1
|
Kujawska M, Jodynis-Liebert J. Polyphenols in Parkinson's Disease: A Systematic Review of In Vivo Studies. Nutrients 2018; 10:642. [PMID: 29783725 PMCID: PMC5986521 DOI: 10.3390/nu10050642] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 12/21/2022] [Imported: 08/30/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. However, therapeutic options treating only its symptoms are very disappointing. Therefore there is an ongoing search for compounds capable of tackling the multi-dimensional features of PD. Recently natural polyphenols have gained great interest as potential therapeutic agents. Herein, we have attempted to summarize results obtained in different animal models demonstrating their neuroprotective effects. The in vivo findings presented below are supported by human subject data and reports regarding the ability of polyphenols to cross the blood-brain barrier. The beneficial effects of polyphenols are demonstrated by the results of behavioral examinations, mainly related to motor and cognitive capabilities, histopathological and immunohistochemical examination concerning the protection of dopaminergic neurons, analyses of dopamine and the concentration of its metabolites, as well as mechanistic studies regarding the modulation of oxidative stress, neuroinflammation, cellular iron management, proteinopathy, and additionally the regulation of signaling pathways. Importantly, data about brain distribution of the metabolic derivatives of the reviewed polyphenols are crucial for the justification of their nutritional intake in neuroprotective intervention, as well as for the identification of potential targets for a novel therapeutic approach to Parkinson's disease.
Collapse
|
Review |
7 |
123 |
2
|
Kujawska M, Jourdes M, Kurpik M, Szulc M, Szaefer H, Chmielarz P, Kreiner G, Krajka-Kuźniak V, Mikołajczak PŁ, Teissedre PL, Jodynis-Liebert J. Neuroprotective Effects of Pomegranate Juice against Parkinson's Disease and Presence of Ellagitannins-Derived Metabolite-Urolithin A-In the Brain. Int J Mol Sci 2019; 21:202. [PMID: 31892167 PMCID: PMC6981883 DOI: 10.3390/ijms21010202] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/12/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022] [Imported: 08/30/2023] Open
Abstract
Pomegranate juice is a rich source of ellagitannins (ETs) believed to contribute to a wide range of pomegranate's health benefits. While a lot of experimental studies have been devoted to Alzheimer disease and hypoxic-ischemic brain injury, our knowledge of pomegranate's effects against Parkinson's disease (PD) is very limited. It is suggested that its neuroprotective effects are mediated by ETs-derived metabolites-urolithins. In this study, we examined the capability of pomegranate juice for protection against PD in a rat model of parkinsonism induced by rotenone. To evaluate its efficiency, assessment of postural instability, visualization of neurodegeneration, determination of oxidative damage to lipids and α-synuclein level, as well as markers of antioxidant defense status, inflammation, and apoptosis, were performed in the midbrain. We also check the presence of plausible active pomegranate ETs-derived metabolite, urolithin A, in the plasma and brain. Our results indicated that pomegranate juice treatment provided neuroprotection as evidenced by the postural stability improvement, enhancement of neuronal survival, its protection against oxidative damage and α-synuclein aggregation, the increase in mitochondrial aldehyde dehydrogenase activity, and maintenance of antiapoptotic Bcl-xL protein at the control level. In addition, we have provided evidence for the distribution of urolithin A to the brain.
