1
|
Rotondo JC, Lanzillotti C, Mazziotta C, Tognon M, Martini F. Epigenetics of Male Infertility: The Role of DNA Methylation. Front Cell Dev Biol 2021; 9:689624. [PMID: 34368137 PMCID: PMC8339558 DOI: 10.3389/fcell.2021.689624] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] [Imported: 08/30/2023] Open
Abstract
In recent years, a number of studies focused on the role of epigenetics, including DNA methylation, in spermatogenesis and male infertility. We aimed to provide an overview of the knowledge concerning the gene and genome methylation and its regulation during spermatogenesis, specifically in the context of male infertility etiopathogenesis. Overall, the findings support the hypothesis that sperm DNA methylation is associated with sperm alterations and infertility. Several genes have been found to be differentially methylated in relation to impaired spermatogenesis and/or reproductive dysfunction. Particularly, DNA methylation defects of MEST and H19 within imprinted genes and MTHFR within non-imprinted genes have been repeatedly linked with male infertility. A deep knowledge of sperm DNA methylation status in association with reduced reproductive potential could improve the development of novel diagnostic tools for this disease. Further studies are needed to better elucidate the mechanisms affecting methylation in sperm and their impact on male infertility.
Collapse
|
Review |
4 |
106 |
2
|
Rotondo JC, Martini F, Maritati M, Mazziotta C, Di Mauro G, Lanzillotti C, Barp N, Gallerani A, Tognon M, Contini C. SARS-CoV-2 Infection: New Molecular, Phylogenetic, and Pathogenetic Insights. Efficacy of Current Vaccines and the Potential Risk of Variants. Viruses 2021; 13:1687. [PMID: 34578269 PMCID: PMC8473168 DOI: 10.3390/v13091687] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 12/11/2022] [Imported: 08/30/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly discovered coronavirus responsible for the coronavirus disease 2019 (COVID-19) pandemic. COVID-19 has rapidly become a public health emergency of international concern. Although remarkable scientific achievements have been reached since the beginning of the pandemic, the knowledge behind this novel coronavirus, in terms of molecular and pathogenic characteristics and zoonotic potential, is still relatively limited. Today, there is a vaccine, or rather several vaccines, which, for the first time in the history of highly contagious infectious diseases that have plagued mankind, has been manufactured in just one year. Currently, four vaccines are licensed by regulatory agencies, and they use RNA or viral vector technologies. The positive effects of the vaccination campaign are being felt in many parts of the world, but the disappearance of this new infection is still far from being a reality, as it is also threatened by the presence of novel SARS-CoV-2 variants that could undermine the effectiveness of the vaccine, hampering the immunization control efforts. Indeed, the current findings indicate that SARS-CoV-2 is adapting to transmission in humans more efficiently, while further divergence from the initial archetype should be considered. In this review, we aimed to provide a collection of the current knowledge regarding the molecular, phylogenetic, and pathogenetic insights into SARS-CoV-2. The most recent findings obtained with respect to the impact of novel emerging SARS-CoV-2 variants as well as the development and implementation of vaccines are highlighted.
Collapse
|
Review |
4 |
59 |
3
|
Rotondo JC, Mazziotta C, Lanzillotti C, Stefani C, Badiale G, Campione G, Martini F, Tognon M. The Role of Purinergic P2X7 Receptor in Inflammation and Cancer: Novel Molecular Insights and Clinical Applications. Cancers (Basel) 2022; 14:1116. [PMID: 35267424 PMCID: PMC8909580 DOI: 10.3390/cancers14051116] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022] [Imported: 07/24/2024] Open
Abstract
The purinergic P2X7 receptor (P2X7R) is a transmembrane protein whose expression has been related to a variety of cellular processes, while its dysregulation has been linked to inflammation and cancer. P2X7R is expressed in cancer and immune system cell surfaces. ATP plays a key role in numerous metabolic processes due to its abundance in the tumour microenvironment. P2X7R plays an important role in cancer by interacting with ATP. The unusual property of P2X7R is that stimulation with low doses of ATP causes the opening of a permeable channel for sodium, potassium, and calcium ions, whereas sustained stimulation with high doses of ATP favours the formation of a non-selective pore. The latter effect induces a change in intracellular homeostasis that leads to cell death. This evidence suggests that P2X7R has both pro- and anti-tumour proprieties. P2X7R is increasingly recognised as a regulator of inflammation. In this review, we aimed to describe the most relevant characteristics of P2X7R function, activation, and its ligands, while also summarising the role of P2X7R activation in the context of inflammation and cancer. The currently used therapeutic approaches and clinical trials of P2X7R modulators are also described.
