1
|
Mazziotta C, Tognon M, Martini F, Torreggiani E, Rotondo JC. Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells 2023; 12:184. [PMID: 36611977 PMCID: PMC9818925 DOI: 10.3390/cells12010184] [Citation(s) in RCA: 269] [Impact Index Per Article: 134.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] [Imported: 08/30/2023] Open
Abstract
Immune cells and commensal microbes in the human intestine constantly communicate with and react to each other in a stable environment in order to maintain healthy immune activities. Immune system-microbiota cross-talk relies on a complex network of pathways that sustain the balance between immune tolerance and immunogenicity. Probiotic bacteria can interact and stimulate intestinal immune cells and commensal microflora to modulate specific immune functions and immune homeostasis. Growing evidence shows that probiotic bacteria present important health-promoting and immunomodulatory properties. Thus, the use of probiotics might represent a promising approach for improving immune system activities. So far, few studies have been reported on the beneficial immune modulatory effect of probiotics. However, many others, which are mainly focused on their metabolic/nutritional properties, have been published. Therefore, the mechanisms behind the interaction between host immune cells and probiotics have only been partially described. The present review aims to collect and summarize the most recent scientific results and the resulting implications of how probiotic bacteria and immune cells interact to improve immune functions. Hence, a description of the currently known immunomodulatory mechanisms of probiotic bacteria in improving the host immune system is provided.
Collapse
|
Review |
2 |
269 |
2
|
Iaquinta MR, Mazzoni E, Bononi I, Rotondo JC, Mazziotta C, Montesi M, Sprio S, Tampieri A, Tognon M, Martini F. Adult Stem Cells for Bone Regeneration and Repair. Front Cell Dev Biol 2019; 7:268. [PMID: 31799249 PMCID: PMC6863062 DOI: 10.3389/fcell.2019.00268] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] [Imported: 07/24/2024] Open
Abstract
The regeneration of bone fractures, resulting from trauma, osteoporosis or tumors, is a major problem in our super-aging society. Bone regeneration is one of the main topics of concern in regenerative medicine. In recent years, stem cells have been employed in regenerative medicine with interesting results due to their self-renewal and differentiation capacity. Moreover, stem cells are able to secrete bioactive molecules and regulate the behavior of other cells in different host tissues. Bone regeneration process may improve effectively and rapidly when stem cells are used. To this purpose, stem cells are often employed with biomaterials/scaffolds and growth factors to accelerate bone healing at the fracture site. Briefly, this review will describe bone structure and the osteogenic differentiation of stem cells. In addition, the role of mesenchymal stem cells for bone repair/regrowth in the tissue engineering field and their recent progress in clinical applications will be discussed.
Collapse
|
Review |
6 |
165 |
3
|
Stomper J, Rotondo JC, Greve G, Lübbert M. Hypomethylating agents (HMA) for the treatment of acute myeloid leukemia and myelodysplastic syndromes: mechanisms of resistance and novel HMA-based therapies. Leukemia 2021; 35:1873-1889. [PMID: 33958699 PMCID: PMC8257497 DOI: 10.1038/s41375-021-01218-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/01/2021] [Accepted: 03/04/2021] [Indexed: 02/03/2023] [Imported: 07/24/2024]
Abstract
Aberrant DNA methylation plays a pivotal role in tumor development and progression. DNA hypomethylating agents (HMA) constitute a class of drugs which are able to reverse DNA methylation, thereby triggering the re-programming of tumor cells. The first-generation HMA azacitidine and decitabine have now been in standard clinical use for some time, offering a valuable alternative to previous treatments in acute myeloid leukemia and myelodysplastic syndromes, so far particularly in older, medically non-fit patients. However, the longer we use these drugs, the more we are confronted with the (almost inevitable) development of resistance. This review provides insights into the mode of action of HMA, mechanisms of resistance to this treatment, and strategies to overcome HMA resistance including next-generation HMA and HMA-based combination therapies.
