol 2012; 166:2430-2440. [PMID: 22519418 PMCID: PMC3448904 DOI: 10.1111/j.1476-5381.2012.01972.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 02/07/2012] [Accepted: 03/20/2012] [Indexed: 01/07/2023] [Imported: 01/11/2025] Open
Abstract
BACKGROUND AND PURPOSE Sympathetic nervous system (SNS) hyperactivity is characteristic of chronic heart failure (HF) and significantly worsens prognosis. The success of β-adrenoceptor antagonist (β-blockers) therapy in HF is primarily attributed to protection of the heart from the noxious effects of augmented catecholamine levels. β-Blockers have been shown to reduce SNS hyperactivity in HF, but the underlying molecular mechanisms are not understood. The GPCR kinase-2 (GRK2)-α(2) adrenoceptor-catecholamine production axis is up-regulated in the adrenal medulla during HF causing α(2) -adrenoceptor dysfunction and elevated catecholamine levels. Here, we sought to investigate if β-blocker treatment in HF could lower SNS activation by directly altering adrenal GRK2 levels. EXPERIMENTAL APPROACH Four weeks after myocardial infarction-induced HF, adult rats were randomized to 10-week treatment with vehicle (HF/C) or bisoprolol (HF/B). Cardiac function and dimensions were measured. In heart and adrenal gland, GRK2 levels were assessed by RT-PCR and Western blotting and adrenoceptors studied with radioligand binding. Catecholamines and α(2) adrenoceptors in adrenal medulla chromaffin cell cultures were also measured. KEY RESULTS Bisoprolol treatment ameliorated HF-related adverse cardiac remodelling and reduced plasma catecholamine levels, compared with HF/C rats. Bisoprolol also attenuated adrenal GRK2 overexpression as observed in HF/C rats and increased α(2) adrenoceptor density. In cultures of adrenal medulla chromaffin cells from all study groups, bisoprolol reversed HF-related α(2) adrenoceptor dysfunction. This effect was reversed by GRK2 overexpression. CONCLUSION AND IMPLICATIONS Blockade of β-adrenoceptors normalized the adrenal α(2) adrenoceptor-catecholamine production axis by reducing GRK2 levels. This effect may contribute significantly to the decrease of HF-related sympathetic overdrive by β-blockers.
Collapse
|
research-article |
13 |
53 |
20
|
Rengo G, Leosco D, Zincarelli C, Marchese M, Corbi G, Liccardo D, Filippelli A, Ferrara N, Lisanti MP, Koch WJ, Lymperopoulos A. Adrenal GRK2 lowering is an underlying mechanism for the beneficial sympathetic effects of exercise training in heart failure. Am J Physiol Heart Circ Physiol 2010; 298:H2032-H2038. [PMID: 20304818 DOI: 10.1152/ajpheart.00702.2009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] [Imported: 01/11/2025]
Abstract
Exercise training has been reported to exert beneficial effects on cardiac function and to reduce morbidity and mortality of chronic heart failure (HF). Augmented sympathetic nervous system (SNS) activity, leading to elevated circulating catecholamine (CA) levels, is a hallmark of chronic HF that significantly aggravates this disease. Exercise training has been shown to also reduce SNS overactivity in HF, but the underlying molecular mechanism(s) remain unidentified. We recently reported that adrenal G protein-coupled receptor kinase-2 (GRK2), an enzyme that regulates the sympathoinhibitory alpha(2)-adrenoceptors (alpha(2)-ARs) present in the CA-producing adrenal medulla, is upregulated in HF, contributing to the chronically elevated CA levels and SNS activity of the disease. In the present study, we tested whether exercise training can affect the adrenal GRK2-alpha(2)-AR-CA production system in the context of HF. For this purpose, a 10-wk-long exercise training regimen of adult male Sprague-Dawley rats starting at 4 wk postmyocardial infarction (post-MI) was employed, and examination at the end of this treatment period revealed significant amelioration of beta-AR-stimulated contractility in response to exercise training, accompanied by cardiac GRK2 reduction and restoration of circulating plasma CA levels. Importantly, adrenal GRK2 expression (72 + or - 5% reduction vs. post-MI untrained) and alpha(2)-AR number were also restored after exercise training in post-MI animals. These results suggest that exercise training restores the adrenal GRK2-alpha(2)-AR-CA production axis, and this might be part of the mechanism whereby this therapeutic modality normalizes sympathetic overdrive and impedes worsening of the failing heart.