Collapse
|
Review |
3 |
58 |
4
|
Rotondo JC, Mazzoni E, Bononi I, Tognon M, Martini F. Association Between Simian Virus 40 and Human Tumors. Front Oncol 2019; 9:670. [PMID: 31403031 PMCID: PMC6669359 DOI: 10.3389/fonc.2019.00670] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] [Imported: 07/24/2024] Open
Abstract
Simian virus 40 (SV40) is a small DNA tumor virus of monkey origin. This polyomavirus was administered to human populations mainly through contaminated polio vaccines, which were produced in naturally infected SV40 monkey cells. Previous molecular biology and recent immunological assays have indicated that SV40 is spreading in human populations, independently from earlier SV40-contaminated vaccines. SV40 DNA sequences have been detected at a higher prevalence in specific human cancer specimens, such as the brain and bone tumors, malignant pleural mesotheliomas, and lymphoproliferative disorders, compared to the corresponding normal tissues/specimens. However, other investigations, which reported negative data, did not confirm an association between SV40 and human tumors. To circumvent the controversies, which have arisen because of these molecular biology studies, immunological researches with newly developed indirect ELISA tests were carried out in serum samples from patients affected by the same kind of tumors as mentioned above. These innovative indirect ELISAs employ synthetic peptides as mimotopes/specific SV40 antigens. SV40 mimotopes do not cross-react with the homologous human polyomaviruses, BKPyV, and JCPyV. Immunological data obtained from indirect ELISAs, using SV40 mimotopes, employed to analyze serum samples from oncological patients, have indicated that these sera had a higher prevalence of antibodies against SV40 compared to healthy subjects. The main data on (i) the biology and genetics of SV40; (ii) the epidemiology of SV40 in the general population, (iii) the mechanisms of SV40 transformation; (iv) the putative role of SV40 in the onset/progression of specific human tumors, and (v) its association with other human diseases are reported in this review.
Collapse
|
Review |
6 |
56 |
5
|
Rotondo JC, Oton-Gonzalez L, Mazziotta C, Lanzillotti C, Iaquinta MR, Tognon M, Martini F. Simultaneous Detection and Viral DNA Load Quantification of Different Human Papillomavirus Types in Clinical Specimens by the High Analytical Droplet Digital PCR Method. Front Microbiol 2020; 11:591452. [PMID: 33329471 PMCID: PMC7710522 DOI: 10.3389/fmicb.2020.591452] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022] [Imported: 08/30/2023] Open
Abstract
Human papillomaviruses (HPVs) are small DNA tumor viruses that mainly infect mucosal epithelia of anogenital and upper respiratory tracts. There has been progressive demand for more analytical assays for HPV DNA quantification. A novel droplet digital PCR (ddPCR) method was developed to simultaneously detect and quantify HPV DNA from different HPV types. DdPCR was initially tested for assay sensitivity, accuracy, specificity as well as intra- and inter-run assay variation employing four recombinant plasmids containing HPV16, HPV18, HPV11, and HPV45 DNAs. The assay was extended to investigate/quantify HPV DNA in Cervical Intraepithelial Neoplasia (CIN, n = 45) specimens and human cell lines (n = 4). DdPCR and qPCR data from clinical samples were compared. The assay showed high accuracy, sensitivity and specificity, with low intra-/inter- run variations, in detecting/quantifying HPV16/18/11/45 DNAs. HPV DNA was detected in 51.1% (23/45) CIN DNA samples by ddPCR, whereas 40% (18/45) CIN tested HPV-positive by qPCR. Five CIN, tested positive by ddPCR, were found to be negative by qPCR. In CIN specimens, the mean HPV DNA loads determined by ddPCR were 3.81 copy/cell (range 0.002-51.02 copy/cell), whereas 8.04 copy/cell (range 0.003-78.73 copy/cell) by qPCR. DdPCR and qPCR concordantly detected HPV DNA in SiHa, CaSki and Hela cells, whereas HaCaT tested HPV-negative. The correlation between HPV DNA loads simultaneously detected by ddPCR/qPCR in CINs/cell lines was good (R 2 = 0.9706, p < 0.0001). Our data indicate that ddPCR is a valuable technique in quantifying HPV DNA load in CIN specimens and human cell lines, thereby improving clinical applications, such as patient management after primary diagnosis of HPV-related lesions with HPV-type specific assays.
