51
|
Panighini A, Duranti E, Santini F, Maffei M, Pizzorusso T, Funel N, Taddei S, Bernardini N, Ippolito C, Virdis A, Costa M. Vascular dysfunction in a mouse model of Rett syndrome and effects of curcumin treatment. PLoS One 2013; 8:e64863. [PMID: 23705018 PMCID: PMC3660336 DOI: 10.1371/journal.pone.0064863] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 04/22/2013] [Indexed: 02/07/2023] [Imported: 04/16/2025] Open
Abstract
Mutations in the coding sequence of the X-linked gene MeCP2 (Methyl CpG-binding protein) are present in around 80% of patients with Rett Syndrome, a common cause of intellectual disability in female and to date without any effective pharmacological treatment. A relevant, and so far unexplored feature of RTT patients, is a marked reduction in peripheral circulation. To investigate the relationship between loss of MeCP2 and this clinical aspect, we used the MeCP2 null mouse model B6.129SF1-MeCP2tm1Jae for functional and pharmacological studies. Functional experiments were performed on isolated resistance mesenteric vessels, mounted on a pressurized myograph. Vessels from female MeCP2(+/-) mice show a reduced endothelium-dependent relaxation, due to a reduced Nitric Oxide (NO) availability secondary to an increased Reactive Oxygen Species (ROS) generation. Such functional aspects are associated with an intravascular increase in superoxide anion production, and a decreased vascular eNOS expression. These alterations are reversed by curcumin administration (5% (w/w) dietary curcumin for 21 days), which restores endothelial NO availability, decreases intravascular ROS production and normalizes vascular eNOS gene expression. In conclusion our findings highlight alterations in the vascular/endothelial system in the absence of a correct function of MeCP2, and uncover related cellular/molecular mechanisms that are rescued by an anti-oxidant treatment.
Collapse
MESH Headings
- Animals
- Blood Vessels/drug effects
- Blood Vessels/physiopathology
- Curcumin/administration & dosage
- Curcumin/pharmacology
- Curcumin/therapeutic use
- Disease Models, Animal
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Female
- Gene Expression Regulation, Enzymologic/drug effects
- Immunohistochemistry
- Malondialdehyde/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rett Syndrome/complications
- Rett Syndrome/drug therapy
- Rett Syndrome/physiopathology
- Superoxides/metabolism
- Time Factors
- Vascular Diseases/complications
- Vascular Diseases/drug therapy
- Vascular Diseases/physiopathology
Collapse
|
research-article |
12 |
29 |
52
|
Vittorio O, Quaranta P, Raffa V, Funel N, Campani D, Pelliccioni S, Longoni B, Mosca F, Pietrabissa A, Cuschieri A. Magnetic carbon nanotubes: a new tool for shepherding mesenchymal stem cells by magnetic fields. Nanomedicine (Lond) 2011; 6:43-54. [PMID: 21182417 DOI: 10.2217/nnm.10.125] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] [Imported: 04/16/2025] Open
Abstract
AIMS We investigated the interaction between magnetic carbon nanotubes (CNTs) and mesenchymal stem cells (MSCs), and their ability to guide these intravenously injected cells in living rats by using an external magnetic field. MATERIALS & METHODS Multiwalled CNTs were used to treat MSCs derived from rat bone marrow. Cytotoxicity induced by nanotubes was studied using the WST-1 proliferation and Hoechest 33258 apoptosis assays. The effects of nanotubes on MSCs were evaluated by monitoring the effects on cellular growth rates, immunophenotyping and differentiation, and on the arrangement of cytoskeletal actin. MSCs loaded with nanotubes were injected in vivo in the portal vein of rats driving their localization in the liver by magnetic field. An histological analysis was performed on the liver, lungs and kidneys of all animals. RESULTS CNTs did not affect cell viability and their ability to differentiate in osteocytes and adipocytes. Both the CNTs and the magnetic field did not alter the cell growth rate, phenotype and cytoskeletal conformation. CNTs, when exposed to magnetic fields, are able to shepherd MSCs towards the magnetic source in vitro. Moreover, the application of a magnetic field alters the biodistribution of CNT-labelled MSCs after intravenous injection into rats, increasing the accumulation of cells into the target organ (liver). CONCLUSION Multiwalled CNTs hold the potential for use as nanodevices to improve therapeutic protocols for transplantation and homing of stem cells in vivo. This could pave the way for the development of new strategies for the manipulation/guidance of MSCs in regenerative medicine and cell transplantation.
Collapse
|
|
14 |
27 |
53
|
Le Large TYS, Bijlsma MF, El Hassouni B, Mantini G, Lagerweij T, Henneman AA, Funel N, Kok B, Pham TV, de Haas R, Morelli L, Knol JC, Piersma SR, Kazemier G, van Laarhoven HWM, Giovannetti E, Jimenez CR. Focal adhesion kinase inhibition synergizes with nab-paclitaxel to target pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res 2021; 40:91. [PMID: 33750427 PMCID: PMC7941981 DOI: 10.1186/s13046-021-01892-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/24/2021] [Indexed: 02/08/2023] [Imported: 04/16/2025] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a very lethal disease, with minimal therapeutic options. Aberrant tyrosine kinase activity influences tumor growth and is regulated by phosphorylation. We investigated phosphorylated kinases as target in PDAC. METHODS Mass spectrometry-based phosphotyrosine proteomic analysis on PDAC cell lines was used to evaluate active kinases. Pathway analysis and inferred kinase activity analysis was performed to identify novel targets. Subsequently, we investigated targeting of focal adhesion kinase (FAK) in vitro with drug perturbations in combination with chemotherapeutics used against PDAC. Tyrosine phosphoproteomics upon treatment was performed to evaluate signaling. An orthotopic model of PDAC was used to evaluate the combination of defactinib with nab-paclitaxel. RESULTS PDAC cell lines portrayed high activity of multiple receptor tyrosine kinases to various degree. The non-receptor kinase, FAK, was identified in all cell lines by our phosphotyrosine proteomic screen and pathway analysis. Targeting of this kinase with defactinib validated reduced phosphorylation profiles. Additionally, FAK inhibition had anti-proliferative and anti-migratory effects. Combination with (nab-)paclitaxel had a synergistic effect on cell proliferation in vitro and reduced tumor growth in vivo. CONCLUSIONS Our study shows high phosphorylation of several oncogenic receptor tyrosine kinases in PDAC cells and validated FAK inhibition as potential synergistic target with Nab-paclitaxel against this devastating disease.