Collapse
|
research-article |
6 |
89 |
3
|
Jodynis-Liebert J, Kujawska M. Biphasic Dose-Response Induced by Phytochemicals: Experimental Evidence. J Clin Med 2020; 9:718. [PMID: 32155852 PMCID: PMC7141213 DOI: 10.3390/jcm9030718] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 01/02/2023] [Imported: 08/30/2023] Open
Abstract
Many phytochemicals demonstrate nonmonotonic dose/concentration-response termed biphasic dose-response and are considered to be hormetic compounds, i.e., they induce biologically opposite effects at different doses. In numerous articles the hormetic nature of phytochemicals is declared, however, no experimental evidence is provided. Our aim was to present the overview of the reports in which phytochemical-induced biphasic dose-response is experimentally proven. Hence, we included in the current review only articles in which the reversal of response between low and high doses/concentrations of phytochemicals for a single endpoint was documented. The majority of data on biphasic dose-response have been found for phytoestrogens; other reports described these types of effects for resveratrol, sulforaphane, and natural compounds from various chemical classes such as isoquinoline alkaloid berberine, polyacetylenes falcarinol and falcarindiol, prenylated pterocarpan glyceollin1, naphthoquinones plumbagin and naphazarin, and panaxatriol saponins. The prevailing part of the studies presented in the current review was performed on cell cultures. The most common endpoint tested was a proliferation of tumor and non-cancerous cells. Very few experiments demonstrating biphasic dose-response induced by phytochemicals were carried out on animal models. Data on the biphasic dose-response of various endpoints to phytochemicals may have a potential therapeutic or preventive implication.
Collapse
|
Review |
5 |
70 |
4
|
Kujawska M, Jodynis-Liebert J. Potential of the ellagic acid-derived gut microbiota metabolite - Urolithin A in gastrointestinal protection. World J Gastroenterol 2020; 26:3170-3181. [PMID: 32684733 PMCID: PMC7336321 DOI: 10.3748/wjg.v26.i23.3170] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/19/2020] [Accepted: 05/23/2020] [Indexed: 02/06/2023] [Imported: 08/30/2023] Open
Abstract
Urolithin A (UA) is a metabolic compound generated during the biotransformation of ellagitannins by the intestinal bacteria. The physiologically relevant micromolar concentrations of UA, achieved in the plasma and gastrointestinal tract (GI) after consumption of its dietary precursors, have been revealed to offer GI protection. The health benefit has been demonstrated to be principally related to anticancer and anti-inflammatory effects. UA has been shown to possess the capability to regulate multiple tumor and inflammatory signaling pathways and to modulate enzyme activity, including those involved in carcinogen biotransformation and antioxidant defense. The purpose of this review is to gather evidence from both in vitro and in vivo studies showing the potential of UA in GI protection alongside suggested mechanisms by which UA can protect against cancer and inflammatory diseases of the digestive tract. The data presented herein, covering both studies on the pure compound and in vivo generated UA form its natural precursor, support the potential of this metabolite in treatment interventions against GI ailments.
Collapse
|
Review |
5 |
43 |
5
|
Kujawska M, Jodynis-Liebert J. What is the Evidence That Parkinson's Disease is a Prion Disorder, Which Originates in the Gut? Int J Mol Sci 2018; 19:3573. [PMID: 30424585 PMCID: PMC6274907 DOI: 10.3390/ijms19113573] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/21/2022] [Imported: 08/30/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder resulting from degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). PD is characterized by motor dysfunctions as well as gastrointestinal symptoms and mental impairment. The pathological hallmark of PD is an accumulation of misfolded α-synuclein aggregates within the brain. The etiology of PD and related synucleinopathy is poorly understood, but recently, the hypothesis that α-synuclein pathology spreads in a prion-like fashion originating in the gut has gained much scientific attention. A crucial clue was the appearance of constipation before the onset of motor symptoms, gut dysbiosis and synucleinopathy in PD patients. Another line of evidence, demonstrating accumulation of α-synuclein within the peripheral autonomic nervous system (PANS), including the enteric nervous system (ENS), and the dorsal motor nucleus of the vagus (DMV) support the concept that α-synuclein can spread from the ENS to the brain by the vagus nerve. The decreased risk of PD following truncal vagotomy supports this. The convincing evidence of the prion-like behavior of α-synuclein came from postmortem observations that pathological α-synuclein inclusions appeared in healthy grafted neurons. In this review, we summarize the available data from human subjects' research and animal experiments, which seem to be the most suggestive for explaining the hypotheses.