Collapse
|
research-article |
5 |
55 |
6
|
Rotondo JC, Bononi I, Puozzo A, Govoni M, Foschi V, Lanza G, Gafà R, Gaboriaud P, Touzé FA, Selvatici R, Martini F, Tognon M. Merkel Cell Carcinomas Arising in Autoimmune Disease Affected Patients Treated with Biologic Drugs, Including Anti-TNF. Clin Cancer Res 2017; 23:3929-3934. [PMID: 28174236 DOI: 10.1158/1078-0432.ccr-16-2899] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 11/16/2022] [Imported: 07/24/2024]
Abstract
Purpose: The purpose of this investigation was to characterize Merkel cell carcinomas (MCC) arisen in patients affected by autoimmune diseases and treated with biologic drugs.Experimental Design: Serum samples from patients with MCC were analyzed for the presence and titer of antibodies against antigens of the oncogenic Merkel cell polyomavirus (MCPyV). IgG antibodies against the viral oncoproteins large T (LT) and small T (ST) antigens and the viral capsid protein-1 were analyzed by indirect ELISA. Viral antigens were recombinant LT/ST and virus-like particles (VLP), respectively. MCPyV DNA sequences were studied using PCR methods in MCC tissues and in peripheral blood mononuclear cells (PBMC). Immunohistochemical (IHC) analyses were carried out in MCC tissues to reveal MCPyV LT oncoprotein.Results: MCPyV DNA sequences identified in MCC tissues showed 100% homology with the European MKL-1 strain. PBMCs from patients tested MCPyV-negative. Viral DNA loads in the three MCC tissues were in the 0.1 to 30 copy/cell range. IgG antibodies against LT/ST were detected in patients 1 and 3, whereas patient 2 did not react to the MCPyV LT/ST antigen. Sera from the three patients with MCC contained IgG antibodies against MCPyV VP1. MCC tissues tested MCPyV LT-antigen-positive in IHC assays, with strong LT expression with diffuse nuclear localization. Normal tissues tested MCPyV LT-negative when employed as control.Conclusions: We investigated three new MCCs in patients affected by rheumatologic diseases treated with biologic drugs, including TNF. A possible cause-effect relationship between pharmacologic immunosuppressive treatment and MCC onset is suggested. Indeed, MCC is associated with MCPyV LT oncoprotein activity. Clin Cancer Res; 23(14); 3929-34. ©2017 AACR.
Collapse
MESH Headings
- Aged
- Antibodies/blood
- Antibodies/immunology
- Antigens, Neoplasm/blood
- Antigens, Neoplasm/immunology
- Antigens, Viral/blood
- Antigens, Viral, Tumor/blood
- Arthritis, Rheumatoid/complications
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Biological Products/adverse effects
- Biological Products/immunology
- Biological Products/therapeutic use
- Carcinogenesis
- Carcinoma, Merkel Cell/blood
- Carcinoma, Merkel Cell/chemically induced
- Carcinoma, Merkel Cell/immunology
- Carcinoma, Merkel Cell/virology
- Female
- Humans
- Male
- Merkel cell polyomavirus/immunology
- Merkel cell polyomavirus/pathogenicity
- Middle Aged
- Spondylitis, Ankylosing/complications
- Spondylitis, Ankylosing/drug therapy
- Spondylitis, Ankylosing/immunology
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/therapeutic use
Collapse
|
|
8 |
52 |
7
|
Rotondo JC, Bosi S, Bazzan E, Di Domenico M, De Mattei M, Selvatici R, Patella A, Marci R, Tognon M, Martini F. Methylenetetrahydrofolate reductase gene promoter hypermethylation in semen samples of infertile couples correlates with recurrent spontaneous abortion. Hum Reprod 2012; 27:3632-3638. [PMID: 23010533 DOI: 10.1093/humrep/des319] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] [Imported: 07/24/2024] Open
Abstract
