1
|
Ngoenkam J, Schamel WW, Pongcharoen S. Selected signalling proteins recruited to the T-cell receptor-CD3 complex. Immunology 2018; 153:42-50. [PMID: 28771705 PMCID: PMC5721247 DOI: 10.1111/imm.12809] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 12/22/2022] [Imported: 08/29/2023] Open
Abstract
The T-cell receptor (TCR)-CD3 complex, expressed on T cells, determines the outcome of a T-cell response. It consists of the TCR-αβ heterodimer and the non-covalently associated signalling dimers of CD3εγ, CD3εδ and CD3ζζ. TCR-αβ binds specifically to a cognate peptide antigen bound to an MHC molecule, whereas the CD3 subunits transmit the signal into the cytosol to activate signalling events. Recruitment of proteins to specialized localizations is one mechanism to regulate activation and termination of signalling. In the last 25 years a large number of signalling molecules recruited to the TCR-CD3 complex upon antigen binding to TCR-αβ have been described. Here, we review knowledge about five of those interaction partners: Lck, ZAP-70, Nck, WASP and Numb. Some of these proteins have been targeted in the development of immunomodulatory drugs aiming to treat patients with autoimmune diseases and organ transplants.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- CD3 Complex/chemistry
- CD3 Complex/genetics
- CD3 Complex/metabolism
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Humans
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Membrane Proteins/metabolism
- Mutation
- Nerve Tissue Proteins/metabolism
- Oncogene Proteins/metabolism
- Protein Binding
- Protein Interaction Domains and Motifs
- Receptor-CD3 Complex, Antigen, T-Cell/chemistry
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Wiskott-Aldrich Syndrome Protein/metabolism
- ZAP-70 Protein-Tyrosine Kinase/metabolism
Collapse
|
Review |
7 |
57 |
2
|
Kaewkorn W, Limpeanchob N, Tiyaboonchai W, Pongcharoen S, Sutheerawattananonda M. Effects of silk sericin on the proliferation and apoptosis of colon cancer cells. Biol Res 2012; 45:45-50. [PMID: 22688983 DOI: 10.4067/s0716-97602012000100006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/23/2011] [Indexed: 11/17/2022] [Imported: 04/07/2025] Open
Abstract
Sericin is a silk protein woven from silkworm cocoons (Bombyx mori). In animal model, sericin has been reported to have anti-tumoral action against colon cancer. The mechanisms underlying the activity of sericin against cancer cells are not fully understood. The present study investigated the effects of sericin on human colorectal cancer SW480 cells compared to normal colonic mucosal FHC cells. Since the size of the sericin protein may be important for its activity, two ranges of molecular weight were tested. Sericin was found to decrease SW480 and FHC cell viability. The small sericin had higher anti-proliferative effects than that of the large sericin in both cell types. Increased apoptosis of SW480 cells is associated with increased caspase-3 activity and decreased Bcl-2 expression. The anti-proliferative effect of sericin was accompanied by cell cycle arrest at the S phase. Thus, sericin reduced SW480 cell viability by inducing cell apoptosis via caspase-3 activation and down-regulation of Bcl-2 expression. The present study provides scientific data that support the protective effect of silk sericin against cancer cells of the colon and suggests that this protein may have significant health benefits and could potentially be developed as a dietary supplement for colon cancer prevention.
Collapse
|
|
13 |
52 |
3
|
Limpeanchob N, Trisat K, Duangjai A, Tiyaboonchai W, Pongcharoen S, Sutheerawattananonda M. Sericin reduces serum cholesterol in rats and cholesterol uptake into Caco-2 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:12519-12522. [PMID: 21058738 DOI: 10.1021/jf103157w] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023] [Imported: 04/07/2025]
Abstract
A cholesterol lowering effect of sericin was investigated both in vivo and in vitro. Rats were dosed with cholesterol with and without sericin for 14 days. Non-high-density lipoprotein (HDL) and total serum cholesterols were reduced in rats fed high-cholesterol diet with all three tested doses of sericin (10, 100, and 1000 mg kg(-1) day(-1)). The potential mechanism of actions was determined by measuring the uptake of radiolabeled cholesterol into differentiated Caco-2 cells and cholesterol solubility in mixed lipid micelles. Concentration of sericin as low as 25 and 50 μg/mL inhibited 30% of cholesterol uptake into Caco-2 cells whereas no effect was found at higher concentration. Cholesterol micellar solubility was reduced in the presence of sericin. This study suggests the cholesterol lowering effect of sericin results from its inhibition of cholesterol absorption in intestinal cells and its reduction of cholesterol solubility in lipid micelles.
Collapse
|
|
15 |
38 |
4
|
Pongcharoen S, Somran J, Sritippayawan S, Niumsup P, Chanchan P, Butkhamchot P, Tatiwat P, Kunngurn S, Searle RF. Interleukin-17 expression in the human placenta. Placenta 2007; 28:59-63. [PMID: 16549200 DOI: 10.1016/j.placenta.2006.01.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 01/24/2006] [Accepted: 01/24/2006] [Indexed: 12/18/2022] [Imported: 04/07/2025]
Abstract
Interleukin (IL)-17 is a proinflammatory cytokine with pleiotropic activities including inducing neovascularization and production of proangiogenic molecules. As pregnancy outcome depends on the balance of Th1-like/Th2-like cytokines and an increased blood supply to the fetoplacental unit, the expression of IL-17 mRNA and protein in human placental tissues was investigated. IL-17 mRNA was expressed by purified cytokeratin-positive term placental trophoblast cells, HLA-G+ extravillous trophoblast cells and placental macrophages (Hofbauer cells). IL-17 localized in both cyto- and syncytiotrophoblasts of normal term pregnancy, spontaneous miscarriage and in molar pregnancy. In spontaneous miscarriage and molar pregnancy extravillous trophoblast cells were consistently immunoreactive for IL-17. IL-17 expression in human placenta may play a key role in angiogenesis and/or immunoregulation in the establishment of pregnancy.