Collapse
|
research-article |
4 |
27 |
54
|
Caponi S, Vasile E, Funel N, De Lio N, Campani D, Ginocchi L, Lucchesi M, Caparello C, Lencioni M, Cappelli C, Costa F, Pollina L, Ricci S, Mosca F, Falcone A, Boggi U. Adjuvant chemotherapy seems beneficial for invasive intraductal papillary mucinous neoplasms. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2013; 39:396-403. [PMID: 23290583 DOI: 10.1016/j.ejso.2012.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 11/28/2012] [Accepted: 12/07/2012] [Indexed: 12/20/2022] [Imported: 04/16/2025]
Abstract
AIMS The incidence of intraductal papillary mucinous neoplasm (IPMN) is rising and these neoplasms now represent up to 25% of resected pancreatic neoplasms. The optimal postoperative management of resected invasive IPMN is still debated in the absence of large prospective clinical trials and of validated prognostic factors in this setting. The objective of our study was to identify potential prognostic factors and to investigate the role of adjuvant therapies for patients radically resected for invasive IPMN. METHODS We retrospectively reviewed clinical and pathological data regarding a large series of patients with invasive IPMN who underwent surgical resection in the last six years at University Hospital of Pisa. RESULTS Sixty-four patients were considered for the analysis, thirty-three of whom received adjuvant chemotherapy with gemcitabine. In our series node involvement and high tumoral grade emerged as the major pathologic prognostic factors. Patients treated with adjuvant chemotherapy with gemcitabine experienced a longer disease-free survival than those who received surgery alone. CONCLUSIONS Gemcitabine-based chemotherapy seems beneficial as adjuvant treatment for patients with resected invasive IPMN.
Collapse
MESH Headings
- Adenocarcinoma, Mucinous/drug therapy
- Adenocarcinoma, Mucinous/pathology
- Adenocarcinoma, Mucinous/surgery
- Adult
- Aged
- Aged, 80 and over
- Antimetabolites, Antineoplastic/therapeutic use
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/surgery
- Carcinoma, Papillary/drug therapy
- Carcinoma, Papillary/pathology
- Carcinoma, Papillary/surgery
- Chemotherapy, Adjuvant
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/therapeutic use
- Disease-Free Survival
- Female
- Humans
- Italy
- Male
- Middle Aged
- Multivariate Analysis
- Neoplasm Invasiveness
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/surgery
- Prognosis
- Retrospective Studies
- Survival Analysis
- Gemcitabine
Collapse
|
|
12 |
25 |
55
|
Funel N, Giovannetti E, Del Chiaro M, Mey V, Pollina LE, Nannizzi S, Boggi U, Ricciardi S, Del Tacca M, Bevilacqua G, Mosca F, Danesi R, Campani D. Laser microdissection and primary cell cultures improve pharmacogenetic analysis in pancreatic adenocarcinoma. J Transl Med 2008; 88:773-784. [PMID: 18490900 DOI: 10.1038/labinvest.2008.40] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] [Imported: 04/16/2025] Open
Abstract
A key focus of research on pancreatic ductal adenocarcinoma (PDAC) is identifying new techniques to tailor gemcitabine and 5-fluorouracil treatments. Availability of tumor tissue is critical for the accurate assessment of gene expression, and laser microdissection (LMD) and primary cell cultures may be useful tools to separate tumor cells from the stromal reaction. The aim of this study was (1) to address the genetic profile relevant to drug activity and (2) to evaluate differences between microdissected and non-microdissected tumors, normal tissues, and primary cell cultures. Quantitative PCR of seven key genes was performed on mRNA from 113 microdissected and 28 non-microdissected tumors, a pool of normal tissues and four established primary cell lines. Protein expression was evaluated by western blot and immunocytochemistry and cytotoxicity by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. LMD allowed the analysis of 110 samples and revealed significant differences in mRNA levels between microdissected tumors and normal tissues, as well as between non-microdissected and microdissected tumors from the same patients. In contrast, primary cell lines showed similar expression profiles with respect to their respective microdissected tumors. In particular, expression levels of human equilibrative nucleoside transporter-1 and thymydilate synthase were significantly related to gemcitabine and 5-fluorouracil cytotoxicity. We conclude that LMD is a reliable technique for mRNA extraction, and allows detection of significant differences in the expression of specific target genes when compared to non-microdissected specimens and normal tissues. Moreover, expression levels in microdissected tumors are similar to those observed in primary tumor cell cultures, both at mRNA and protein level, and are related to drug chemosensitivity. The use of these ex vivo techniques for molecular analysis of tumors therefore appears to be of some value in implementing the clinical management of PDAC.
Collapse
|
|
17 |
24 |
56
|
Di Franco G, Usai A, Funel N, Palmeri M, Montesanti IER, Bianchini M, Gianardi D, Furbetta N, Guadagni S, Vasile E, Falcone A, Pollina LE, Raffa V, Morelli L. Use of zebrafish embryos as avatar of patients with pancreatic cancer: A new xenotransplantation model towards personalized medicine. World J Gastroenterol 2020; 26:2792-2809. [PMID: 32550755 PMCID: PMC7284182 DOI: 10.3748/wjg.v26.i21.2792] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/27/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] [Imported: 08/29/2023] Open
Abstract
BACKGROUND The response to chemotherapy treatment of patients with pancreatic ductal adenocarcinoma (PDAC) is difficult to predict and the identification of patients who most likely will benefit from aggressive chemotherapy approaches is crucial. The concept of personalized medicine has emerged in the last years with the objective to tailor the medical treatment to the individual characteristics of each patient, and particularly to the tumor biology of each patient. The need for in-vivo xenotransplantation models for cancer patients has increased exponentially, and for this reason zebrafish avatars have gained popularity. Preliminary studies were conducted also with PDAC tissue. AIM To develop a simple, not expensive, diffusible zebrafish embryo model as avatar for patients affected by PDAC. METHODS Tumor tissue was taken from the surgical specimen by the histopathologist. After its fragmentation into small pieces, they are stained with CM-Dil. Small pieces of stained tissue were transplanted into the yolk of wt AB zebrafish embryos with a glass capillary needle. Embryos were incubated at 35 °C in E3 medium supplemented with 1% Pen/Strep in the presence or absence of drugs for the following days in respect of the treatment plan (Gemcitabine; Gemcitabine and Oxaliplatin; Gemcitabine and nab-Paclitaxel; 5-Fluorouracil and Folinic acid and Oxaliplatin and Irinotecan). The response of zebrafish xenografts to the chemotherapy options has been analyzed by monitoring the fluorescent stained area at 2 h post injection (hpi), 1 d and 2 d post injection (dpi). In each time point, the mean size of the stained area was measured by ImageJ and it was normalized with respect to the 1 dpi time point mean relative tumor area (RTA). We evaluated the effect of the chemotherapy exposition comparing the mean RTA of each treated subgroup and the control group and evaluating the percentage reduction of the mean RTA by comparing each treated subgroup with the control group. RESULTS Between July 2018 and October 2019, a total of 15 patients with pancreatic cancer were prospectively enrolled. In all cases, it was possible to take a fragment of the tumor from the surgical specimen for the xenotransplantation in the zebrafish embryos. The histological examination confirmed the presence of a PDAC in all cases. In absence of chemotherapy (control group), over time the Dil-stained area showed a statistically significant increase in all cases. A statistically significant reduction of the mean RTA in the treated subgroups for at least one chemotherapy scheme was reported in 6/15 (40%) cases. The analysis of the percentage reduction of the RTA in treated subgroups in comparison to the control group revealed the presence of a linear relationship in each subgroup between the percentage reduction of the RTA and the number of cases reporting each percentage threshold considered for the analysis. CONCLUSION Our model seems to be effective for the xenotransplantation of PDAC tissue and evaluation of the effect of each chemotherapy scheme on the xenotransplanted tumor tissue.