STUDY QUESTION Is the methylation status of the methylenetetrahydrofolate reductase (MTHFR) promoter region in semen samples associated with 'recurrent spontaneous abortion' (RSA)? SUMMARY ANSWER MTHFR promoter hypermethylation is more frequent in semen samples from RSA couples than in semen samples from infertile couples with no history of RSA (NRSA) and affects the whole sperm population significantly more often. WHAT IS KNOWN ALREADY Modifications to the MTHFR gene such as polymorphisms and promoter methylations are associated with male infertility. STUDY DESIGN, SIZE AND DURATION Retrospective cohort study of semen samples from 20 RSA couples, 147 NRSA couples and 20 fertile men between 2011 and 2012. MATERIALS, SETTING AND METHODS DNA from the semen samples of RSA, NRSA and fertile men were analyzed by methylation-specific PCR amplification using primers which anneal to the methylated or unmethylated cytosine-phosphodiester bond guanine (CpG) islands within the promoter region of MTHFR. The specificity of the PCR products was assessed by DNA sequencing. MAIN RESULTS AND THE ROLE OF CHANCE The methylated MTHFR epigenotype (including samples where it co-existed with unmethylated MTHFR epigenotypes) was detected in 75% of RSA men, 54% of NRSA men and 15% of fertile men. MTHFR methylation was observed in the whole sperm population in semen samples from 55% of RSA men compared with 8% in NRSA men (P < 0.05) and 0% in fertile men (P < 0.05). DNA sequencing analysis was fully concordant with the PCR results and revealed that when MTHFR methylation occurred, CpG islands within the promoter region were 100% methylated (hypermethylation of MTHFR promoter). LIMITATIONS, REASONS FOR CAUTION The relatively small sample size of RSA infertile couples. WIDER IMPLICATIONS OF THE FINDINGS The hypermethylation of the MTHFR gene promoter should be taken into consideration as a novel putative risk factor in RSA etiology. STUDY FUNDING/COMPETING INTEREST(S) Our institution has received an FAR research grant from the University of Ferrara, Ferrara, Italy. No competing interests declared.
Collapse
|
|
13 |
52 |
8
|
Rotondo JC, Borghi A, Selvatici R, Magri E, Bianchini E, Montinari E, Corazza M, Virgili A, Tognon M, Martini F. Hypermethylation-Induced Inactivation of the IRF6 Gene as a Possible Early Event in Progression of Vulvar Squamous Cell Carcinoma Associated With Lichen Sclerosus. JAMA Dermatol 2016; 152:928-933. [PMID: 27223861 DOI: 10.1001/jamadermatol.2016.1336] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] [Imported: 07/24/2024]
Abstract
IMPORTANCE The molecular mechanism leading to the development of vulvar squamous cell carcinoma (VSCC) from vulvar lichen sclerosus (VLS) is unknown. OBJECTIVE To assess the possible involvement of the IRF6 tumor-suppressor gene in the development of VSCC from VLS. DESIGN In laboratories at the University of Ferrara, Ferrara, Italy, IRF6 gene expression and promoter methylation were investigated in paraffin-embedded VSCC and adjacent vulvar intraepithelial neoplasia (VIN) and VLS specimens, in cancer-free VLS (cfVLS) specimens, and in healthy skin specimens by reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) analysis and by sequencing of PCR-amplified bisulfite-treated DNA. Methylation-induced dysregulation was assessed by expression of p63, the IRF6-transactivator gene. MAIN OUTCOMES AND MEASURES IRF6 expression, correlation with promoter methylation and p63 expression, and association with development of VSCC from VLS. RESULTS Specimens from 60 participating women (1 specimen from each) were analyzed for the study (mean [SD] age, 66.3 [12.1] years): 20 paraffin-embedded specimens of VSCC (patient age, 75.3 [8.3] years) with adjacent VLS lesions, in 5 of which VIN preneoplastic tissue was also present (patient age, 64.3 [15.3] years); 20 cfVLS specimens (patient age, 62.1 [11.4] years) obtained from diagnostic biopsies; and 20 normal skin specimens from noncancer surgical patients (patient age, 61.4 [9.1] years). IRF6 messenger RNA was found to be reduced 4.5-, 2.9-, 6.6-, and 2.2-fold in VLS, VIN, VSCC, and cfVLS specimens, respectively, compared with controls, although p63 was still expressed in all specimens. IRF6 promoter was hypermethylated in 9 (45%) of 20 VLS specimens, 1 (20%) of 5 VIN specimens, 16 (80%) of 20 VSCC specimens, 2 (10%) of 20 cfVLS specimens, and 0 normal skin specimens. CONCLUSIONS AND RELEVANCE IRF6 dysregulation may be involved in the development of VSCC from VLS. Methylation of the IRF6 promoter may be a marker of cancer risk in patients with VLS.