Collapse
|
|
18 |
37 |
5
|
Pongcharoen S, Niumsup P, Sanguansermsri D, Supalap K, Butkhamchot P. The effect of interleukin-17 on the proliferation and invasion of JEG-3 human choriocarcinoma cells. Am J Reprod Immunol 2006; 55:291-300. [PMID: 16533341 DOI: 10.1111/j.1600-0897.2006.00366.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] [Imported: 08/29/2023] Open
Abstract
PROBLEM As there has been a study in mice showing the expression of IL-17 by decidual cells and the status of IL-17 receptor expression in human pregnancy is not known, we hypothesized that IL-17 may regulate human trophoblast proliferation and invasion. METHOD OF STUDY JEG-3 cell line was used as a model for human trophoblast. Immunohistochemitry and reverse transcriptase polymerase chain reaction techniques were used to identify IL-17 receptor protein and mRNA, respectively. The effects of IL-17 on JEG-3 cell proliferation and invasion were tested using the BrdU incorporation and the Matrigel invasion assays, respectively. RESULTS IL-17 increased the invasive capacity of JEG-3 cells but had no effect on the proliferation and multinucleated formation of JEG-3 cells. CONCLUSION In this JEG-3 cell model of human trophoblast, the IL-17R and IL-17 may have a regulatory role in trophoblast invasion.
Collapse
|
|
19 |
34 |
6
|
Pongcharoen S, Searle RF, Bulmer JN. Placental Fas and Fas ligand expression in normal early, term and molar pregnancy. Placenta 2004; 25:321-330. [PMID: 15028424 DOI: 10.1016/j.placenta.2003.08.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Revised: 07/10/2003] [Accepted: 08/06/2003] [Indexed: 12/16/2022] [Imported: 04/07/2025]
Abstract
To clarify the Fas and Fas-ligand status of normal and molar trophoblast, the expression of Fas and FasL by placental trophoblast populations in partial and complete hydatidiform moles was compared with that in normal first trimester and term pregnancies using an avidin-biotin peroxidase technique on frozen and formalin-fixed paraffin-embedded placental tissues with both monoclonal and polyclonal antibodies. The TUNEL technique was used to detect apoptotic cells in the same tissues. The immunoreactivity for Fas and Fas-ligand was comparable with both monoclonal and polyclonal antibodies on frozen as well as paraffin-embedded sections. In normal early and molar pregnancy there was strong FasL expression by villous cytotrophoblast and syncytiotrophoblast. However, there were significant differences in FasL expression by trophoblast subpopulations in both early and term normal pregnancy and between the same trophoblast subpopulation at different gestations, with FasL staining generally being weaker at term. Strong FasL staining by cytotrophoblast cells in the distal parts of cell columns contrasted with unstained cytotrophoblast in the proximal part of columns. Distinct trophoblast subpopulations in partial hydatidiform mole also differentially expressed FasL with reduced FasL expression in proliferating syncytiotrophoblast. In contrast there was no differential FasL expression in complete hydatidiform mole, all trophoblast subpopulations strongly expressing FasL. Unlike the differential expression of FasL there were no differences in Fas expression by trophoblast populations in normal early or term placental tissues. Fas expression was reduced in villous cytotrophoblast at term. Differential expression of Fas by different trophoblast subpopulations was noted in partial and complete hydatidiform mole. In complete mole villous cytotrophoblast and syncytiotrophoblast stained strongly compared with proliferating trophoblast. Using TUNEL labelling apoptosis was rarely detected in placental trophoblast. Differential Fas and FasL expression by trophoblast subpopulations in normal and pathological pregnancy does not appear to be related to apoptosis of trophoblast.
Collapse
|
|
21 |
34 |
7
|
Impheng H, Pongcharoen S, Richert L, Pekthong D, Srisawang P. The selective target of capsaicin on FASN expression and de novo fatty acid synthesis mediated through ROS generation triggers apoptosis in HepG2 cells. PLoS One 2014; 9:e107842. [PMID: 25255125 PMCID: PMC4177889 DOI: 10.1371/journal.pone.0107842] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 08/17/2014] [Indexed: 12/21/2022] [Imported: 04/07/2025] Open
Abstract
The inhibition of the mammalian de novo synthesis of long-chain saturated fatty acids (LCFAs) by blocking the fatty acid synthase (FASN) enzyme activity in tumor cells that overexpress FASN can promote apoptosis, without apparent cytotoxic to non-tumor cells. The present study aimed to focus on the potent inhibitory effect of capsaicin on the fatty acid synthesis pathway inducing apoptosis of capsaicin in HepG2 cells. The use of capsaicin as a source for a new FASN inhibitor will provide new insight into its possible application as a selective anti-cancer therapy. The present findings showed that capsaicin promoted apoptosis as well as cell cycle arrest in the G0/G1 phase. The onset of apoptosis was correlated with a dissipation of mitochondrial membrane potential (ΔΨm). Apoptotic induction by capsaicin was mediated by inhibition of FASN protein expression which was accompanied by decreasing its activity on the de novo fatty acid synthesis. The expression of FASN was higher in HepG2 cells than in normal hepatocytes that were resistant to undergoing apoptosis following capsaicin administration. Moreover, the inhibitory effect of capsaicin on FASN expression and activity was found to be mediated by an increase of intracellular reactive oxygen species (ROS) generation. Treatment of HepG2 cells with capsaicin failed to alter ACC and ACLY protein expression, suggesting ACC and ACLY might not be the specific targets of capsaicin to induce apoptosis. An accumulation of malonyl-CoA level following FASN inhibition represented a major cause of mitochondrial-dependent apoptotic induction instead of deprivation of fatty acid per se. Here, we also obtained similar results with C75 that exhibited apoptosis induction by reducing the levels of fatty acid without any change in the abundance of FASN expression along with increasing ROS production. Collectively, our results provide novel evidence that capsaicin exhibits a potent anti-cancer property by targeting FASN protein in HepG2 cells.