Collapse
|
Basic Study |
5 |
23 |
57
|
Funel N, Giovannetti E, Pollina LE, del Chiaro M, Mosca F, Boggi U, Campani D. Critical role of laser microdissection for genetic, epigenetic and proteomic analyses in pancreatic cancer. Expert Rev Mol Diagn 2011; 11:695-701. [PMID: 21902531 DOI: 10.1586/erm.11.62] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2023] [Imported: 04/16/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease, and molecular studies to unravel novel biomarkers and therapeutic targets are warranted. However, PDAC is characterized by different precursor lesions, as well as by an intense desmoplastic reaction, with islet of neoplastic cells often representing a minor population. Moreover, normal ductal cells, which are considered to be the normal counterpart of pancreatic adenocarcinoma cells, comprise approximately 5% of the total population of cells making up this organ. For all these reasons, molecular techniques to identify critical mutations, as well as the pattern of altered mRNA/microRNA/protein expression should be performed on selected pancreatic cell subpopulations. Therefore, the use of the newest laser microdissection techniques is critical for the analysis of PDAC biological characteristics. This article highlights the most recent and clinically relevant aspects of genetic, epigenetic and proteomic analyses of PDAC from the perspective of the application of laser microdissection.
Collapse
|
Review |
14 |
21 |
58
|
Garajová I, Funel N, Fiorentino M, Agostini V, Ferracin M, Negrini M, Frassineti GL, Gavelli G, Frampton AE, Biasco G, Giovannetti E. MicroRNA profiling of primary pulmonary enteric adenocarcinoma in members from the same family reveals some similarities to pancreatic adenocarcinoma-a step towards personalized therapy. Clin Epigenetics 2015; 7:129. [PMID: 26677401 PMCID: PMC4681170 DOI: 10.1186/s13148-015-0162-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/07/2015] [Indexed: 02/07/2023] [Imported: 04/16/2025] Open
Abstract
BACKGROUND Primary pulmonary enteric adenocarcinoma (PEAC) is defined as a pulmonary adenocarcinoma with a predominant component of intestinal differentiation and tumor cells positive for at least one intestinal marker. The aim of the present study was the molecular and histological characterization of a PEAC from a patient with two other family members affected by similar lung tumors, which has never been reported before. FINDINGS We evaluated the molecular characteristics of the proband's PEAC by using a previously validated 47-microRNA (miRNA) cancer-specific array and a predictive method to estimate tissue-of-origin probabilities. Immunohistochemical (IHC) staining for thyroid transcription factor (TTF-1), napsin A, caudal-related homeobox 2 (CDX2), cytokeratins, and mucins, as well as mutational analyses for epidermal growth factor receptor (EGFR), Kirsten rat sarcoma viral oncogene homolog (KRAS), and anaplastic lymphoma kinase (ALK) were performed on formalin-fixed, paraffin-embedded (FFPE) tissues. The occurrence of PEAC in two family members was associated with similar clinicopathological features (age at diagnosis, smoking habit, tumor localization, multiple colonic polyps), histologic findings (TTF-1 negativity and CDX2 positivity), and genetic findings (KRAS (Gly12Asp) mutation, but no EGFR/ALK aberrations). miRNA profiling revealed similarities with non-small cell lung cancer (NSCLC; 75.98 %) and some overlap with pancreatic ductal adenocarcinoma (PDAC; 23.34 %), but not with colorectal cancer (CRC; less than 0.5 %). Notably, these PEACs share key PDAC-associated miRNAs associated with tumor aggressiveness (miR-31*/-126*/-506/-508-3p/-514). CONCLUSIONS We describe for the first time PEAC in members from the same family, associated with similar clinical and genetic features. miRNA profiling of the PEAC resembled a NSCLC signature, with partial overlap to a PDAC pattern. This could explain its aggressive behavior and therefore help to guide future tailored-therapeutic approaches.
Collapse
|
case-report |
10 |
20 |
59
|
Lee JH, Giovannetti E, Hwang JH, Petrini I, Wang Q, Voortman J, Wang Y, Steinberg SM, Funel N, Meltzer P, Wang Y, Giaccone G. Loss of 18q22.3 involving the carboxypeptidase of glutamate-like gene is associated with poor prognosis in resected pancreatic cancer. Clin Cancer Res 2012; 18:524-533. [PMID: 22128300 PMCID: PMC3261299 DOI: 10.1158/1078-0432.ccr-11-1903] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] [Imported: 04/16/2025]
Abstract
PURPOSES Pancreatic cancer is the fourth leading cause of cancer-related death, and studies on the clinical relevance of its genomic imbalances are warranted. EXPERIMENTAL DESIGN Recurrent copy number alterations of cytobands and genes were analyzed by array comparative genomic hybridization (aCGH) in 44 resected pancreatic cancer specimens. Prognostic markers identified by aCGH were validated by PCR gene copy number assay in an independent validation cohort of 61 resected pancreatic cancers. The functions of gene identified were evaluated by proliferation, cell cycle, and migration assays in pancreatic cancer cells. RESULTS We showed recurrent copy number gains and losses in the first cohort. Loss of 18q22.3 was significantly associated with short-term overall survival in the first cohort (P = 0.019). This cytoband includes the carboxypeptidase of glutamate-like (CPGL) gene. CPGL gene deletion was associated with shorter overall survival in the validation cohort (P = 0.003). CPGL deletion and mutations of TP53 or Kras seem to be independent events. A Cox model analysis of the two cohorts combined showed that loss of 18q22.3/deletion of the CPGL gene was an independent poor prognostic factor for overall survival (HR = 2.72, P = 0.0007). Reconstitution of CPGL or its splicing variant CPGL-B into CPGL-negative pancreatic cancer cells attenuated cell growth, migration, and induced G(1) accumulation. CONCLUSION Loss of 18q22.3/deletion of the CPGL gene is a poor prognostic marker in resected pancreatic cancer, and functional studies suggest the CPGL gene as growth suppressor gene in pancreatic cancer.