Collapse
|
|
9 |
50 |
9
|
Rotondo JC, Bosi S, Bassi C, Ferracin M, Lanza G, Gafà R, Magri E, Selvatici R, Torresani S, Marci R, Garutti P, Negrini M, Tognon M, Martini F. Gene expression changes in progression of cervical neoplasia revealed by microarray analysis of cervical neoplastic keratinocytes. J Cell Physiol 2015; 230:806-812. [PMID: 25205602 DOI: 10.1002/jcp.24808] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/05/2014] [Indexed: 12/28/2022] [Imported: 07/24/2024]
Abstract
To evaluate the gene expression changes involved in neoplastic progression of cervical intraepithelial neoplasia. Using microarray analysis, large-scale gene expression profile was carried out on HPV16-CIN2, HPV16-CIN3, and normal cervical keratinocytes derived from two HPV16-CIN2, two HPV-CIN3 lesions, and two corresponding normal cervical tissues, respectively. Differentially expressed genes were analyzed in normal cervical keratinocytes compared with HPV16-CIN2 keratinocytes and in HPV16-CIN2 keratinocytes compared with HPV16-CIN3 keratinocytes; 37 candidate genes with continuously increasing or decreasing expression during CIN progression were identified. One of these genes, phosphoglycerate dehydrogenase, was chosen for further characterization. Quantitative reverse transcription-polymerase chain reaction and immunohistochemical analysis confirmed that expression of phosphoglycerate dehydrogenase consistently increases during progression of CIN toward cancer. Gene expression changes occurring during CIN progression were investigated using microarray analysis, for the first time, in CIN2 and CIN3 keratinocytes naturally infected with HPV16. Phosphoglycerate dehydrogenase is likely to be associated with tumorigenesis and may be a potential prognostic marker for CIN progression.
Collapse
|
|
10 |
45 |
10
|
Rotondo JC, Martini F, Maritati M, Caselli E, Gallenga CE, Guarino M, De Giorgio R, Mazziotta C, Tramarin ML, Badiale G, Tognon M, Contini C. Advanced Molecular and Immunological Diagnostic Methods to Detect SARS-CoV-2 Infection. Microorganisms 2022; 10:1193. [PMID: 35744711 PMCID: PMC9231257 DOI: 10.3390/microorganisms10061193] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 02/06/2023] [Imported: 08/30/2023] Open
Abstract
COVID-19 emerged in late 2019 in China and quickly spread across the globe, causing over 521 million cases of infection and 6.26 million deaths to date. After 2 years, numerous advances have been made. First of all, the preventive vaccine, which has been implemented in record time, is effective in more than 95% of cases. Additionally, in the diagnostic field, there are numerous molecular and antigenic diagnostic kits that are equipped with high sensitivity and specificity. Real Time-PCR-based assays for the detection of viral RNA are currently considered the gold-standard method for SARS-CoV-2 diagnosis and can be used efficiently on pooled nasopharyngeal, or oropharyngeal samples for widespread screening. Moreover, additional, and more advanced molecular methods such as droplet-digital PCR (ddPCR), clustered regularly interspaced short palindromic repeats (CRISPR) and next-generation sequencing (NGS), are currently under development to detect the SARS-CoV-2 RNA. However, as the number of subjects infected with SARS-CoV-2 continuously increases globally, health care systems are being placed under increased stress. Thus, the clinical laboratory plays an important role, helping to select especially asymptomatic individuals who are actively carrying the live replicating virus, with fast and non-invasive molecular technologies. Recent diagnostic strategies, other than molecular methods, have been adopted to either detect viral antigens, i.e., antigen-based immunoassays, or human anti-SARS-CoV-2 antibodies, i.e., antibody-based immunoassays, in nasal or oropharyngeal swabs, as well as in blood or saliva samples. However, the role of mucosal sIgAs, which are essential in the control of viruses entering the body through mucosal surfaces, remains to be elucidated, and in particular the role of the immune response in counteracting SARS-CoV-2 infection, primarily at the site(s) of virus entry that appears to be promising.