Collapse
|
research-article |
11 |
27 |
8
|
Ngoenkam J, Paensuwan P, Preechanukul K, Khamsri B, Yiemwattana I, Beck-García E, Minguet S, Schamel WWA, Pongcharoen S. Non-overlapping functions of Nck1 and Nck2 adaptor proteins in T cell activation. Cell Commun Signal 2014; 12:21. [PMID: 24670066 PMCID: PMC3977700 DOI: 10.1186/1478-811x-12-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 03/13/2014] [Indexed: 11/13/2022] [Imported: 08/29/2023] Open
Abstract
BACKGROUND Signalling by the T cell antigen receptor (TCR) results in the activation of T lymphocytes. Nck1 and Nck2 are two highly related adaptor proteins downstream of the TCR that each contains three SH3 and one SH2 domains. Their individual functions and the roles of their SH3 domains in human T cells remain mostly unknown. RESULTS Using specific shRNA we down-regulated the expression of Nck1 or Nck2 to approximately 10% each in Jurkat T cells. We found that down-regulation of Nck1 impaired TCR-induced phosphorylation of the kinases Erk and MEK, activation of the AP-1 and NFAT transcription factors and subsequently, IL-2 and CD69 expression. In sharp contrast, down-regulation of Nck2 hardly impacts these activation read-outs. Thus, in contrast to Nck2, Nck1 is a positive regulator for TCR-induced stimulation of the Erk pathway. Mutation of the third SH3 domain of Nck1 showed that this domain was required for this activity. Further, TCR-induced NFAT activity was reduced in both Nck1 and Nck2 knock-down cells, showing that both isoforms are involved in NFAT activation. Lastly, we show that neither Nck isoform is upstream of p38 phosphorylation or Ca2+influx. CONCLUSIONS In conclusion, Nck1 and Nck2 have non-redundant roles in human T cell activation in contrast to murine T cells.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/chemistry
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Humans
- Interleukin-2/genetics
- Interleukin-2/metabolism
- Jurkat Cells
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Lymphocyte Activation
- MAP Kinase Signaling System
- NFATC Transcription Factors/genetics
- NFATC Transcription Factors/metabolism
- Oncogene Proteins/chemistry
- Oncogene Proteins/genetics
- Oncogene Proteins/metabolism
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell/metabolism
- Transcription Factor AP-1/genetics
- Transcription Factor AP-1/metabolism
Collapse
|
research-article |
11 |
27 |
9
|
Pongcharoen S, Supalap K. Interleukin-17 increased progesterone secretion by JEG-3 human choriocarcinoma cells. Am J Reprod Immunol 2009; 61:261-264. [PMID: 19260856 DOI: 10.1111/j.1600-0897.2009.00693.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] [Imported: 08/29/2023] Open
Abstract
PROBLEM JEG-3 choriocarcinoma cell line has previously been reported to express a receptor for interleukin (IL)-17. The involvement of IL-17 in the production of progesterone and human chorionic gonadotropin by placental trophoblast has not been investigated. METHOD OF STUDY The present study investigated the in vitro effect of IL-17 on progesterone and human chorionic gonadotropin (hCG) secretion by JEG-3 cells. Both hormones were quantified using enzyme-linked immunosorbent assays. RESULTS The results showed that IL-17 significantly increased progesterone secretion at 6 (P < 0.001) and 24 (P < 0.01) hr, while this cytokine had no effect on hCG secretion. CONCLUSION Interleukin-17 may regulate the function of JEG-3 cells through increased progesterone secretion.