Collapse
|
Review |
7 |
35 |
6
|
Al-kuraishy HM, Al-Gareeb AI, Kaushik A, Kujawska M, Batiha GES. Hemolytic anemia in COVID-19. Ann Hematol 2022; 101:1887-1895. [PMID: 35802164 PMCID: PMC9263052 DOI: 10.1007/s00277-022-04907-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/25/2022] [Indexed: 12/15/2022] [Imported: 08/30/2023]
Abstract
COVID-19 is a global pandemic triggered by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 entry point involves the interaction with angiotensin-converting enzyme 2 (ACE2) receptor, CD147, and erythrocyte Band3 protein. Hemolytic anemia has been linked to COVID-19 through induction of autoimmune hemolytic anemia (AIHA) caused by the formation of autoantibodies (auto-Abs) or directly through CD147 or erythrocyte Band3 protein-mediated erythrocyte injury. Here, we aim to provide a comprehensive view of the potential mechanisms contributing to hemolytic anemia during the SARS-CoV-2 infection. Taken together, data discussed here highlight that SARS-CoV-2 infection may lead to hemolytic anemia directly through cytopathic injury or indirectly through induction of auto-Abs. Thus, as SARS-CoV-2-induced hemolytic anemia is increasingly associated with COVID-19, early detection and management of this condition may prevent the poor prognostic outcomes in COVID-19 patients. Moreover, since hemolytic exacerbations may occur upon medicines for COVID-19 treatment and anti-SARS-CoV-2 vaccination, continued monitoring for complications is also required. Given that, intelligent nanosystems offer tools for broad-spectrum testing and early diagnosis of the infection, even at point-of-care sites.
Collapse
|
Review |
3 |
34 |
7
|
Kujawska M, Bhardwaj SK, Mishra YK, Kaushik A. Using Graphene-Based Biosensors to Detect Dopamine for Efficient Parkinson's Disease Diagnostics. BIOSENSORS 2021; 11:433. [PMID: 34821649 PMCID: PMC8615362 DOI: 10.3390/bios11110433] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 05/08/2023] [Imported: 08/30/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease in which the neurotransmitter dopamine (DA) depletes due to the progressive loss of nigrostriatal neurons. Therefore, DA measurement might be a useful diagnostic tool for targeting the early stages of PD, as well as helping to optimize DA replacement therapy. Moreover, DA sensing appears to be a useful analytical tool in complex biological systems in PD studies. To support the feasibility of this concept, this mini-review explores the currently developed graphene-based biosensors dedicated to DA detection. We discuss various graphene modifications designed for high-performance DA sensing electrodes alongside their analytical performances and interference studies, which we listed based on their limit of detection in biological samples. Moreover, graphene-based biosensors for optical DA detection are also presented herein. Regarding clinical relevance, we explored the development trends of graphene-based electrochemical sensing of DA as they relate to point-of-care testing suitable for the site-of-location diagnostics needed for personalized PD management. In this field, the biosensors are developed into smartphone-connected systems for intelligent disease management. However, we highlighted that the focus should be on the clinical utility rather than analytical and technical performance.
Collapse
|
Review |
4 |
26 |
8
|
Rahman MU, Bilal M, Shah JA, Kaushik A, Teissedre PL, Kujawska M. CRISPR-Cas9-Based Technology and Its Relevance to Gene Editing in Parkinson's Disease. Pharmaceutics 2022; 14:1252. [PMID: 35745824 PMCID: PMC9229276 DOI: 10.3390/pharmaceutics14061252] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] [Imported: 08/30/2023] Open
Abstract
Parkinson's disease (PD) and other chronic and debilitating neurodegenerative diseases (NDs) impose a substantial medical, emotional, and financial burden on individuals and society. The origin of PD is unknown due to a complex combination of hereditary and environmental risk factors. However, over the last several decades, a significant amount of available data from clinical and experimental studies has implicated neuroinflammation, oxidative stress, dysregulated protein degradation, and mitochondrial dysfunction as the primary causes of PD neurodegeneration. The new gene-editing techniques hold great promise for research and therapy of NDs, such as PD, for which there are currently no effective disease-modifying treatments. As a result, gene therapy may offer new treatment options, transforming our ability to treat this disease. We present a detailed overview of novel gene-editing delivery vehicles, which is essential for their successful implementation in both cutting-edge research and prospective therapeutics. Moreover, we review the most recent advancements in CRISPR-based applications and gene therapies for a better understanding of treating PD. We explore the benefits and drawbacks of using them for a range of gene-editing applications in the brain, emphasizing some fascinating possibilities.