Collapse
|
|
15 |
52 |
21
|
Rengo G, Zincarelli C, Femminella GD, Liccardo D, Pagano G, de Lucia C, Altobelli GG, Cimini V, Ruggiero D, Perrone-Filardi P, Gao E, Ferrara N, Lymperopoulos A, Koch WJ, Leosco D. Myocardial β(2) -adrenoceptor gene delivery promotes coordinated cardiac adaptive remodelling and angiogenesis in heart failure. Br J Pharmacol 2012; 166:2348-2361. [PMID: 22452704 PMCID: PMC3448898 DOI: 10.1111/j.1476-5381.2012.01954.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 02/28/2012] [Accepted: 03/02/2012] [Indexed: 12/13/2022] [Imported: 01/11/2025] Open
Abstract
BACKGROUND AND PURPOSE We investigated whether β(2) -adrenoceptor overexpression could promote angiogenesis and improve blood perfusion and left ventricular (LV) remodeling of the failing heart. EXPERIMENTAL APPROACH We explored the angiogenic effects of β(2) -adrenoceptor overexpression in a rat model of post-myocardial infarction (MI) heart failure (HF). Cardiac adenoviral-mediated β(2) -adrenoceptor overexpression was obtained via direct intramyocardial injection 4-weeks post-MI. Adenovirus(Ad)-GFP and saline injected rats served as controls. Furthermore, we extended our observation to β(2) -adrenoceptor -/- mice undergoing MI. KEY RESULTS Transgenes were robustly expressed in the LV at 2 weeks post-gene therapy, whereas their expression was minimal at 4-weeks post-gene delivery. In HF rats, cardiac β(2) -adrenoceptor overexpression resulted in enhanced basal and isoprenaline-stimulated cardiac contractility at 2-weeks post-gene delivery. At 4 weeks post-gene transfer, Ad-β(2) -adrenoceptor HF rats showed improved LV remodeling and cardiac function. Importantly, β(2) -adrenoceptor overexpression was associated with a markedly increased capillary and arteriolar length density and enhanced in vivo myocardial blood flow and coronary reserve. At the molecular level, cardiac β(2) -adrenoceptor gene transfer induced the activation of the VEGF/PKB/eNOS pro-angiogenic pathway. In β(2) -adrenoceptor-/- mice, we found a ~25% reduction in cardiac capillary density compared with β(2) -adrenoceptor+/+ mice. The lack of β(2) -adrenoceptors was associated with a higher mortality rate at 30 days and LV dilatation, and a worse global cardiac contractility compared with controls. CONCLUSIONS AND IMPLICATION β(2) -Adrenoceptors play an important role in the regulation of the angiogenic response in HF. The activation of VEGF/PKB/eNOS pathway seems to be strongly involved in this mechanism.
Collapse
|
research-article |
13 |
47 |
22
|
Leosco D, Rengo G, Iaccarino G, Filippelli A, Lymperopoulos A, Zincarelli C, Fortunato F, Golino L, Marchese M, Esposito G, Rapacciuolo A, Rinaldi B, Ferrara N, Koch WJ, Rengo F. Exercise training and beta-blocker treatment ameliorate age-dependent impairment of beta-adrenergic receptor signaling and enhance cardiac responsiveness to adrenergic stimulation. Am J Physiol Heart Circ Physiol 2007; 293:H1596-H1603. [PMID: 17557919 DOI: 10.1152/ajpheart.00308.2007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] [Imported: 01/11/2025]
Abstract
Cardiac beta-adrenergic receptor (beta-AR) signaling and left ventricular (LV) responses to beta-AR stimulation are impaired with aging. It is shown that exercise and beta-AR blockade have a favorable effect on cardiac and vascular beta-AR signaling in several cardiovascular diseases. In the present study, we examined the effects of these two different strategies on beta-AR dysregulation and LV inotropic reserve in the aging heart. Forty male Wistar-Kyoto aged rats were randomized to sedentary, exercise (12 wk treadmill training), metoprolol (250 mg.kg(-1).day(-1) for 4 wk), and exercise plus metoprolol treatment protocols. Ten male Wistar-Kyoto sedentary young rats were also used as a control group. Old trained, old metoprolol-treated, and old trained plus metoprolol-treated rats showed significantly improved LV maximal and minimal first derivative of the pressure rise responses to beta-AR stimulation (isoproterenol) compared with old untrained animals. We found a significant reduction in cardiac sarcolemmal membrane beta-AR density and adenylyl cyclase activity in old untrained animals compared with young controls. Exercise training and metoprolol, alone or combined, restored cardiac beta-AR density and G-protein-dependent adenylyl cyclase activation in old rats. Although cardiac membrane G-protein-receptor kinase 2 levels were not upregulated in untrained old compared with young control rats, both exercise and metoprolol treatment resulted in a dramatic reduction of G-protein-receptor kinase 2 protein levels, which is a further indication of beta-AR signaling amelioration in the aged heart induced by these treatment modalities. In conclusion, we demonstrate for the first time that exercise and beta-AR blockade can similarly ameliorate beta-AR signaling in the aged heart, leading to improved beta-AR responsiveness and corresponding LV inotropic reserve.