Collapse
|
|
16 |
27 |
10
|
Chomchalao P, Pongcharoen S, Sutheerawattananonda M, Tiyaboonchai W. Fibroin and fibroin blended three-dimensional scaffolds for rat chondrocyte culture. Biomed Eng Online 2013; 12:28. [PMID: 23566031 PMCID: PMC3680310 DOI: 10.1186/1475-925x-12-28] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/01/2013] [Indexed: 12/22/2022] [Imported: 04/07/2025] Open
Abstract
BACKGROUND In our previous study, we successfully developed 3-D scaffolds prepared from silk fibroin (SF), silk fibroin/collagen (SF/C) and silk fibroin/gelatin (SF/G) using a freeze drying technique. The blended construct showed superior mechanical properties to silk fibroin construct. In addition, collagen and gelatin, contain RGD sequences that could facilitate cell attachment and proliferation. Therefore, in this study, the ability of silk fibroin and blended constructs to promote cell adhesion, proliferation and production of extracellular matrix (EMC) were compared. METHODS Articular chondrocytes were isolated from rat and cultured on the prepared constructs. Then, the cell viability in SF, SF/C and SF/G scaffolds was determined by MTT assay. Cell morphology and distribution were investigated by scanning electron microscopy (SEM) and histological analysis. Moreover, the secretion of extracellular matrix (ECM) by the chondrocytes in 3-D scaffolds was assessed by immunohistochemistry. RESULTS Results from MTT assay indicated that the blended SF/C and SF/G scaffolds provided a more favorable environment for chondrocytes attachment and proliferation than that of SF scaffold. In addition, scanning electron micrographs and histological images illustrated higher cell density and distribution in the SF/C and SF/G scaffolds than that in the SF scaffold. Importantly, immunohistochemistry strongly confirmed a greater production of type II collagen and aggrecan, important markers of chondrocytic phenotype, in SF blended scaffolds than that in the SF scaffold. CONCLUSION Addition of collagen and gelatin to SF solution not only improved the mechanical properties of the scaffolds but also provided an effective biomaterial constructs for chondrocyte growth and chondrocytic phenotype maintenance. Therefore, SF/C and SF/G showed a great potential as a desirable biomaterial for cartilage tissue engineering.
Collapse
|
research-article |
12 |
23 |
11
|
Juraske C, Wipa P, Morath A, Hidalgo JV, Hartl FA, Raute K, Oberg HH, Wesch D, Fisch P, Minguet S, Pongcharoen S, Schamel WW. Anti-CD3 Fab Fragments Enhance Tumor Killing by Human γδ T Cells Independent of Nck Recruitment to the γδ T Cell Antigen Receptor. Front Immunol 2018; 9:1579. [PMID: 30038626 PMCID: PMC6046647 DOI: 10.3389/fimmu.2018.01579] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 06/26/2018] [Indexed: 01/18/2023] [Imported: 04/07/2025] Open
Abstract
T lymphocytes expressing the γδ T cell receptor (γδ TCR) can recognize antigens expressed by tumor cells and subsequently kill these cells. γδ T cells are indeed used in cancer immunotherapy clinical trials. The anti-CD3ε antibody UCHT1 enhanced the in vitro tumor killing activity of human γδ T cells by an unknown molecular mechanism. Here, we demonstrate that Fab fragments of UCHT1, which only bind monovalently to the γδ TCR, also enhanced tumor killing by expanded human Vγ9Vδ2 γδ T cells or pan-γδ T cells of the peripheral blood. The Fab fragments induced Nck recruitment to the γδ TCR, suggesting that they stabilized the γδ TCR in an active CD3ε conformation. However, blocking the Nck-CD3ε interaction in γδ T cells using the small molecule inhibitor AX-024 neither reduced the γδ T cells' natural nor the Fab-enhanced tumor killing activity. Likewise, Nck recruitment to CD3ε was not required for intracellular signaling, CD69 and CD25 up-regulation, or cytokine secretion by γδ T cells. Thus, the Nck-CD3ε interaction seems to be dispensable in γδ T cells.
Collapse
|
research-article |
7 |
22 |
12
|
Tiyaboonchai W, Chomchalao P, Pongcharoen S, Sutheerawattananonda M, Sobhon P. Preparation and characterization of blended Bombyx mori silk fibroin scaffolds. FIBERS AND POLYMERS 2011; 12:324-333. [DOI: 10.1007/s12221-011-0324-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2025] [Imported: 04/07/2025]
|
|
14 |
19 |
13
|
Paensuwan P, Hartl FA, Yousefi OS, Ngoenkam J, Wipa P, Beck-Garcia E, Dopfer EP, Khamsri B, Sanguansermsri D, Minguet S, Schamel WW, Pongcharoen S. Nck Binds to the T Cell Antigen Receptor Using Its SH3.1 and SH2 Domains in a Cooperative Manner, Promoting TCR Functioning. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:448-458. [PMID: 26590318 DOI: 10.4049/jimmunol.1500958] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/23/2015] [Indexed: 11/19/2022] [Imported: 08/29/2023]
Abstract
Ligand binding to the TCR causes a conformational change at the CD3 subunits to expose the CD3ε cytoplasmic proline-rich sequence (PRS). It was suggested that the PRS is important for TCR signaling and T cell activation. It has been shown that the purified, recombinant SH3.1 domain of the adaptor molecule noncatalytic region of tyrosine kinase (Nck) can bind to the exposed PRS of CD3ε, but the molecular mechanism of how full-length Nck binds to the TCR in cells has not been investigated so far. Using the in situ proximity ligation assay and copurifications, we show that the binding of Nck to the TCR requires partial phosphorylation of CD3ε, as it is based on two cooperating interactions. First, the SH3.1(Nck) domain has to bind to the nonphosphorylated and exposed PRS, that is, the first ITAM tyrosine has to be in the unphosphorylated state. Second, the SH2(Nck) domain has to bind to the second ITAM tyrosine in the phosphorylated state. Likewise, mutations of the SH3.1 and SH2 domains in Nck1 resulted in the loss of Nck1 binding to the TCR. Furthermore, expression of an SH3.1-mutated Nck impaired TCR signaling and T cell activation. Our data suggest that the exact pattern of CD3ε phosphorylation is critical for TCR functioning.