Collapse
|
Review |
3 |
44 |
11
|
Rotondo JC, Oton-Gonzalez L, Selvatici R, Rizzo P, Pavasini R, Campo GC, Lanzillotti C, Mazziotta C, De Mattei M, Tognon M, Martini F. SERPINA1 Gene Promoter Is Differentially Methylated in Peripheral Blood Mononuclear Cells of Pregnant Women. Front Cell Dev Biol 2020; 8:550543. [PMID: 33015055 PMCID: PMC7494783 DOI: 10.3389/fcell.2020.550543] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/18/2020] [Indexed: 12/23/2022] [Imported: 07/24/2024] Open
Abstract
SERine Protein INhibitor-A1 (SERPINA1) is an inducible blood cell gene coding for alpha1-antitrypsin (AAT), a plasma protease inhibitor whose circulating levels are raised during inflammation, infection and advanced pregnancy. DNA methylation has been suggested to play a role in SERPINA1 gene expression regulation in peripheral blood mononuclear cells (PBMCs). The methylation status of SERPINA1 in PBMCs is unknown. The aim of this study was to evaluate the methylation profile of the SERPINA1 promoter in PBMC. To this purpose PBMCs and serum were collected from healthy subjects (HS) (n = 75), including blood donors (BD) (n = 25), pregnant women at early pregnancy (EP) (n = 25), i.e., within the first trimester, and pregnant women at late pregnancy (LP) (n = 25), i.e., at the third trimester. DNA from PBMCs was treated with sodium bisulfite and PCR amplified for SERPINA1 gene promoter, followed by sequencing analyses. AAT serum levels were determined by ELISA test. SERPINA1 was found hypermethylated in 58.7% of HS. The prevalence of SERPINA1 hypermethylation was significantly higher in BD (68%) and EP (88%) than in LP (20%) (p < 0.01). The median serum AAT concentration was 1.07, 0.63, and 3.15 mg/ml in BD, EP, and LP, respectively (p < 0.05, BD and EP vs LP). This study indicates, for the first time, that SERPINA1 gene promoter is differentially methylated in PBMCs from HS. Likely, modulation of the methylation may be a novel epigenetic regulator mechanism of AAT expression in the PBMC of HS. Therefore, SERPINA1 gene promoter methylation may represent an epigenetic biomarker of PBMCs in healthy subjects.
Collapse
|
research-article |
5 |
44 |
12
|
Rotondo JC, Giari L, Guerranti C, Tognon M, Castaldelli G, Fano EA, Martini F. Environmental doses of perfluorooctanoic acid change the expression of genes in target tissues of common carp. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:942-948. [PMID: 29105837 DOI: 10.1002/etc.4029] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/28/2017] [Accepted: 11/02/2017] [Indexed: 05/27/2023] [Imported: 07/24/2024]
Abstract
We aimed to evaluate the effects of environmental doses of perfluorooctanoic acid (PFOA) on bioconcentration and gene expression in common carp (Cyprinus carpio). Adult male and female carp were exposed to environmental (200 ng/L) and experimental (2 mg/L) doses of PFOA for 56 d. Carp exposed to 200 ng/L had levels of PFOA below the level of detection in all tissue samples analyzed, whereas variable concentrations were measurable in various tissues from carp exposed to 2 mg/L. The expression level of the glutathione S-transferase (GST) gene, coding for a detoxifying enzyme, increased in a PFOA dose-dependent manner in liver tissues from 200 ng/L to 2 mg/L exposure (p < 0.05). The expression levels of CYP19A gene, coding for the enzyme that converts testosterone into estrogen, were altered in gonadal tissues from male and female carp exposed to either 200 ng/L or 2 mg/L; expression increased in male gonads and decreased in female gonads. Unexpectedly, the expression levels of CYP19A in male and female gonads from carp exposed to 200 ng/L or 2 mg/L were similar (p > 0.05). Therefore, even though environmental doses of PFOA did not accumulate in tissues of the common carp, they did affect the gene expression levels of GST in the liver and CYP19A in the gonads. These observations raise concerns that exposure to environmental doses of PFOA may affect gene expression in animals and possibly in humans, with important health consequences. Environ Toxicol Chem 2018;37:942-948. © 2017 SETAC.