Collapse
|
Research Support, N.I.H., Intramural |
13 |
20 |
60
|
Mantini G, Vallés AM, Le Large TYS, Capula M, Funel N, Pham TV, Piersma SR, Kazemier G, Bijlsma MF, Giovannetti E, Jimenez CR. Co-expression analysis of pancreatic cancer proteome reveals biology and prognostic biomarkers. Cell Oncol (Dordr) 2020; 43:1147-1159. [PMID: 32860207 PMCID: PMC7716908 DOI: 10.1007/s13402-020-00548-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2020] [Indexed: 01/02/2023] [Imported: 04/16/2025] Open
Abstract
PURPOSE Despite extensive biological and clinical studies, including comprehensive genomic and transcriptomic profiling efforts, pancreatic ductal adenocarcinoma (PDAC) remains a devastating disease, with a poor survival and limited therapeutic options. The goal of this study was to assess co-expressed PDAC proteins and their associations with biological pathways and clinical parameters. METHODS Correlation network analysis is emerging as a powerful approach to infer tumor biology from omics data and to prioritize candidate genes as biomarkers or drug targets. In this study, we applied a weighted gene co-expression network analysis (WGCNA) to the proteome of 20 surgically resected PDAC specimens (PXD015744) and confirmed its clinical value in 82 independent primary cases. RESULTS Using WGCNA, we obtained twelve co-expressed clusters with a distinct biology. Notably, we found that one module enriched for metabolic processes and epithelial-mesenchymal-transition (EMT) was significantly associated with overall survival (p = 0.01) and disease-free survival (p = 0.03). The prognostic value of three proteins (SPTBN1, KHSRP and PYGL) belonging to this module was confirmed using immunohistochemistry in a cohort of 82 independent resected patients. Risk score evaluation of the prognostic signature confirmed its association with overall survival in multivariate analyses. Finally, immunofluorescence analysis confirmed co-expression of SPTBN1 and KHSRP in Hs766t PDAC cells. CONCLUSIONS Our WGCNA analysis revealed a PDAC module enriched for metabolic and EMT-associated processes. In addition, we found that three of the proteins involved were associated with PDAC survival.
Collapse
|
research-article |
5 |
19 |
61
|
Meijer LL, Puik JR, Le Large TYS, Heger M, Dijk F, Funel N, Wurdinger T, Garajová I, van Grieken NCT, van de Wiel MA, Giovannetti E, Kazemier G. Unravelling the Diagnostic Dilemma: A MicroRNA Panel of Circulating MiR-16 and MiR-877 as A Diagnostic Classifier for Distal Bile Duct Tumors. Cancers (Basel) 2019; 11:1181. [PMID: 31443224 PMCID: PMC6721566 DOI: 10.3390/cancers11081181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022] [Imported: 04/16/2025] Open
Abstract
Accurate diagnosis of pancreatic head lesions remains challenging as no minimally invasive biomarkers are available to discriminate distal cholangiocarcinoma (CCA) from pancreatic ductal adenocarcinoma (PDAC). The aim of this study is to identify specific circulating microRNAs (miRNAs) to diagnose distal CCA. In the discovery phase, PCR profiling of 752 miRNAs was performed on fourteen patients with distal CCA and age- and sex-matched healthy controls. Candidate miRNAs were selected for evaluation and validation by RT-qPCR in an independent cohort of distal CCA (N = 24), healthy controls (N = 32), benign diseases (N = 20), and PDAC (N = 24). The optimal diagnostic combination of miRNAs was determined by multivariate logistic regression analysis and evaluated by ROC curves with AUC values. The discovery phase revealed 19 significantly dysregulated miRNAs, of which six were validated in the evaluation phase. The validation phase confirmed downregulated miR-16 in patients with distal CCA compared to benign disease or PDAC (P = 0.048 and P = 0.012), while miR-877 was significantly upregulated (P = 0.003 and P = 0.006). This two-miRNA panel was validated as a CCA-specific profile, discriminating distal CCA from benign disease (AUC = 0.90) and from PDAC (AUC = 0.88). In conclusion, the present study identified a two-miRNA panel of downregulated miR-16 and upregulated miR-877 with promising capability to diagnose patients with distal CCA.
Collapse
|
research-article |
6 |
19 |
62
|
Novelli M, Bonamassa B, Masini M, Funel N, Canistro D, De Tata V, Martano M, Soleti A, Campani D, Paolini M, Masiello P. Persistent correction of hyperglycemia in streptozotocin-nicotinamide-induced diabetic mice by a non-conventional radical scavenger. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2010; 382:127-137. [PMID: 20512314 PMCID: PMC2904902 DOI: 10.1007/s00210-010-0524-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 05/07/2010] [Indexed: 01/09/2023] [Imported: 04/16/2025]
Abstract
We previously reported that in a diabetes mouse model, characterised by moderate hyperglycaemia and reduced beta-cell mass, the radical scavenger bis(1-hydroxy-2,2,6,6-tetramethyl-4-piperidinyl)decandioate di-hydrochloride (IAC), a non-conventional cyclic hydroxylamine derivative, improves metabolic alterations by counteracting beta-cell dysfunction associated with oxidative stress. The aims of this study were to ascertain whether the beneficial effects of IAC treatment could be maintained after its discontinuation and further elucidate the underlying mechanisms. Diabetes was induced in C57Bl/6J mice by streptozotocin (STZ) and nicotinamide (NA) administration. Diabetic mice were treated for 7 weeks with various doses of IAC (7.5, 15, or 30 mg/kg b.w./die i.p.) and monitored for additional 8 weeks after suspension of IAC. Then, pancreatic tissue was used for determination of beta-cell mass by immunohistochemistry and beta-cell ultrastructural analysis. STZ-NA mice showed moderate hyperglycaemia, glucose intolerance and reduced beta-cell mass (25% of controls). IAC-treated STZ-NA mice (at both doses of 15 and 30 mg/kg b.w.) showed long-term reduction of hyperglycaemia even after discontinuation of treatment, attenuation of glucose intolerance and partial preservation of beta-cell mass. The lowest IAC dose was much less effective. Plasma nitrotyrosine levels (an oxidative stress index) significantly increased in untreated diabetic mice and were lowered upon IAC treatment. At ultrastructural level, beta cells of IAC-treated diabetic mice were protected against degranulation and mitochondrial alterations. In the STZ-NA diabetic mouse model, the radical scavenger IAC induces a prolonged reduction of hyperglycaemia associated with partial restoration of beta-cell mass and function, likely dependent on blockade of oxidative stress-induced damaging mechanisms.