Collapse
|
Review |
4 |
133 |
4
|
Rotondo JC, Lanzillotti C, Mazziotta C, Tognon M, Martini F. Epigenetics of Male Infertility: The Role of DNA Methylation. Front Cell Dev Biol 2021; 9:689624. [PMID: 34368137 PMCID: PMC8339558 DOI: 10.3389/fcell.2021.689624] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] [Imported: 08/30/2023] Open
Abstract
In recent years, a number of studies focused on the role of epigenetics, including DNA methylation, in spermatogenesis and male infertility. We aimed to provide an overview of the knowledge concerning the gene and genome methylation and its regulation during spermatogenesis, specifically in the context of male infertility etiopathogenesis. Overall, the findings support the hypothesis that sperm DNA methylation is associated with sperm alterations and infertility. Several genes have been found to be differentially methylated in relation to impaired spermatogenesis and/or reproductive dysfunction. Particularly, DNA methylation defects of MEST and H19 within imprinted genes and MTHFR within non-imprinted genes have been repeatedly linked with male infertility. A deep knowledge of sperm DNA methylation status in association with reduced reproductive potential could improve the development of novel diagnostic tools for this disease. Further studies are needed to better elucidate the mechanisms affecting methylation in sperm and their impact on male infertility.
Collapse
|
Review |
4 |
106 |
5
|
Iaquinta MR, Lanzillotti C, Mazziotta C, Bononi I, Frontini F, Mazzoni E, Oton-Gonzalez L, Rotondo JC, Torreggiani E, Tognon M, Martini F. The role of microRNAs in the osteogenic and chondrogenic differentiation of mesenchymal stem cells and bone pathologies. Theranostics 2021; 11:6573-6591. [PMID: 33995677 PMCID: PMC8120225 DOI: 10.7150/thno.55664] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023] [Imported: 07/24/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have been identified in many adult tissues. MSCs can regenerate through cell division or differentiate into adipocytes, osteoblasts and chondrocytes. As a result, MSCs have become an important source of cells in tissue engineering and regenerative medicine for bone tissue and cartilage. Several epigenetic factors are believed to play a role in MSCs differentiation. Among these, microRNA (miRNA) regulation is involved in the fine modulation of gene expression during osteogenic/chondrogenic differentiation. It has been reported that miRNAs are involved in bone homeostasis by modulating osteoblast gene expression. In addition, countless evidence has demonstrated that miRNAs dysregulation is involved in the development of osteoporosis and bone fractures. The deregulation of miRNAs expression has also been associated with several malignancies including bone cancer. In this context, bone-associated circulating miRNAs may be useful biomarkers for determining the predisposition, onset and development of osteoporosis, as well as in clinical applications to improve the diagnosis, follow-up and treatment of cancer and metastases. Overall, this review will provide an overview of how miRNAs activities participate in osteogenic/chondrogenic differentiation, while addressing the role of miRNA regulatory effects on target genes. Finally, the role of miRNAs in pathologies and therapies will be presented.
Collapse
|
Review |
4 |
94 |
6
|
Lanzillotti C, De Mattei M, Mazziotta C, Taraballi F, Rotondo JC, Tognon M, Martini F. Long Non-coding RNAs and MicroRNAs Interplay in Osteogenic Differentiation of Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:646032. [PMID: 33898434 PMCID: PMC8063120 DOI: 10.3389/fcell.2021.646032] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/11/2021] [Indexed: 12/23/2022] [Imported: 07/24/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have gained great attention as epigenetic regulators of gene expression in many tissues. Increasing evidence indicates that lncRNAs, together with microRNAs (miRNAs), play a pivotal role in osteogenesis. While miRNA action mechanism relies mainly on miRNA-mRNA interaction, resulting in suppressed expression, lncRNAs affect mRNA functionality through different activities, including interaction with miRNAs. Recent advances in RNA sequencing technology have improved knowledge into the molecular pathways regulated by the interaction of lncRNAs and miRNAs. This review reports on the recent knowledge of lncRNAs and miRNAs roles as key regulators of osteogenic differentiation. Specifically, we described herein the recent discoveries on lncRNA-miRNA crosstalk during the osteogenic differentiation of mesenchymal stem cells (MSCs) derived from bone marrow (BM), as well as from different other anatomical regions. The deep understanding of the connection between miRNAs and lncRNAs during the osteogenic differentiation will strongly improve knowledge into the molecular mechanisms of bone growth and development, ultimately leading to discover innovative diagnostic and therapeutic tools for osteogenic disorders and bone diseases.