Collapse
|
|
7 |
43 |
13
|
Rotondo JC, Borghi A, Selvatici R, Mazzoni E, Bononi I, Corazza M, Kussini J, Montinari E, Gafà R, Tognon M, Martini F. Association of Retinoic Acid Receptor β Gene With Onset and Progression of Lichen Sclerosus-Associated Vulvar Squamous Cell Carcinoma. JAMA Dermatol 2018; 154:819-823. [PMID: 29898214 PMCID: PMC6128494 DOI: 10.1001/jamadermatol.2018.1373] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/07/2018] [Indexed: 01/03/2023] [Imported: 07/24/2024]
Abstract
IMPORTANCE Molecular alterations in lichen sclerosus-associated vulvar squamous cell carcinoma (LS-VSCC) are largely unknown. OBJECTIVE To determine whether the retinoic acid receptor β (RARβ) tumor-suppressor gene is involved in the onset and/or progression of LS-VSCC. DESIGN, SETTING, AND PARTICIPANTS The case-control study, conducted at University-Hospital of Ferrara, Italy, included 20 LS-VSCC (mean [SD] age, 75 [3] years) and 20 cancer-associated vulvar LS (caVLS; mean [SD] age, 62 [11] years) formalin-fixed embedded tissue specimens, 20 cancer-free vulvar LS (cfVLS), and 20 normal skin fresh specimens from diagnostic biopsies and women surgically treated for nonmalignant skin lesions, respectively. RARβ gene expression and promoter methylation were investigated in LS-VSCC and caVLS adjacent to VSCC specimens, and in cfVLS and normal skin specimens, as controls, by RT-Q real-time polymerase chain reaction (PCR) analysis, and sequencing of PCR-amplified bisulfite-treated DNA. c-Jun expression, an RARβ pathway-related gene, was also investigated. MAIN OUTCOMES AND MEASURES RARβ expression, correlation with its promoter methylation and c-Jun expression, and association with onset or progression of LS-VSCC. RESULTS In LS-VSCC, RARβ messenger RNA was 3.4-, 3.6-, and 4.8-fold lower than in caVLS (P = .001), cfVLS (P = .005), and normal skin (P < .001), respectively. The RARβ mRNA levels were similar in caVLS, cfVLS, and normal skin. The RARβ promoter was hypermethylated in 18 (90%) of 20 LS-VSCC, 11 (55%) of 20 cfVLS, 10 (50%) of 20 caVLS, and 5 (25%) of 20 in the normal skin group. The degree of methylation of RARβ promoter was higher in LS-VSCC, ranging from 5 to 9 (full promoter methylation) CpGs methylated, than in caVLS (P = .02), cfVLS (P = .03), or normal skin (P < .001), which was up to 5 CpGs methylated. Importantly, 0 of 8 LS-VSCC with 5 to 6 CpGs methylated and 5 (63%) of 8 LS-VSCC with 7 to 8 CpGs methylated were from patients with lymph node metastasis at diagnosis, respectively, whereas there were 2 of 2 (100%) LS-VSCC samples with 9 CpG methylated from patients with lymph node metastasis at diagnosis and subsequent recurrence. In LS-VSCC c-Jun mRNA was 4.3-, 1.4-, and 2.6-fold higher than in caVLS (P < .001), cfVLS (P = .001), and normal skin (P < .001), respectively. The expression of c-Jun was similar in caVLS, cfVLS, and normal skin. CONCLUSIONS AND RELEVANCE Hypermethylation-induced RARβ down-expression was associated with LS-VSCC and correlates with the upregulation of c-Jun. The degree of methylation of RARβ promoter increased with the malignancy of LS-VSCC. Therefore, RARβ gene dysregulation may play a role in progression of LS-VSCC, and RARβ promoter methylation status may be used as a prognostic marker in clinical treatment of patients with LS-VSCC.
Collapse
|
brief-report |
7 |
35 |
14
|
Rotondo JC, Mazziotta C, Lanzillotti C, Tognon M, Martini F. Epigenetic Dysregulations in Merkel Cell Polyomavirus-Driven Merkel Cell Carcinoma. Int J Mol Sci 2021; 22:11464. [PMID: 34768895 PMCID: PMC8584046 DOI: 10.3390/ijms222111464] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] [Imported: 08/30/2023] Open
Abstract
Merkel cell polyomavirus (MCPyV) is a small DNA virus with oncogenic potential. MCPyV is the causative agent of Merkel Cell Carcinoma (MCC), a rare but aggressive tumor of the skin. The role of epigenetic mechanisms, such as histone posttranslational modifications (HPTMs), DNA methylation, and microRNA (miRNA) regulation on MCPyV-driven MCC has recently been highlighted. In this review, we aim to describe and discuss the latest insights into HPTMs, DNA methylation, and miRNA regulation, as well as their regulative factors in the context of MCPyV-driven MCC, to provide an overview of current findings on how MCPyV is involved in the dysregulation of these epigenetic processes. The current state of the art is also described as far as potentially using epigenetic dysregulations and related factors as diagnostic and prognostic tools is concerned, in addition to targets for MCPyV-driven MCC therapy. Growing evidence suggests that the dysregulation of HPTMs, DNA methylation, and miRNA pathways plays a role in MCPyV-driven MCC etiopathogenesis, which, therefore, may potentially be clinically significant for this deadly tumor. A deeper understanding of these mechanisms and related factors may improve diagnosis, prognosis, and therapy for MCPyV-driven MCC.