Collapse
|
research-article |
15 |
18 |
63
|
Rofi E, Vivaldi C, Del Re M, Arrigoni E, Crucitta S, Funel N, Fogli S, Vasile E, Musettini G, Fornaro L, Falcone A, Danesi R. The emerging role of liquid biopsy in diagnosis, prognosis and treatment monitoring of pancreatic cancer. Pharmacogenomics 2019; 20:49-68. [PMID: 30520336 DOI: 10.2217/pgs-2018-0149] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/05/2018] [Indexed: 12/11/2022] [Imported: 04/16/2025] Open
Abstract
Circulating tumor DNA, circulating tumor cells and tumor-related exosomes may offer new opportunities to provide insights into the biological and clinical characteristics of a neoplastic disease. They represent alternative routes for diagnostic and prognostic purposes, and for predicting and longitudinally monitoring response to treatment and disease progression. Hence, circulating biomarkers represent promising noninvasive tools in the scenario of pancreatic cancer, where neither molecular nor clinical predictors of treatment benefit have been identified yet. This review aims to provide an overview of the current status of circulating biomarker research in pancreatic cancer, and discusses their potential clinical utility to facilitate clinical decision-making.
Collapse
|
Review |
6 |
17 |
64
|
Frampton AE, Krell J, Prado MM, Gall TM, Abbassi-Ghadi N, Del Vecchio Blanco G, Funel N, Giovannetti E, Castellano L, Basyouny M, Habib NA, Kaltsidis H, Vlavianos P, Stebbing J, Jiao LR. Prospective validation of microRNA signatures for detecting pancreatic malignant transformation in endoscopic-ultrasound guided fine-needle aspiration biopsies. Oncotarget 2016; 7:28556-28569. [PMID: 27086919 PMCID: PMC5053745 DOI: 10.18632/oncotarget.8699] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 03/22/2016] [Indexed: 01/17/2023] [Imported: 04/16/2025] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease. Novel biomarkers are required to aid treatment decisions and improve patient outcomes. MicroRNAs (miRNAs) are potentially ideal diagnostic biomarkers, as they are stable molecules, and tumour and tissue specific. RESULTS Logistic regression analysis revealed an endoscopic-ultrasound fine-needle aspiration (EUS-FNA) 2-miRNA classifier (miR-21 + miR-155) capable of distinguishing benign from malignant pancreatic lesions with a sensitivity of 81.5% and a specificity of 85.7% (AUC 0.930). Validation FNA cohorts confirmed both miRNAs were overexpressed in malignant disease, while circulating miRNAs performed poorly. METHODS Fifty-five patients with a suspicious pancreatic lesion on cross-sectional imaging were evaluated by EUS-FNA. At echo-endoscopy, the first part of the FNA was sent for cytological assessment and the second part was used for total RNA extraction. Candidate miRNAs were selected after careful review of the literature and expression was quantified by qRT-PCR. Validation was performed on an independent cohort of EUS-FNAs, as well as formalin-fixed paraffin embedded (FFPE) and plasma samples. CONCLUSIONS We provide further evidence for using miRNAs as diagnostic biomarkers for pancreatic malignancy. We demonstrate the feasibility of using fresh EUS-FNAs to establish miRNA-based signatures unique to pancreatic malignant transformation and the potential to enhance risk stratification and selection for surgery.
Collapse
|
research-article |
9 |
17 |
65
|
Di Turi G, Riggio C, Vittorio O, Marconcini S, Briguglio F, Funel N, Campani D, Barone A, Raffa V, Covani U. Sub-micrometric liposomes as drug delivery systems in the treatment of periodontitis. Int J Immunopathol Pharmacol 2012; 25:657-670. [PMID: 23058016 DOI: 10.1177/039463201202500312] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] [Imported: 04/16/2025] Open
Abstract
Periodontitis is a complex disease and bacterial infection is one of the most common factors involved in this disease. Current strategies for the local delivery of antibiotics do not allow a complete clearance of bacteria filling dentinal tubules and this limits their therapeutic efficacy. Therefore, there is a strong need for the development of new delivery strategies aimed at improving the efficacy of antibiotic therapy for periodontitis with special reference to their ability to penetrate into the tubules. The aim of the present study is to develop liposome-based delivery systems of sub-micron dimension, able to diffuse into the dentinal tubules. A further aim of the research is to develop a protocol for enhanced diffusion based on the use of magnetic liposomes and magnetic fields. Liposomes were produced by hydration of a pre-liposomal formulation. The vesicles were stabilised with PEG and their re-sizing was achieved by extrusion. Magnetite nanoparticles were synthesized inside the vesicles, i.e., the chemical reaction involving FeCl₂, FeCl₃ and NH₃ occurred within the core of the newly formed liposomes. Dynamic light scattering analysis was performed for size characterization. A mathematical model was implemented to predict the diffusion of the liposomes in dentinal tubules. Ex-vivo validation was performed on extracted human teeth. We produced PEG-ylated liposomes (average size 204.3 nm) and PEG-ylated magnetic liposomes (average size 286 nm) and an iron content of 4.2 μg/ml. Through mathematical modelling, we deduced that sub-micrometer vesicles are able to penetrate into dentinal tubules. This penetration is considerably more effective when the vesicles are magnetized and subjected to an external magnetic field which accelerates their movement within the tubules. The liposome-based delivery systems developed by the present study are able to penetrate deeply into the tubules, sometimes reaching their terminal ends.