Collapse
|
Review |
4 |
88 |
7
|
Rotondo JC, Martini F, Maritati M, Mazziotta C, Di Mauro G, Lanzillotti C, Barp N, Gallerani A, Tognon M, Contini C. SARS-CoV-2 Infection: New Molecular, Phylogenetic, and Pathogenetic Insights. Efficacy of Current Vaccines and the Potential Risk of Variants. Viruses 2021; 13:1687. [PMID: 34578269 PMCID: PMC8473168 DOI: 10.3390/v13091687] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 12/11/2022] [Imported: 08/30/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly discovered coronavirus responsible for the coronavirus disease 2019 (COVID-19) pandemic. COVID-19 has rapidly become a public health emergency of international concern. Although remarkable scientific achievements have been reached since the beginning of the pandemic, the knowledge behind this novel coronavirus, in terms of molecular and pathogenic characteristics and zoonotic potential, is still relatively limited. Today, there is a vaccine, or rather several vaccines, which, for the first time in the history of highly contagious infectious diseases that have plagued mankind, has been manufactured in just one year. Currently, four vaccines are licensed by regulatory agencies, and they use RNA or viral vector technologies. The positive effects of the vaccination campaign are being felt in many parts of the world, but the disappearance of this new infection is still far from being a reality, as it is also threatened by the presence of novel SARS-CoV-2 variants that could undermine the effectiveness of the vaccine, hampering the immunization control efforts. Indeed, the current findings indicate that SARS-CoV-2 is adapting to transmission in humans more efficiently, while further divergence from the initial archetype should be considered. In this review, we aimed to provide a collection of the current knowledge regarding the molecular, phylogenetic, and pathogenetic insights into SARS-CoV-2. The most recent findings obtained with respect to the impact of novel emerging SARS-CoV-2 variants as well as the development and implementation of vaccines are highlighted.
Collapse
|
Review |
4 |
59 |
8
|
Rotondo JC, Mazziotta C, Lanzillotti C, Stefani C, Badiale G, Campione G, Martini F, Tognon M. The Role of Purinergic P2X7 Receptor in Inflammation and Cancer: Novel Molecular Insights and Clinical Applications. Cancers (Basel) 2022; 14:1116. [PMID: 35267424 PMCID: PMC8909580 DOI: 10.3390/cancers14051116] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022] [Imported: 07/24/2024] Open
Abstract
The purinergic P2X7 receptor (P2X7R) is a transmembrane protein whose expression has been related to a variety of cellular processes, while its dysregulation has been linked to inflammation and cancer. P2X7R is expressed in cancer and immune system cell surfaces. ATP plays a key role in numerous metabolic processes due to its abundance in the tumour microenvironment. P2X7R plays an important role in cancer by interacting with ATP. The unusual property of P2X7R is that stimulation with low doses of ATP causes the opening of a permeable channel for sodium, potassium, and calcium ions, whereas sustained stimulation with high doses of ATP favours the formation of a non-selective pore. The latter effect induces a change in intracellular homeostasis that leads to cell death. This evidence suggests that P2X7R has both pro- and anti-tumour proprieties. P2X7R is increasingly recognised as a regulator of inflammation. In this review, we aimed to describe the most relevant characteristics of P2X7R function, activation, and its ligands, while also summarising the role of P2X7R activation in the context of inflammation and cancer. The currently used therapeutic approaches and clinical trials of P2X7R modulators are also described.