Collapse
|
Review |
3 |
20 |
9
|
Kujawska M, Olejnik A, Lewandowicz G, Kowalczewski P, Forjasz R, Jodynis-Liebert J. Spray-Dried Potato Juice as a Potential Functional Food Component with Gastrointestinal Protective Effects. Nutrients 2018; 10:259. [PMID: 29495317 PMCID: PMC5852835 DOI: 10.3390/nu10020259] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/09/2018] [Accepted: 02/17/2018] [Indexed: 12/11/2022] [Imported: 08/16/2024] Open
Abstract
BACKGROUND Peptic ulcer disease, including its complications and functional dyspepsia, are prevalent gastrointestinal diseases, etiopathogenesis of which is associated with mucosal inflammation. Research into new therapeutics capable of preventing or curing gastrointestinal mucosal damage has been steadily developing over past decades. This study was undertaken to evaluate whether a spray-dried preparation of potato juice is applicable for treating and preventing gastrointestinal mucosal damage. METHODS We assessed potential protective effects of spray-dried potato juice (SDPJ) against gut inflammation in the co-culture Caco-2/RAW264.7 system, as well as a gastroprotective activity in a rat model of gastric ulceration. RESULTS The obtained results indicated that SDPJ down-regulates lipopolysaccharide (LPS)-induced mRNA expression and protein production of proinflammatory cytokines IL-6 and TNF-α in the co-culture model. Moreover, SDPJ provided dose-dependent protection against LPS-induced disruption of intestinal barrier integrity. In rats, five-day pretreatment with SDPJ in doses of 200 mg/kg and 500 mg/kg suppressed HCl/ethanol-induced TNF-α expression in gastric mucosa by 52% and 35%, respectively. In addition, the pretreatment with the lower dose of SDPJ reduced the incidence of ulcers (by 34%) expressed as ulcer index. CONCLUSION The spray-dried potato juice appears to be an attractive candidate for ameliorating inflammation-related diseases of the gastrointestinal tract.
Collapse
|
research-article |
7 |
17 |
10
|
Al‐kuraishy HM, Al‐Gareeb AI, Kaushik A, Kujawska M, Batiha GE. Ginkgo biloba in the management of the COVID-19 severity. Arch Pharm (Weinheim) 2022; 355:e2200188. [PMID: 35672257 PMCID: PMC9348126 DOI: 10.1002/ardp.202200188] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 12/18/2022] [Imported: 08/30/2023]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is linked with inflammatory disorders and the development of oxidative stress in extreme cases. Therefore, anti-inflammatory and antioxidant drugs may alleviate these complications. Ginkgo biloba L. folium extract (EGb) is a herbal medicine containing various active constituents. This review aims to provide a critical discussion on the potential role of EGb in the management of coronavirus disease 2019 (COVID-19). The antiviral effect of EGb is mediated by different mechanisms, including blocking SARS-CoV-2 3-chymotrypsin-like protease that provides trans-variant effectiveness. Moreover, EGb impedes the development of pulmonary inflammatory disorders through the diminution of neutrophil elastase activity, the release of proinflammatory cytokines, platelet aggregation, and thrombosis. Thus, EGb can attenuate the acute lung injury and acute respiratory distress syndrome in COVID-19. In conclusion, EGb offers the potential of being used as adjuvant antiviral and symptomatic therapy. Nanosystems enabling targeted delivery, personalization, and booster of effects provide the opportunity for the use of EGb in modern phytotherapy.