Collapse
|
Review |
4 |
34 |
15
|
Rotondo JC, Candian T, Selvatici R, Mazzoni E, Bonaccorsi G, Greco P, Tognon M, Martini F. Tracing Males From Different Continents by Genotyping JC Polyomavirus in DNA From Semen Samples. J Cell Physiol 2017; 232:982-985. [PMID: 27859215 DOI: 10.1002/jcp.25686] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/10/2016] [Indexed: 01/08/2023] [Imported: 07/24/2024]
Abstract
The human JC polyomavirus (JCPyV) is an ubiquitous viral agent infecting approximately 60% of humans. Recently, JCPyV sequences have been detected in semen samples. The aim of this investigation was to test whether semen JCPyV genotyping can be employed to trace the origin continent of males. Semen DNA samples (n = 170) from males of different Continents were investigated by PCR for the polymorphic JCPyV viral capsid protein 1 (VP1) sequences, followed by DNA sequencing. JCPyV sequences were detected with an overall prevalence of 27.6% (47/170). DNA sequencing revealed that European males carried JCPyV types 1A (71.4%), 4 (11.4%), 2B (2.9%), 2D1 (2.9%), and 3A (2.9%). Asians JCPyV type 2D1 (66.7%) and Africans JCPyV types 3A (33.3%) and 1A (33.3%). In 10.6% of males, two different JCPyV genotypes were detected, suggesting that the second JCPyV genotype was acquired in the destination country. This study indicates that the majority of semen samples found to be JCPyV-positive, were infected with the JCPyV genotype found in the geographic area of male origin. Therefore, semen JCPyV genotyping could be employed to trace the origin continent of males. Our findings could be applied to forensic investigations, in case of for instance sexual crimes. Indeed, JCPyV genotyping should enable investigators to make additional detailed profiling of the offender. J. Cell. Physiol. 232: 982-985, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
|
|
8 |
16 |
16
|
Rotondo JC, Aquila G, Oton-Gonzalez L, Selvatici R, Rizzo P, De Mattei M, Pavasini R, Tognon M, Campo GC, Martini F. Methylation of SERPINA1 gene promoter may predict chronic obstructive pulmonary disease in patients affected by acute coronary syndrome. Clin Epigenetics 2021; 13:79. [PMID: 33858475 PMCID: PMC8048251 DOI: 10.1186/s13148-021-01066-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/03/2021] [Indexed: 12/16/2022] [Imported: 07/24/2024] Open
Abstract
BACKGROUND Diagnostic biomarkers for detecting chronic obstructive pulmonary disease (COPD) in acute coronary syndrome (ACS) patients are not available. SERPINA1, coding for the most potent circulating anti-inflammatory protein in the lung, has been found to be differentially methylated in blood cells from COPD patients. This study aimed to investigate the methylation profile of SERPINA1 in blood cells from ACS patients, with (COPD+) or without COPD (COPD-). METHODS Blood samples were from 115 ACS patients, including 30 COPD+ and 85 COPD- according to lung function phenotype, obtained with spirometry. DNA treated with sodium bisulfite was PCR-amplified at SERPINA1 promoter region. Methylation analysis was carried out by sequencing the PCR products. Lymphocytes count in ACS patients was recorded at hospital admission and discharge. RESULTS SERPINA1 was hypermethylated in 24/30 (80%) COPD+ and 48/85 (56.5%) COPD- (p < 0.05). Interestingly, at hospital discharge, lymphocytes count was higher in COPD- patients carrying SERPINA1 hypermethylated (1.98 × 103 ± 0.6 cell/µl) than in COPD- carrying SERPINA1 hypomethylated (1.7 × 103 ± 0.48 cell/µl) (p < 0.05). CONCLUSIONS SERPINA1 is hypermethylated in blood cells from COPD+ patients. COPD- carrying SERPINA1 hypermethylated and high lymphocytes count may be at risk of COPD development. Therefore, SERPINA1 hypermethylation may represent a potential biomarker for predicting COPD development in ACS patients.
Collapse
|
research-article |
4 |
11 |