Collapse
|
|
13 |
15 |
66
|
Avan A, Maftouh M, Funel N, Ghayour-Mobarhan M, Boggi U, Peters GJ, Giovannetti E. MET as a potential target for the treatment of upper gastrointestinal cancers: characterization of novel c-Met inhibitors from bench to bedside. Curr Med Chem 2014; 21:975-989. [PMID: 23992325 DOI: 10.2174/09298673113209990231] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/22/2013] [Accepted: 06/05/2013] [Indexed: 11/22/2022] [Imported: 04/16/2025]
Abstract
The receptor tyrosine kinase mesenchymal-epithelial transition factor (c-Met) plays a pivotal role in regulation of cell proliferation and migration. Abnormal expression of c-Met has been associated with poor prognosis in several cancer types, including upper gastrointestinal malignancies. Moreover, c-Met interaction with multiple signalling pathways involved in tumor growth and invasive/metastatic phenotype has gained substantial attention in the last few years, suggesting the therapeutic potential of this target. This has led to the development and evaluation of a number of c-Met inhibitors. Here we describe the critical role of the HGF/c-Met pathway in cancer, as well as the preclinical and clinical investigations on c-Met inhibitors in solid tumors, with particular emphasis on recent findings with small-molecule inhibitors in gastrointestinal cancers. Clinical trials with several of these novel inhibitors have been encouraging and one of them, crizotinib (dual c-Met/ALK inhibitor), has recently been approved for lung cancers with ALK-rearrangement. There are accumulating evidences on the therapeutic potential of this and other c-Met inhibitors for the treatment of other malignancies, such as gastric and pancreatic cancers. These inhibitors might be used in combination with chemotherapy as well as with other biological agents, in order to overcome different resistance mechanisms. However, further studies are needed to identify determinants of the activity of c-Met inhibitors, through the analysis of genetic and environmental alterations affecting c-Met and parallel pro-cancer pathways. These studies will be critical to improve the efficacy and selectivity of current and future anticancer strategies targeting c-Met.
Collapse
|
Review |
11 |
15 |
67
|
Rizzato C, Campa D, Talar-Wojnarowska R, Halloran C, Kupcinskas J, Butturini G, Mohelníková-Duchoňová B, Sperti C, Tjaden C, Ghaneh P, Hackert T, Funel N, Giese N, Tavano F, Pezzilli R, Pedata M, Pasquali C, Gazouli M, Mambrini A, Souček P, di Sebastiano P, Capurso G, Cantore M, Oliverius M, Offringa R, Małecka-Panas E, Strobel O, Scarpa A, Canzian F. Association of genetic polymorphisms with survival of pancreatic ductal adenocarcinoma patients. Carcinogenesis 2016; 37:957-964. [PMID: 27497070 DOI: 10.1093/carcin/bgw080] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/30/2016] [Indexed: 02/05/2023] [Imported: 04/16/2025] Open
Abstract
Germline genetic variability might contribute, at least partially, to the survival of pancreatic ductal adenocarcinoma (PDAC) patients. Two recently performed genome-wide association studies (GWAS) on PDAC overall survival (OS) suggested (P < 10(-5)) the association between 30 genomic regions and PDAC OS. With the aim to highlight the true associations within these regions, we analyzed 44 single-nucleotide polymorphisms (SNPs) in the 30 candidate regions in 1722 PDAC patients within the PANcreatic Disease ReseArch (PANDoRA) consortium. We observed statistically significant associations for five of the selected regions. One association in the CTNNA2 gene on chromosome 2p12 [rs1567532, hazard ratio (HR) = 1.75, 95% confidence interval (CI) 1.19-2.58, P = 0.005 for homozygotes for the minor allele] and one in the last intron of the RUNX2 gene on chromosome 6p21 (rs12209785, HR = 0.88, 95% CI 0.80-0.98, P = 0.014 for heterozygotes) are of particular relevance. These loci do not coincide with those that showed the strongest associations in the previous GWAS. In silico analysis strongly suggested a possible mechanistic link between these two SNPs and pancreatic cancer survival. Functional studies are warranted to confirm the link between these genes (or other genes mapping in those regions) and PDAC prognosis in order to understand whether these variants may have the potential to impact treatment decisions and design of clinical trials.
Collapse
|
|
9 |
14 |
68
|
Obazee O, Capurso G, Tavano F, Archibugi L, De Bonis A, Greenhalf W, Key T, Pasquali C, Milanetto AC, Hackert T, Fogar P, Liço V, Dervenis C, Lawlor RT, Landoni L, Gazouli M, Zambon CF, Funel N, Strobel O, Jamroziak K, Cantù C, Malecka-Panas E, Landi S, Neoptolemos JP, Basso D, Talar-Wojnarowska R, Rinzivillo M, Andriulli A, Canzian F, Campa D. Common genetic variants associated with pancreatic adenocarcinoma may also modify risk of pancreatic neuroendocrine neoplasms. Carcinogenesis 2018; 39:360-367. [PMID: 29309705 DOI: 10.1093/carcin/bgx150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2023] [Imported: 04/16/2025] Open
Abstract
Pancreatic neuroendocrine neoplasms (pNEN) account for less than 5% of all pancreatic neoplasms and genetic association studies on susceptibility to the disease are limited. We sought to identify possible overlap of genetic susceptibility loci between pancreatic ductal adenocarcinoma (PDAC) and pNEN; therefore, PDAC susceptibility variants (n = 23) from Caucasian genome-wide association studies (GWAS) were genotyped in 369 pNEN cases and 3277 controls from the PANcreatic Disease ReseArch (PANDoRA) consortium to evaluate the odds associated with pNEN risk, disease onset and tumor characteristics. Main effect analyses showed four PDAC susceptibility variants-rs9854771, rs1561927, rs9543325 and rs10919791 to be associated with pNEN risk. Subsequently, only associations with rs9543325, rs10919791 and rs1561927 were noteworthy with false positive report probability (FPRP) tests. Stratified analyses considering age at onset (50-year threshold), showed rs2736098, rs16986825 and rs9854771 to be associated with risk of developing pNEN at a younger age. Stratified analyses also showed some single nucleotide polymorphisms to be associated with different degrees of tumor grade, metastatic potential and functionality. Our results identify known GWAS PDAC susceptibility loci, which may also be involved in sporadic pNEN etiology and suggest that some genetic mechanisms governing pathogenesis of these two entities may be similar, with few of these loci being more influential in younger cases or tumor subtypes.