Collapse
|
Review |
3 |
58 |
9
|
Preti M, Rotondo JC, Holzinger D, Micheletti L, Gallio N, McKay-Chopin S, Carreira C, Privitera SS, Watanabe R, Ridder R, Pawlita M, Benedetto C, Tommasino M, Gheit T. Role of human papillomavirus infection in the etiology of vulvar cancer in Italian women. Infect Agent Cancer 2020; 15:20. [PMID: 32266002 PMCID: PMC7110671 DOI: 10.1186/s13027-020-00286-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/23/2020] [Indexed: 12/31/2022] [Imported: 07/24/2024] Open
Abstract
BACKGROUND Vulvar squamous cell carcinoma (VSCC) is a rare malignancy of the female genital tract. We aimed to determine the mucosal high-risk human papillomavirus (HPV)-attributable fraction of VSCCs from Italian women using multiple markers of viral infections. METHODS VSCCs and 8 metastatic lymph node samples from 107 Italian women were analyzed by a highly type-specific multiplex genotyping assay for the presence of DNA from 119 different HPVs. Tissues were further analyzed for HPV RNA and for upregulation of the cellular protein p16INK4a. RESULTS The rate of mucosal HPV-related tumors defined by viral DNA and RNA positivity was low (7.8%). HPV16 was the most prevalent, followed by 53, 56, and 58. Only five (4.9%) p16INK4a-positive tumors were also positive for both viral DNA and RNA. One (14.3%) metastatic lymph node sample was positive for all three markers. DNA of cutaneous HPVs was detected in only two VSCCs, i.e. genus beta types 5 and 110. CONCLUSION A small proportion of Italian VSCCs is putatively HPV-related, i.e. positive for both viral DNA and RNA of the same type, thus reinforcing the importance of HPV vaccination. Moreover, this study suggests that a direct role of HPV from genus beta and gamma in vulvar carcinogenesis is unlikely.
Collapse
|
research-article |
5 |
57 |
10
|
Rotondo JC, Mazzoni E, Bononi I, Tognon M, Martini F. Association Between Simian Virus 40 and Human Tumors. Front Oncol 2019; 9:670. [PMID: 31403031 PMCID: PMC6669359 DOI: 10.3389/fonc.2019.00670] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] [Imported: 07/24/2024] Open
Abstract
Simian virus 40 (SV40) is a small DNA tumor virus of monkey origin. This polyomavirus was administered to human populations mainly through contaminated polio vaccines, which were produced in naturally infected SV40 monkey cells. Previous molecular biology and recent immunological assays have indicated that SV40 is spreading in human populations, independently from earlier SV40-contaminated vaccines. SV40 DNA sequences have been detected at a higher prevalence in specific human cancer specimens, such as the brain and bone tumors, malignant pleural mesotheliomas, and lymphoproliferative disorders, compared to the corresponding normal tissues/specimens. However, other investigations, which reported negative data, did not confirm an association between SV40 and human tumors. To circumvent the controversies, which have arisen because of these molecular biology studies, immunological researches with newly developed indirect ELISA tests were carried out in serum samples from patients affected by the same kind of tumors as mentioned above. These innovative indirect ELISAs employ synthetic peptides as mimotopes/specific SV40 antigens. SV40 mimotopes do not cross-react with the homologous human polyomaviruses, BKPyV, and JCPyV. Immunological data obtained from indirect ELISAs, using SV40 mimotopes, employed to analyze serum samples from oncological patients, have indicated that these sera had a higher prevalence of antibodies against SV40 compared to healthy subjects. The main data on (i) the biology and genetics of SV40; (ii) the epidemiology of SV40 in the general population, (iii) the mechanisms of SV40 transformation; (iv) the putative role of SV40 in the onset/progression of specific human tumors, and (v) its association with other human diseases are reported in this review.