Collapse
|
|
9 |
19 |
14
|
Poolsri WA, Phokrai P, Suwankulanan S, Phakdeeto N, Phunsomboon P, Pekthong D, Richert L, Pongcharoen S, Srisawang P. Combination of Mitochondrial and Plasma Membrane Citrate Transporter Inhibitors Inhibits De Novo Lipogenesis Pathway and Triggers Apoptosis in Hepatocellular Carcinoma Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3683026. [PMID: 29546056 PMCID: PMC5818947 DOI: 10.1155/2018/3683026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/23/2017] [Accepted: 12/03/2017] [Indexed: 12/27/2022] [Imported: 04/07/2025]
Abstract
Increased expression levels of both mitochondrial citrate transporter (CTP) and plasma membrane citrate transporter (PMCT) proteins have been found in various cancers. The transported citrates by these two transporter proteins provide acetyl-CoA precursors for the de novo lipogenesis (DNL) pathway to support a high rate of cancer cell viability and development. Inhibition of the DNL pathway promotes cancer cell apoptosis without apparent cytotoxic to normal cells, leading to the representation of selective and powerful targets for cancer therapy. The present study demonstrates that treatments with CTP inhibitor (CTPi), PMCT inhibitor (PMCTi), and the combination of CTPi and PMCTi resulted in decreased cell viability in two hepatocellular carcinoma cell lines (HepG2 and HuH-7). Treatment with citrate transporter inhibitors caused a greater cytotoxic effect in HepG2 cells than in HuH-7 cells. A lower concentration of combined CTPi and PMCTi promotes cytotoxic effect compared with either of a single compound. An increased cell apoptosis and an induced cell cycle arrest in both cell lines were reported after administration of the combined inhibitors. A combination treatment exhibits an enhanced apoptosis through decreased intracellular citrate levels, which consequently cause inhibition of fatty acid production in HepG2 cells. Apoptosis induction through the mitochondrial-dependent pathway was found as a consequence of suppressed carnitine palmitoyl transferase-1 (CPT-1) activity and enhanced ROS generation by combined CTPi and PMCTi treatment. We showed that accumulation of malonyl-CoA did not correlate with decreasing CPT-1 activity. The present study showed that elevated ROS levels served as an inhibition on Bcl-2 activity that is at least in part responsible for apoptosis. Moreover, inhibition of the citrate transporter is selectively cytotoxic to HepG2 cells but not in primary human hepatocytes, supporting citrate-mediating fatty acid synthesis as a promising cancer therapy.
Collapse
|
research-article |
7 |
16 |
15
|
Jiraviriyakul A, Songjang W, Kaewthet P, Tanawatkitichai P, Bayan P, Pongcharoen S. Honokiol-enhanced cytotoxic T lymphocyte activity against cholangiocarcinoma cells mediated by dendritic cells pulsed with damage-associated molecular patterns. World J Gastroenterol 2019; 25:3941-3955. [PMID: 31413529 PMCID: PMC6689815 DOI: 10.3748/wjg.v25.i29.3941] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/21/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023] [Imported: 08/29/2023] Open
Abstract
BACKGROUND Cholangiocarcinoma or biliary tract cancer has a high mortality rate resulting from late presentation and ineffective treatment strategy. Since immunotherapy by dendritic cells (DC) may be beneficial for cholangiocarcinoma treatment but their efficacy against cholangiocarcinoma was low. We suggest how such anti-tumor activity can be increased using cell lysates derived from an honokiol-treated cholangiocarcinoma cell line (KKU-213L5). AIM To increase antitumour activity of DCs pulsed with cell lysates derived from honokiol-treated cholangiocarcinoma cell line (KKU-213L5). METHODS The effect of honokiol, a phenolic compound isolated from Magnolia officinalis, on choangiocarcinoma cells was investigated in terms of the cytotoxicity and the expression of damage-associated molecular patterns (DAMPs). DCs were loaded with tumour cell lysates derived from honokiol-treated cholangiocarcinoma cells their efficacy including induction of T lymphocyte proliferation, proinflammatory cytokine production and cytotoxicity effect on target cholangiocarcinoma cells were evaluated. RESULTS Honokiol can effectively activate cholangiocarcinoma apoptosis and increase the release of damage-associated molecular patterns. DCs loaded with cell lysates derived from honokiol-treated tumour cells enhanced priming and stimulated T lymphocyte proliferation and type I cytokine production. T lymphocytes stimulated with DCs pulsed with cell lysates of honokiol-treated tumour cells significantly increased specific killing of human cholangiocarcinoma cells compared to those associated with DCs pulsed with cell lysates of untreated cholangiocarcinoma cells. CONCLUSION The present findings suggested that honokiol was able to enhance the immunogenicity of cholangiocarcinoma cells associated with increased effectiveness of DC-based vaccine formulation. Treatment of tumour cells with honokiol offers a promising approach as an ex vivo DC-based anticancer vaccine.