Collapse
|
Review |
3 |
15 |
11
|
Kujawska M, Mostafavi E, Kaushik A. SARS-CoV-2 getting into the brain; neurological phenotype of COVID-19, and management by nano-biotechnology. Neural Regen Res 2023; 18:519-520. [PMID: 36018157 PMCID: PMC9727447 DOI: 10.4103/1673-5374.346486] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/11/2022] [Accepted: 04/20/2022] [Indexed: 01/16/2023] [Imported: 08/16/2024] Open
|
other |
2 |
11 |
12
|
Piotrowska-Kempisty H, Nowicki M, Jodynis-Liebert J, Kurpik M, Ewertowska M, Adamska T, Oszmiański J, Kujawska M. Assessment of Hepatoprotective Effect of Chokeberry Juice in Rats Treated Chronically with Carbon Tetrachloride. Molecules 2020; 25:1268. [PMID: 32168847 PMCID: PMC7144002 DOI: 10.3390/molecules25061268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022] [Imported: 08/30/2023] Open
Abstract
The aim of this study was to compare the protective effects of chokeberry juice and silymarin against chemical-induced liver fibrosis in rats. Liver fibrosis was induced by CCl4 administered two days a week for six weeks. Two groups of rats were co-treated with chokeberry juice, 10 mL/kg/day. or silymarin as a positive control, 100 mg/kg/day for six weeks. Hepatic lipid peroxidation was suppressed by 50% and the activity of hepatic antioxidant enzymes was increased by 19%-173% in rats co-treated with CCl4 and substances tested as compared to rats administered CCl4 alone. Hepatic hydroxyproline was decreased by 24% only in rats treated with silymarin. The messenger RNA (mRNA) expression levels of fibrosis-related molecules, procollagen I, α-SMA, TIMP-1, TGFβ, and TNFα, which were significantly increased in the liver of CCl4-treated rats, were not modulated by substances tested. Histological evaluation revealed a slight protective effect of silymarin against fibrosis. However, in CCl4 + chokeberry-treated rats, the density of vacuolated hepatocytes was significantly lower than that in silymarin administered animals. Chokeberry juice did not demonstrate an antifibrotic effect in the applied experimental model of fibrosis, and the effect of the known antifibrotic agent, silymarin, was very limited.
Collapse
|
research-article |
5 |
10 |
13
|
Witucki Ł, Kurpik M, Jakubowski H, Szulc M, Łukasz Mikołajczak P, Jodynis-Liebert J, Kujawska M. Neuroprotective Effects of Cranberry Juice Treatment in a Rat Model of Parkinson's Disease. Nutrients 2022; 14:2014. [PMID: 35631155 PMCID: PMC9144186 DOI: 10.3390/nu14102014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/17/2022] [Imported: 08/30/2023] Open
Abstract
Rich in polyphenols, cranberry juice (CJ) with high antioxidant activity is believed to contribute to various health benefits. However, our knowledge of the neuroprotective potential of cranberries is limited. Previously, we have demonstrated that CJ treatment controls oxidative stress in several organs, with the most evident effect in the brain. In this study, we examined the capability of CJ for protection against Parkinson's disease (PD) in a rotenone (ROT) rat model. Wistar rats were administered with CJ in a dose of 500 mg/kg b.w./day (i.g.) and subcutaneously injected with ROT (1.3 mg/kg b.w./day). The experiment lasted 45 days, including 10 days pre-treatment with CJ and 35 days combined treatment with CJ and ROT. We quantified the expression of α-synuclein and apoptosis markers in the midbrain, performed microscopic examination, and assessed postural instability to evaluate the CJ neuroprotective effect. Our results indicate that the juice treatment provided neuroprotection, as evidenced by declined α-synuclein accumulation, Bax and cleaved/active caspase-9 expression, and normalized cytochrome c level that was accompanied by the enhancement of neuronal activity survival and improved postural instability. Importantly, we also found that long-term administration of CJ alone in a relatively high dose may exert a deleterious effect on cell survival in the midbrain.