Collapse
|
|
7 |
13 |
69
|
Funel N, Costa F, Pettinari L, Taddeo A, Sala A, Chiriva-Internati M, Cobos E, Colombo G, Milzani A, Campani D, Dalle-Donne I, Gagliano N. Ukrain affects pancreas cancer cell phenotype in vitro by targeting MMP-9 and intra-/extracellular SPARC expression. Pancreatology 2010; 10:545-552. [PMID: 20975318 DOI: 10.1159/000266127] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 12/02/2009] [Indexed: 12/11/2022] [Imported: 04/16/2025]
Abstract
BACKGROUND/AIMS We investigated whether the anticancer drug Ukrain (UK) is able to modulate the expression of some of the key markers of tumor progression in pancreatic cell carcinoma, in order to assess its potential therapeutic effect. METHODS Three cell lines (HPAF-II, PL45, HPAC) were treated with UK (5, 10 and 20 μM) for 48 h, or left untreated. Secreted protein acidic and rich in cysteine (SPARC) mRNA levels were assessed by real-time PCR. Matrix metalloproteinases (MMP)-2 and -9 activity was analyzed by SDS zymography; SPARC protein levels in cell lysates and supernatants were determined by Western blot. Cell cycle was determined by flow cytometric analysis, and invasion by matrigel invasion assay. RESULTS UK down-regulated MMP-2 and MMP-9, suggesting that UK may decrease pancreatic cancer cell invasion, as confirmed by the matrigel invasion assay. SPARC protein down-regulation in supernatants points to an inhibition by UK of extracellular matrix remodeling in the tumor microenvironment. At the same time, SPARC mRNA and cellular protein level up-regulation suggests that UK can affect cell proliferation by cell cycle inhibition, showing a cell cycle G2/M arrest in UK-treated cells. CONCLUSION Our results suggest that UK modulates two major aspects involved in tumorigenesis of pancreatic cancer cells, such as extracellular matrix remodeling and cell proliferation.
Collapse
|
|
15 |
13 |
70
|
Capula M, Mantini G, Funel N, Giovannetti E. New avenues in pancreatic cancer: exploiting microRNAs as predictive biomarkers and new approaches to target aberrant metabolism. Expert Rev Clin Pharmacol 2019; 12:1081-1090. [PMID: 31721608 DOI: 10.1080/17512433.2019.1693256] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022] [Imported: 04/16/2025]
Abstract
Introduction: Most pancreatic cancer patients are diagnosed at advanced-stages and first-line regimens (FOLFIRINOX and gemcitabine/nab-paclitaxel) provide limited survival advantage and are associated with considerable toxicities. In this grim scenario, novel treatments and biomarkers are warranted.Areas covered: MicroRNAs (miRNAs) emerged as biomarkers for cancer prognosis and chemoresistance and blood-based miRNAs are being evaluated as indicators of therapeutic activity. Moreover, aberrant metabolism, such as aerobic glycolysis, has been correlated to tumor aggressiveness and poor prognosis. Against this background, innovative approaches to tackle metabolic aberrations are being implemented and glycolytic inhibitors targeting lactate dehydrogenase-A (LDH-A) showed promising effects in preclinical models. A PubMed search was used to compile relevant publications until February 2019.Expert opinion: Analysis of tissue/circulating miRNA might improve selection for optimal treatment regimens. For instance, miR-181a modulation seems to predict response to FOLFIRINOX. However, we need further studies to validate predictive miRNA profiles, as well as to exploit miRNAs for treatment-tailoring. Several miRNAs have also a key role in regulating metabolic aberrations. Since preliminary evidence supports the development of new agents targeting these aberrations, such as LDH-A inhibitors, the identification of biomarkers for these treatments, including the above-mentioned miRNAs, should shorten the gap between preclinical studies and personalized therapies.
Collapse
|
Review |
6 |
12 |
71
|
Corbo V, Ritelli R, Barbi S, Funel N, Campani D, Bardelli A, Scarpa A. Mutational profiling of kinases in human tumours of pancreatic origin identifies candidate cancer genes in ductal and ampulla of vater carcinomas. PLoS One 2010; 5:e12653. [PMID: 20838624 PMCID: PMC2935892 DOI: 10.1371/journal.pone.0012653] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 08/12/2010] [Indexed: 12/31/2022] [Imported: 04/16/2025] Open
Abstract
BACKGROUND Protein kinases are key regulators of cellular processes (such as proliferation, apoptosis and invasion) that are often deregulated in human cancers. Accordingly, kinase genes have been the first to be systematically analyzed in human tumors leading to the discovery that many oncogenes correspond to mutated kinases. In most cases the genetic alterations translate in constitutively active kinase proteins, which are amenable of therapeutic targeting. Tumours of the pancreas are aggressive neoplasms for which no effective therapeutic strategy is currently available. METHODOLOGY/PRINCIPAL FINDINGS We conducted a DNA-sequence analysis of a selected set of 35 kinase genes in a panel of 52 pancreatic exocrine neoplasms, including 36 pancreatic ductal adenocarcinoma, and 16 ampulla of Vater cancer. Among other changes we found somatic mutations in ATM, EGFR, EPHA3, EPHB2, and KIT, none of which was previously described in cancers. CONCLUSIONS/SIGNIFICANCE Although the alterations identified require further experimental evaluation, the localization within defined protein domains indicates functional relevance for most of them. Some of the mutated genes, including the tyrosine kinases EPHA3 and EPHB2, are clearly amenable to pharmacological intervention and could represent novel therapeutic targets for these incurable cancers.
Collapse
|
research-article |
15 |
12 |
72
|
Campa D, Capurso G, Pastore M, Talar-Wojnarowska R, Milanetto AC, Landoni L, Maiello E, Lawlor RT, Malecka-Panas E, Funel N, Gazouli M, De Bonis A, Klüter H, Rinzivillo M, Delle Fave G, Hackert T, Landi S, Bugert P, Bambi F, Archibugi L, Scarpa A, Katzke V, Dervenis C, Liço V, Furlanello S, Strobel O, Tavano F, Basso D, Kaaks R, Pasquali C, Gentiluomo M, Rizzato C, Canzian F. Common germline variants within the CDKN2A/2B region affect risk of pancreatic neuroendocrine tumors. Sci Rep 2016; 6:39565. [PMID: 28008994 PMCID: PMC5180167 DOI: 10.1038/srep39565] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/23/2016] [Indexed: 01/14/2023] [Imported: 04/16/2025] Open
Abstract
Pancreatic neuroendocrine tumors (PNETs) are heterogeneous neoplasms which represent only 2% of all pancreatic neoplasms by incidence, but 10% by prevalence. Genetic risk factors could have an important role in the disease aetiology, however only a small number of case control studies have been performed yet. To further our knowledge, we genotyped 13 SNPs belonging to the pleiotropic CDKN2A/B gene region in 320 PNET cases and 4436 controls, the largest study on the disease so far. We observed a statistically significant association between the homozygotes for the minor allele of the rs2518719 SNP and an increased risk of developing PNET (ORhom = 2.08, 95% CI 1.05-4.11, p = 0.035). This SNP is in linkage disequilibrium with another polymorphic variant associated with increased risk of several cancer types. In silico analysis suggested that the SNP could alter the sequence recognized by the Neuron-Restrictive Silencer Factor (NRSF), whose deregulation has been associated with the development of several tumors. The mechanistic link between the allele and the disease has not been completely clarified yet but the epidemiologic evidences that link the DNA region to increased cancer risk are convincing. In conclusion, our results suggest rs2518719 as a pleiotropic CDKN2A variant associated with the risk of developing PNETs.