Collapse
|
Basic Study |
6 |
15 |
16
|
Pongcharoen S, Bulmer JN, Searle RF. No evidence for apoptosis of decidual leucocytes in normal and molar pregnancy: implications for immune privilege. Clin Exp Immunol 2004; 138:330-336. [PMID: 15498045 PMCID: PMC1809221 DOI: 10.1111/j.1365-2249.2004.02612.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2004] [Indexed: 12/01/2022] [Imported: 04/07/2025] Open
Abstract
Complete hydatidiform moles are totally paternally derived and represent complete allografts that might be expected to provoke maternal immune rejection. Our previous and other studies have shown expression of Fas by increased numbers of activated decidual CD4(+) T cells in both complete and partial molar pregnancy as well as increased FasL(+) expression by molar trophoblasts compared with trophoblasts in normal pregnancies. As the Fas/FasL system represents a major apoptotic pathway that can play a role in immune privilege, the aim of this study was to investigate whether apoptosis of decidual immune cells, particularly T cells, could be responsible for maternal immune tolerance in molar pregnancy. Using terminal deoxynucleotidyl transferase (TdT)-mediated nick end-labelling (TUNEL), a significant increase in TUNEL(+) cells was demonstrated in decidua associated with partial (P = 0.0052) and complete (P = 0.0096) hydatidiform mole compared with normal early pregnancy. Co-labelling immunoperoxidase studies showed that the TUNEL(+) cells in both normal and molar pregnancies were not activated CD45RO(+) immune cells, CD3(+) T cells, CD56(+) uterine natural killer (NK) cells or CD14(+) CD68(+) macrophages. Double immunohistochemical labelling with antiactive caspase-3 and leucocyte markers confirmed the lack of leucocyte apoptosis. Double immunostaining with anticytokeratin to detect trophoblast and M30 CytoDeath, which detects a neoepitope of cytokeratin 18 revealed after caspase-mediated cleavage, revealed apoptotic extravillous trophoblast cells within decidual tissue. We conclude that there is no evidence that apoptosis of decidual leucocytes plays a role in maintaining maternal tolerance in either normal or molar pregnancy.
Collapse
|
research-article |
21 |
14 |
17
|
Jitprasertwong P, Charadram N, Kumphune S, Pongcharoen S, Sirisinha S. Female sex hormones modulate Porphyromonas gingivalis lipopolysaccharide-induced Toll-like receptor signaling in primary human monocytes. J Periodontal Res 2016; 51:395-406. [PMID: 26364725 DOI: 10.1111/jre.12320] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2015] [Indexed: 02/02/2023] [Imported: 04/07/2025]
Abstract
BACKGROUND AND OBJECTIVE Female sex hormones are elevated and are potential host response modifiers during pregnancy. Modulation of immune responses by estrogen and progesterone may be responsible for periodontal inflammation. Therefore, we aimed to investigate the role of β-estradiol and progesterone in human monocyte immune responses, at cellular and molecular levels, to identify their role as a possible immunological link between pregnancy and periodontal disease. MATERIAL AND METHODS Primary human monocytes were purified from human peripheral blood mononuclear cells by adherent method. Expression of Toll-like receptor (TLR) 2, 4 and CD14 was analyzed by flow cytometry. TLR2, TLR4, cyclooxygenase-2 (COX2), nuclear factor-kappa B (NF-κB) and NF-κB inhibitor-alpha mRNA expressions were measured using real-time reverse transcriptase-polymerase chain reaction and prostaglandin E2 secretion was assayed by enzyme-linked immunosorbent assay. NF-κB expression was also examined by immunofluorescence. Western blotting was performed to determine the activation of mitogen-activated protein kinase pathway. RESULTS We report herein that both β-estradiol and progesterone significantly reduced TLR2 expression at both protein and mRNA levels but had less of an effect on TLR4 expression in primary human monocytes. We also found that the hormones decreased monocyte cell surface protein expression of CD14. Significantly, β-estradiol and progesterone dose-dependently downregulated monocyte expression of COX2 mRNA. Pretreatment monocytes with β-estradiol or progesterone reduced effects of Porphyromonas gingivalis lipopolysaccharide (LPS) on COX2 mRNA expression and decreased prostaglandin E2 secretion by the monocytes. Furthermore, we demonstrated that both β-estradiol and progesterone inhibited P. gingivalis LPS-induced NF-κB signaling pathway through the upregulation of NF-κB inhibitor-alpha expression. However, neither β-estradiol nor progesterone altered the phosphorylation of the p38, the extracellular signal-regulated kinase 1/2 and the c-Jun N-terminal activated kinase in P. gingivalis LPS-stimulated monocytes. Thus, the inhibitory effects of these hormones on the response of human monocytes to P. gingivalis LPS appear to be independent on mitogen-activated protein kinase signaling pathway. CONCLUSION The results of the present study suggest that β-estradiol and progesterone could influence the immune response of human monocytes to periodontal pathogens and this process may have a role in the clinical manifestations of periodontal disease associated with pregnancy.
Collapse
|
|
9 |
14 |
18
|
Ngoenkam J, Paensuwan P, Wipa P, Schamel WWA, Pongcharoen S. Wiskott-Aldrich Syndrome Protein: Roles in Signal Transduction in T Cells. Front Cell Dev Biol 2021; 9:674572. [PMID: 34169073 PMCID: PMC8217661 DOI: 10.3389/fcell.2021.674572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/17/2021] [Indexed: 11/23/2022] [Imported: 04/07/2025] Open
Abstract
Signal transduction regulates the proper function of T cells in an immune response. Upon binding to its specific ligand associated with major histocompatibility complex (MHC) molecules on an antigen presenting cell, the T cell receptor (TCR) initiates intracellular signaling that leads to extensive actin polymerization. Wiskott-Aldrich syndrome protein (WASp) is one of the actin nucleation factors that is recruited to TCR microclusters, where it is activated and regulates actin network formation. Here we highlight the research that has focused on WASp-deficient T cells from both human and mice in TCR-mediated signal transduction. We discuss the role of WASp in proximal TCR signaling as well as in the Ras/Rac-MAPK (mitogen-activated protein kinase), PKC (protein kinase C) and Ca2+-mediated signaling pathways.