Collapse
|
research-article |
3 |
9 |
14
|
Kujawska M, Jourdes M, Witucki Ł, Karaźniewicz-Łada M, Szulc M, Górska A, Mikołajczak PŁ, Teissedre PL, Jodynis-Liebert J. Pomegranate Juice Ameliorates Dopamine Release and Behavioral Deficits in a Rat Model of Parkinson's Disease. Brain Sci 2021; 11:1127. [PMID: 34573149 PMCID: PMC8467386 DOI: 10.3390/brainsci11091127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/15/2022] [Imported: 08/16/2024] Open
Abstract
Pomegranate juice (PJ) is a rich source of ellagitannins (ETs), precursors of colonic metabolite urolithin A, which are believed to contribute to pomegranate's neuroprotective effect. While many experimental studies involving PJ's role in Alzheimer's disease and hypoxic-ischemic brain injury have been conducted, our knowledge of pomegranate's effects against Parkinson's disease (PD) is very limited. Previously, we have reported that PJ treatment improved postural stability, which correlated well with enhancement of neuronal survival, protection against oxidative damage, and α-synuclein aggregation. Since olfactory and motor deficits are typical symptoms of PD, in this study, we aimed to investigate the capability of PJ to protect against olfactory, motoric, and neurochemical alterations. To evaluate its efficiency, Wistar rats were given a combined treatment with ROT (1.3 mg/kg b.w./day, s.c.) and PJ (500 mg/kg/day, p.o.) for 35 days. After this, we assessed the olfactory discrimination index (DI) and vertical and horizontal activities as well as levels of dopamine and its main metabolite 3,4-Dihydroxyphenylacetic acid (DOPAC) in the dissected midbrain of animals. Our findings provide the first evidence that PJ treatment protects against ROT-induced DA depletion in the midbrain, which correlates well with improved olfactory function and vertical activity as well as with the presence of urolithin A in the brain.
Collapse
|
research-article |
4 |
9 |
15
|
Kujawska M, Kaushik A. Exploring magneto-electric nanoparticles (MENPs): a platform for implanted deep brain stimulation. Neural Regen Res 2023; 18:129-130. [PMID: 35799528 PMCID: PMC9241387 DOI: 10.4103/1673-5374.340411] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 11/04/2022] [Imported: 08/30/2023] Open
|
other |
2 |
8 |
16
|
Zamanian MY, Golmohammadi M, Amin RS, Bustani GS, Romero-Parra RM, Zabibah RS, Oz T, Jalil AT, Soltani A, Kujawska M. Therapeutic Targeting of Krüppel-Like Factor 4 and Its Pharmacological Potential in Parkinson's Disease: a Comprehensive Review. Mol Neurobiol 2024; 61:3596-3606. [PMID: 37996730 PMCID: PMC11087351 DOI: 10.1007/s12035-023-03800-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] [Imported: 08/16/2024]
Abstract
Krüppel-like factor 4 (KLF4), a zinc finger transcription factor, is found in different human tissues and shows diverse regulatory activities in a cell-dependent manner. In the brain, KLF4 controls various neurophysiological and neuropathological processes, and its contribution to various neurological diseases has been widely reported. Parkinson's disease (PD) is an age-related neurodegenerative disease that might have a connection with KLF4. In this review, we discussed the potential implication of KLF4 in fundamental molecular mechanisms of PD, including aberrant proteostasis, neuroinflammation, apoptosis, oxidative stress, and iron overload. The evidence collected herein sheds new light on KLF4-mediated pathways, which manipulation appears to be a promising therapeutic target for PD management. However, there is a gap in the knowledge on this topic, and extended research is required to understand the translational value of the KLF4-oriented therapeutical approach in PD.