Collapse
|
research-article |
9 |
11 |
73
|
Mohelnikova-Duchonova B, Strouhal O, Hughes DJ, Holcatova I, Oliverius M, Kala Z, Campa D, Rizzato C, Canzian F, Pezzilli R, Talar-Wojnarowska R, Malecka-Panas E, Sperti C, Federico Zambon C, Pedrazzoli S, Fogar P, Milanetto AC, Capurso G, Delle Fave G, Valente R, Gazouli M, Malleo G, Teresa Lawlor R, Strobel O, Hackert T, Giese N, Vodicka P, Vodickova L, Landi S, Tavano F, Gioffreda D, Piepoli A, Pazienza V, Mambrini A, Pedata M, Cantore M, Bambi F, Ermini S, Funel N, Lemstrova R, Soucek P. SLC22A3 polymorphisms do not modify pancreatic cancer risk, but may influence overall patient survival. Sci Rep 2017; 7:43812. [PMID: 28272475 PMCID: PMC5341046 DOI: 10.1038/srep43812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 01/31/2017] [Indexed: 02/08/2023] [Imported: 04/16/2025] Open
Abstract
Expression of the solute carrier (SLC) transporter SLC22A3 gene is associated with overall survival of pancreatic cancer patients. This study tested whether genetic variability in SLC22A3 associates with pancreatic cancer risk and prognosis. Twenty four single nucleotide polymorphisms (SNPs) tagging the SLC22A3 gene sequence and regulatory elements were selected for analysis. Of these, 22 were successfully evaluated in the discovery phase while six significant or suggestive variants entered the validation phase, comprising a total study number of 1,518 cases and 3,908 controls. In the discovery phase, rs2504938, rs9364554, and rs2457571 SNPs were significantly associated with pancreatic cancer risk. Moreover, rs7758229 associated with the presence of distant metastases, while rs512077 and rs2504956 correlated with overall survival of patients. Although replicated, the association for rs9364554 did not pass multiple testing corrections in the validation phase. Contrary to the discovery stage, rs2504938 associated with survival in the validation cohort, which was more pronounced in stage IV patients. In conclusion, common variation in the SLC22A3 gene is unlikely to significantly contribute to pancreatic cancer risk. The rs2504938 SNP in SLC22A3 significantly associates with an unfavorable prognosis of pancreatic cancer patients. Further investigation of this SNP effect on the molecular and clinical phenotype is warranted.
Collapse
|
research-article |
8 |
11 |
74
|
Funel N, Morelli M, Giovannetti E, Del Chiaro M, Pollina LE, Mosca F, Boggi U, Cavazzana A, Campani D. Loss of heterozygosity status of D9S105 marker is associated with downregulation of Krüppel-like factor 4 expression in pancreatic ductal adenocarcinoma and pancreatic intraepithelial lesions. Pancreatology 2011; 11:30-42. [PMID: 21412023 DOI: 10.1159/000322990] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 11/19/2010] [Indexed: 12/11/2022] [Imported: 04/16/2025]
Abstract
The transcription factor Krüppel-like factor 4 (KLF4) may act both as an oncogene and a tumor suppressor in a tissue-dependent manner, and further studies on its role in pancreatic ductal adenocarcinoma (PDAC) progression and clinical outcome are warranted. Therefore, we investigated the loss of heterozygosity (LOH) in the 9q22.3-32 region and loss of KFL4 gene expression in epithelial cells from 35 PDAC, 6 pancreatic intraductal neoplasias (PanINs) and 6 normal ducts, isolated by laser microdissection, as well as their correlation with overall survival (OS) in patients treated with gemcitabine in the adjuvant setting. LOH was evaluated with 4 microsatellite markers and in situ hybridization, while KLF4 expression was studied by reverse transcription-PCR and immunohistochemistry. LOH in at least 1 locus was observed in 25 of 35 PDAC cases and in 5 of 6 PanINs, respectively. In particular, the loss of the D9S105 marker was present in 46.9% of PDAC and 83.3% of PanINs, becoming the most deleted marker, while no LOH in D9S105 was observed in normal Wirsung pancreatic duct. Lack of KLF4 mRNA expression was significantly associated with: (1) genomic deletion flanking KLF4 in PDAC and in PanINs (with LOH of D9S105), (2) low-grade PDAC-associated PanIN, (3) lack of KLF4 protein expression, and (4) shorter OS. These results strongly suggest a relationship between D9S105 deletion and downregulation of KLF4 gene expression as an early event in PDAC progression, as well as a possible role of KLF4 as a prognostic biomarker in gemcitabine-treated patients. and IAP.
Collapse
|
|
14 |
11 |
75
|
Pasquariello A, Pasquariello G, Innocenti M, Minnei F, Funel N, Lorusso P, Barsotti G. Lipoprotein glomerulopathy: first report of 2 not consanguineous Italian men from the same town. J Nephrol 2011; 24:381-385. [PMID: 21534236 DOI: 10.5301/jn.2011.7772] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2011] [Indexed: 11/20/2022] [Imported: 04/16/2025]
Abstract
It is well known that the abnormal accumulation of lipids can occur in kidneys of patients affected by some metabolic disorders due either to inherited enzymatic deficiency or to an acquired lipid alteration as in nephrotic syndrome. Lipoprotein glomerulopathy (LG), briefly described in a patient of Koitabashi in 1987 in a review on renal lipidoses authored by Faraggiana and Churg, represents an emerging novel storage renal disease. This rare and unique nephropathy is characterized by the presence of lipoprotein thrombi in dilated glomerular capillary lumina associated with type III hyperlipoproteinemia, and high serum levels of apolipoprotein E (apo E). Several specific studies conducted by Saito et al on his patients from 1989, revealed that it was an hereditary disease with an autosomal recessive pattern that predominantly affects patients of Asian ancestry, mainly the Japanese population, but which very seldom, can also occur in white subjects. The disorder is probably due to an inherited altered lipid metabolism due to a mutation of the apo E genetic code. Clinically, LG is characterized by proteinuria generally associated with nephrotic syndrome and progressive renal insufficiency. We describe the cases of 2 Italian adult white male patients affected by LG, admitted in our nephrology unit in 2004 and in 2009, respectively.
Collapse
|
Case Reports |
14 |
11 |