Collapse
|
Review |
4 |
11 |
19
|
Pongcharoen S, Warnnissorn P, Leŗtkajornsin O, Limpeanchob N, Sutheerawattananonda M. Protective effect of silk lutein on ultraviolet B-irradiated human keratinocytes. Biol Res 2013; 46:39-45. [PMID: 23760413 DOI: 10.4067/s0716-97602013000100006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 10/16/2012] [Indexed: 11/17/2022] [Imported: 08/29/2023] Open
Abstract
Carotenoids are efficient antioxidants that are of great importance for human health. Lutein and zeaxanthin are carotinoids present in high concentrations in the human retina which are involved in the photoprotection of the human eye. Lutein may also protect the skin from ultraviolet (UV)-induced damage. The present study investigated the protective effect of lutein extracted from yellow silk cocoons of Bombyx mori on human keratinocytes against UVB irradiation. A human keratinocyte cell line and primary human keratinocytes were used to investigate the UVB protection effects of silk lutein and plant lutein. Silk lutein showed no cytotoxicity to keratinocytes. Treatment with silk lutein prior to UVB irradiation enhanced cell viability and cell proliferation, and reduced cell apoptosis. The protective effects of silk lutein may be superior to those of plant lutein. Silk lutein may have a benefit for protection of keratinocytes against UVB-irradiation.
Collapse
|
|
12 |
10 |
20
|
Yiemwattana I, Ngoenkam J, Paensuwan P, Kriangkrai R, Chuenjitkuntaworn B, Pongcharoen S. Essential role of the adaptor protein Nck1 in Jurkat T cell activation and function. Clin Exp Immunol 2012; 167:99-107. [PMID: 22132889 PMCID: PMC3248091 DOI: 10.1111/j.1365-2249.2011.04494.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2011] [Indexed: 11/29/2022] [Imported: 08/29/2023] Open
Abstract
The non-catalytic region of tyrosine kinase (Nck) is proposed to play an essential role in T cell activation. However, evidence based on functional and biochemical studies has brought into question the critical function of Nck. Therefore, the aim of the present work was to investigate the role of Nck in T cell activation. To study this, the human Jurkat T cell line was used as a model for human T lymphocytes. The short interfering (si) RNA targeting Nck1 gene was used with electroporation to knock-down Nck1 protein expression in Jurkat T cells. Primary human CD4 T cells were also transfected with the siRNA of Nck1. The results showed that decreased Nck1 protein expression did not affect the apoptosis of the transfected Jurkat T cells compared with control siRNA-transfected cells and non-transfected cells. Upon CD3ε/CD28 stimulation, knock-down of Nck1 in Jurkat T cells caused a decrease in CD69 expression and in interleukin (IL)-2 secretion. Similarly, knock-down of Nck1 in primary CD4 T cells also caused decreased CD69 expression. However, no significant alterations of CD69 and IL-2 expression were found upon phytohaemagglutinin (PHA)/phorbol myristate acetate (PMA) stimulation. Knock-down of Nck1 had no effect on the proliferation of Jurkat T cells stimulated with either PHA or anti-T cell receptor (TCR) monoclonal antibody (C305). The reduced Nck1 expression in Jurkat cells was also associated with a reduced phosphorylation of extracellular regulated kinase (Erk)1 and Erk2 proteins upon CD3ε/CD28 stimulation. In conclusion, the decreased Nck1 protein in Jurkat T cells resulted in an impairment of TCR-CD3-mediated activation involving a defective Erk phosphorylation pathway.
Collapse
MESH Headings
- Adaptive Immunity/immunology
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/genetics
- Apoptosis/drug effects
- Apoptosis/immunology
- CD28 Antigens/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Electroporation
- Humans
- Interleukin-1/biosynthesis
- Interleukin-1/genetics
- Jurkat Cells/drug effects
- Jurkat Cells/immunology
- Jurkat Cells/metabolism
- Lectins, C-Type/biosynthesis
- Lectins, C-Type/genetics
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Oncogene Proteins/antagonists & inhibitors
- Oncogene Proteins/genetics
- Oncogene Proteins/physiology
- Phosphorylation
- Phytohemagglutinins/pharmacology
- Protein Processing, Post-Translational
- RNA Interference
- RNA, Small Interfering/pharmacology
- Receptor-CD3 Complex, Antigen, T-Cell/immunology
- Tetradecanoylphorbol Acetate/pharmacology
Collapse
|
research-article |
13 |
10 |
21
|
Pongcharoen S, Niumsup PR, Sanguansermsri D. JEG-3 cell culture supernatants cause reduced interferon-gamma and interleukin-17 production in mixed-lymphocyte reactions. Am J Reprod Immunol 2007; 57:227-231. [PMID: 17295902 DOI: 10.1111/j.1600-0897.2007.00467.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] [Imported: 08/29/2023] Open
Abstract
PROBLEM Immunoregulatory effects of choriocarcinoma-derived factors on leukocytes have been documented. The present study was designed to investigate the effect of JEG-3 culture supernatants on interferon-gamma (IFN-gamma), interleukin-17 (IL-17) and IL-1beta production in the mixed lymphocyte reactions (MLRs). METHOD OF STUDY A human choriocarcinoma cell line JEG-3 was used to test the effects of its culture supernatants on the proliferation and cytokine production in the MLRs. The cell proliferation was assessed using the BrdU incorporation and the amounts of cytokines were measured using enzyme-linked immunosorbent assays. RESULTS The JEG-3 culture supernatants caused significantly reduced IFN-gamma and IL-17 production in the MLRs. However, the supernatants did not influence MLR production of IL-1beta. CONCLUSION IFN-gamma and IL-17 are mainly produced by activated T cells but IL-1beta is primarily produced by monocytes, thus suggesting that immunoregulatory factors of JEG-3 cells selectively inhibit cytokine production by activated T cells rather than that of the monocytes.