Collapse
|
Review |
1 |
3 |
17
|
Kurpik M, Zalewski P, Kujawska M, Ewertowska M, Ignatowicz E, Cielecka-Piontek J, Jodynis-Liebert J. Can Cranberry Juice Protect against Rotenone-Induced Toxicity in Rats? Nutrients 2021; 13:1050. [PMID: 33805023 PMCID: PMC8063919 DOI: 10.3390/nu13041050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/12/2022] [Imported: 08/30/2023] Open
Abstract
The high polyphenols content of cranberry accounts for its strong antioxidant activity underlying the beneficial health effects of this fruit. Rotenone (ROT) is a specific inhibitor of mitochondrial complex I in the brain which leads to the generation of oxidative stress. To date, there are few data indicating that toxicity of ROT is not limited to the brain but can also affect other tissues. We aimed to examine whether ROT-induced oxidative stress could be counteracted by cranberry juice not only in the brain but also in the liver and kidney. Wistar rats were given the combined treatment with ROT and cranberry juice (CJ) for 35 days. Parameters of antioxidant status were determined in the organs. ROT enhanced lipid peroxidation solely in the brain. The increase in the DNA damage was noticed in all organs examined and in leukocytes. The beneficial effect of CJ on these parameters appeared only in the brain. Additionally, CJ decreased the activity of serum hepatic enzymes. The effect of CJ on antioxidant enzymes was not consistent, however, in some organs, CJ reversed changes evoked by ROT. Summing up, ROT can cause oxidative damage not only in the brain but also in other organs. CJ demonstrated a protective effect against ROT-induced toxicity.
Collapse
|
research-article |
4 |
3 |
18
|
Wojciechowska O, Costabile A, Kujawska M. The gut microbiome meets nanomaterials: exposure and interplay with graphene nanoparticles. NANOSCALE ADVANCES 2023; 5:6349-6364. [PMID: 38024319 PMCID: PMC10662184 DOI: 10.1039/d3na00696d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] [Imported: 08/16/2024]
Abstract
Graphene-based nanoparticles are widely applied in many technology and science sectors, raising concerns about potential health risks. Emerging evidence suggests that graphene-based nanomaterials may interact with microorganisms, both pathogens and commensal bacteria, that dwell in the gut. This review aims to demonstrate the current state of knowledge on the interplay between graphene nanomaterials and the gut microbiome. In this study, we briefly overview nanomaterials, their usage and the characteristics of graphene-based nanoparticles. We present and discuss experimental data from in vitro studies, screening tests on small animals and rodent experiments related to exposure and the effects of graphene nanoparticles on gut microbiota. With this in mind, we highlight the reported crosstalk between graphene nanostructures, the gut microbial community and the host immune system in order to shed light on the perspective to bear on the biological interactions. The studies show that graphene-based material exposure is dosage and time-dependent, and different derivatives present various effects on host bacteria cells. Moreover, the route of graphene exposure might influence a shift in the gut microbiota composition, including the alteration of functions and diversity and abundance of specific phyla or genera. However, the mechanism of graphene-based nanomaterials' influence on gut microbiota is poorly understood. Accordingly, this review emphasises the importance of studies needed to establish the most desirable synthesis methods, types of derivatives, properties, and safety aspects mainly related to the routes of exposure and dosages of graphene-based nanomaterials.
Collapse
|
Review |
2 |
3 |
19
|
Wojciechowska O, Kujawska M. Urolithin A in Health and Diseases: Prospects for Parkinson's Disease Management. Antioxidants (Basel) 2023; 12:1479. [PMID: 37508017 PMCID: PMC10376282 DOI: 10.3390/antiox12071479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] [Imported: 08/30/2023] Open
Abstract
Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder characterized by a complex pathophysiology and a range of symptoms. The prevalence increases with age, putting the ageing population at risk. Disease management includes the improvement of symptoms, the comfort of the patient's life, and palliative care. As there is currently no cure, growing evidence points towards the beneficial role of polyphenols on neurodegeneration. Numerous studies indicate the health benefits of the family of urolithins, especially urolithin A (UA). UA is a bacterial metabolite produced by dietary ellagitannins and ellagic acid. An expanding body of literature explores the involvement of the compound in mitochondrial health, and its anti-inflammatory, anti-oxidant, and anti-apoptotic properties. The review organizes the existing knowledge on the role of UA in health and diseases, emphasizing neurodegenerative diseases, especially PD. We gathered data on the potential neuroprotective effect in in vivo and in vitro models. We discussed the possible mechanisms of action of the compound and related health benefits to give a broader perspective of potential applications of UA in neuroprotective strategies. Moreover, we projected the future directions of applying UA in PD management.
Collapse
|
Review |
2 |
2 |