Collapse
|
|
18 |
46 |
23
|
Dabul S, Bathgate-Siryk A, Valero TR, Jafferjee M, Sturchler E, McDonald P, Koch WJ, Lymperopoulos A. Suppression of adrenal βarrestin1-dependent aldosterone production by ARBs: head-to-head comparison. Sci Rep 2015; 5:8116. [PMID: 25631300 PMCID: PMC4309955 DOI: 10.1038/srep08116] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/26/2014] [Indexed: 12/22/2022] [Imported: 01/11/2025] Open
Abstract
The known angiotensin II (AngII) physiological effect of aldosterone synthesis and secretion is mediated by either Gq/11 proteins or βarrestin1 (βarr1), both of which can couple to its type 1 receptors (AT₁Rs), present in adrenocortical zona glomerulosa (AZG) cell membranes. In the present study, we examined the relative potencies of all the currently used in the clinic AT₁R antagonist drugs (angiotensin receptor blockers, ARBs, or sartans) at preventing activation of these two signaling mediators (G proteins and βarrs) at the AngII-bound AT1R and, consequently, at suppression of aldosterone in vitro. All ARBs were found to be potent inhibitors of G protein activation at the AT₁R. However, candesartan and valsartan were the most potent at blocking AngII-induced βarr activation at this receptor, among the tetrazolo-biphenyl-methyl derivatives, translating into excellent efficacies at aldosterone suppression in H295R cells. Conversely, irbesartan and losartan were largely G protein-selective inhibitors at the AT₁R, with very low potency towards βarr inhibition. As a result, they were very weak suppressors of βarr1-dependent aldosterone production in H295R cells. These findings provide important pharmacological insights into the drug class of ARBs and medicinal chemistry insights for future drug development in the field of AngII antagonism.
Collapse
|
Comparative Study |
10 |
42 |
24
|
Lymperopoulos A, Cora N, Maning J, Brill AR, Sizova A. Signaling and function of cardiac autonomic nervous system receptors: Insights from the GPCR signalling universe. FEBS J 2021; 288:2645-2659. [PMID: 33599081 DOI: 10.1111/febs.15771] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022] [Imported: 01/11/2025]
Abstract
The two branches of the autonomic nervous system (ANS), adrenergic and cholinergic, exert a multitude of effects on the human myocardium thanks to the activation of distinct G protein-coupled receptors (GPCRs) expressed on the plasma membranes of cardiac myocytes, cardiac fibroblasts, and coronary vascular endothelial cells. Norepinephrine (NE)/epinephrine (Epi) and acetylcholine (ACh) are released from cardiac ANS terminals and mediate the biological actions of the ANS on the heart via stimulation of cardiac adrenergic or muscarinic receptors, respectively. In addition, several other neurotransmitters/hormones act as facilitators of ANS neurotransmission in the heart, taking part in the so-called nonadrenergic noncholinergic (NANC) part of the ANS's control of cardiac function. These NANC mediators also use several different cell membrane-residing GPCRs to exert their effects in the myocardium. Cardiac ANS dysfunction and an imbalance between the activities of its two branches underlie a variety of cardiovascular diseases, from heart failure and hypertension to coronary artery disease, myocardial ischemia, and arrhythmias. In this review, we present the main well-established signaling modalities used by cardiac autonomic GPCRs, including receptors for salient NANC mediators, and we also highlight the latest developments pertaining to cardiac cell type-specific signal transduction, resulting in cell type-specific cardiac effects of each of these autonomic receptors.
Collapse
|
Review |
4 |
38 |
25
|
Jasmin JF, Rengo G, Lymperopoulos A, Gupta R, Eaton GJ, Quann K, Gonzales DM, Mercier I, Koch WJ, Lisanti MP. Caveolin-1 deficiency exacerbates cardiac dysfunction and reduces survival in mice with myocardial infarction. Am J Physiol Heart Circ Physiol 2011; 300:H1274-H1281. [PMID: 21297026 PMCID: PMC3075024 DOI: 10.1152/ajpheart.01173.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 01/28/2011] [Indexed: 11/22/2022] [Imported: 01/11/2025]
Abstract
Caveolin (Cav)-1 has been involved in the pathogenesis of ischemic injuries. For instance, modulations of Cav-1 expression have been reported in animal models of myocardial infarction and cerebral ischemia-reperfusion. Furthermore, ablation of the Cav-1 gene in mice has been shown to increase the extent of ischemic injury in models of cerebral and hindlimb ischemia. Cav-1 has also been suggested to play a role in myocardial ischemic preconditioning. However, the role of Cav-1 in myocardial ischemia (MI)-induced cardiac dysfunction still remains to be determined. We determined the outcome of a permanent left anterior descending coronary artery (LAD) ligation in Cav-1 knockout (KO) mice. Wild-type (WT) and Cav-1 KO mice were subjected to permanent LAD ligation for 24 h. The progression of ischemic injury was monitored by echocardiography, hemodynamic measurements, 2,3,5-triphenyltetrazolium chloride staining, β-binding analysis, cAMP level measurements, and Western blot analyses. Cav-1 KO mice subjected to LAD ligation display reduced survival compared with WT mice. Despite similar infarct sizes, Cav-1 KO mice subjected to MI showed reduced left ventricular (LV) ejection fraction and fractional shortening as well as increased LV end-diastolic pressures compared with their WT counterparts. Mechanistically, Cav-1 KO mice subjected to MI exhibit reduced β-adrenergic receptor density at the plasma membrane as well as decreased cAMP levels and PKA phosphorylation. In conclusion, ablation of the Cav-1 gene exacerbates cardiac dysfunction and reduces survival in mice subjected to MI. Mechanistically, Cav-1 KO mice subjected to LAD ligation display abnormalities in β-adrenergic signaling.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
38 |