Collapse
|
|
18 |
8 |
22
|
Keawkorn W, Limpeanchob N, Tiyaboonchai W, Pongcharoen S, Sutheerawattananonda M. The effect of dietary sericin on rats. SCIENCEASIA 2013; 39:252. [DOI: 10.2306/scienceasia1513-1874.2013.39.252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2025] [Imported: 04/07/2025]
|
|
12 |
8 |
23
|
Paensuwan P, Ngoenkam J, Khamsri B, Preechanukul K, Sanguansermsri D, Pongcharoen S. Evidence for inducible recruitment of Wiskott-Aldrich syndrome protein to T cell receptor-CD3 complex in Jurkat T cells. Asian Pac J Allergy Immunol 2015; 33:189-195. [PMID: 26342115 DOI: 10.12932/ap0544.33.3.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 01/21/2015] [Indexed: 11/05/2022] [Imported: 04/07/2025]
Abstract
BACKGROUND The engagement of the T cell receptor (TCR)-CD3 complex induces the formation of multiple signalling complexes, which are required for actin cytoskeletal rearrangement. The Wiskott-Aldrich syndrome protein (WASp) is a key regulator of actin polymerization that is recruited to the TCR activation site. Since WASp is a binding partner of adaptor protein Nck, which is recruited directly to the TCR CD3? subunit upon TCR ligation, therefore we proposed that the direct recruitment of Nck to TCR-CD3 may also bring WASp directly to TCR-CD3. OBJECTIVE The aim of this present study was to assess the distribution of WASp, in relation to Nck, to the TCR-CD3ε complex. METHODS Jurkat T cells were stimulated with anti-TCR antibody and then the cell lysates were immunoprecipitated with anti-CD3 antibody before immunoblotting with antibodies specific to WASp, Nck1, Nck2, SLP-76 and CD3ε molecules. RESULTS WASp was recruited to SLP-76 and also directly to the TCR-CD3 complex upon TCR triggering. The inducible recruitment of WASp to the TCR-CD3 complex is partially dependent of tyrosine phosphorylation. CONCLUSIONS The present findings provide an alternative mechanism of WASp recruitment to the site of TCR activation that may be involved in recruitment of Nck.
Collapse
|
|
10 |
7 |
24
|
Wipa P, Paensuwan P, Ngoenkam J, Woessner NM, Minguet S, Schamel WW, Pongcharoen S. Actin polymerization regulates recruitment of Nck to CD3ε upon T-cell receptor triggering. Immunology 2020; 159:298-308. [PMID: 31674657 PMCID: PMC7011646 DOI: 10.1111/imm.13146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022] [Imported: 08/29/2023] Open
Abstract
Following T-cell antigen receptor (TCR) engagement, rearrangement of the actin cytoskeleton supports intracellular signal transduction and T-cell activation. The non-catalytic region of the tyrosine kinase (Nck) molecule is an adapter protein implicated in TCR-induced actin polymerization. Further, Nck is recruited to the CD3ε subunit of the TCR upon TCR triggering. Here we examine the role of actin polymerization in the recruitment of Nck to the TCR. To this end, Nck binding to CD3ε was quantified in Jurkat cells using the proximity ligation assay. We show that inhibition of actin polymerization using cytochalasin D delayed the recruitment of Nck1 to the TCR upon TCR triggering. Interestingly, CD3ε phosphorylation was also delayed. These findings suggest that actin polymerization promotes the recruitment of Nck to the TCR, enhancing downstream signaling, such as phosphorylation of CD3ε.
Collapse
|
research-article |
5 |
5 |
25
|
Pongcharoen S, Niumsup PR, Butkhamchot P. Comparative study of interleukin-1beta expression by peripheral blood mononuclear cells and purified monocytes experimentally infected with Burkholderia pseudomallei and Burkholderia thailandensis. Immunol Invest 2008; 37:704-713. [PMID: 18821217 DOI: 10.1080/08820130802307310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] [Imported: 08/29/2023]
Abstract
Burkholderia pseudomallei is a causative agent of melioidosis. The present study investigated IL-1beta mRNA and protein expression by peripheral blood mononuclear cells and purified monocytes (n = 10) in response to infection with B. pseudomallei and B. thailandensis. Similarly increased IL-1beta mRNA and protein expression was found in both PBMC and purified monocytes stimulated with B. pseudomallei and B. thailandensis. Thus, this study suggests that IL-1beta response does not differ between infections with B. pseudomallei and its non-virulent counterpart and other mechanisms may be involved in their distinct virulence in causing the disease.
Collapse
|
Comparative Study |
17 |
5 |