Collapse
|
Review |
6 |
56 |
11
|
Rotondo JC, Oton-Gonzalez L, Mazziotta C, Lanzillotti C, Iaquinta MR, Tognon M, Martini F. Simultaneous Detection and Viral DNA Load Quantification of Different Human Papillomavirus Types in Clinical Specimens by the High Analytical Droplet Digital PCR Method. Front Microbiol 2020; 11:591452. [PMID: 33329471 PMCID: PMC7710522 DOI: 10.3389/fmicb.2020.591452] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022] [Imported: 08/30/2023] Open
Abstract
Human papillomaviruses (HPVs) are small DNA tumor viruses that mainly infect mucosal epithelia of anogenital and upper respiratory tracts. There has been progressive demand for more analytical assays for HPV DNA quantification. A novel droplet digital PCR (ddPCR) method was developed to simultaneously detect and quantify HPV DNA from different HPV types. DdPCR was initially tested for assay sensitivity, accuracy, specificity as well as intra- and inter-run assay variation employing four recombinant plasmids containing HPV16, HPV18, HPV11, and HPV45 DNAs. The assay was extended to investigate/quantify HPV DNA in Cervical Intraepithelial Neoplasia (CIN, n = 45) specimens and human cell lines (n = 4). DdPCR and qPCR data from clinical samples were compared. The assay showed high accuracy, sensitivity and specificity, with low intra-/inter- run variations, in detecting/quantifying HPV16/18/11/45 DNAs. HPV DNA was detected in 51.1% (23/45) CIN DNA samples by ddPCR, whereas 40% (18/45) CIN tested HPV-positive by qPCR. Five CIN, tested positive by ddPCR, were found to be negative by qPCR. In CIN specimens, the mean HPV DNA loads determined by ddPCR were 3.81 copy/cell (range 0.002-51.02 copy/cell), whereas 8.04 copy/cell (range 0.003-78.73 copy/cell) by qPCR. DdPCR and qPCR concordantly detected HPV DNA in SiHa, CaSki and Hela cells, whereas HaCaT tested HPV-negative. The correlation between HPV DNA loads simultaneously detected by ddPCR/qPCR in CINs/cell lines was good (R 2 = 0.9706, p < 0.0001). Our data indicate that ddPCR is a valuable technique in quantifying HPV DNA load in CIN specimens and human cell lines, thereby improving clinical applications, such as patient management after primary diagnosis of HPV-related lesions with HPV-type specific assays.
Collapse
|
research-article |
5 |
55 |
12
|
Mazziotta C, Rotondo JC, Lanzillotti C, Campione G, Martini F, Tognon M. Cancer biology and molecular genetics of A 3 adenosine receptor. Oncogene 2022; 41:301-308. [PMID: 34750517 PMCID: PMC8755539 DOI: 10.1038/s41388-021-02090-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 09/01/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022] [Imported: 07/24/2024]
Abstract
A3 adenosine receptor (A3AR) is a cell membrane protein, which has been found to be overexpressed in a large number of cancer types. This receptor plays an important role in cancer by interacting with adenosine. Specifically, A3AR has a dual nature in different pathophysiological conditions, as it is expressed according to tissue type and stimulated by an adenosine dose-dependent manner. A3AR activation leads to tumor growth, cell proliferation and survival in some cases, while triggering cytostatic and apoptotic pathways in others. This review aims to describe the most relevant aspects of A3AR activation and its ligands whereas it summarizes A3AR activities in cancer. Progress in the field of A3AR modulators, with a potential therapeutic role in cancer treatment are reported, as well.
Collapse
|
Review |
3 |
54 |
13
|
Rotondo JC, Bononi I, Puozzo A, Govoni M, Foschi V, Lanza G, Gafà R, Gaboriaud P, Touzé FA, Selvatici R, Martini F, Tognon M. Merkel Cell Carcinomas Arising in Autoimmune Disease Affected Patients Treated with Biologic Drugs, Including Anti-TNF. Clin Cancer Res 2017; 23:3929-3934. [PMID: 28174236 DOI: 10.1158/1078-0432.ccr-16-2899] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 11/16/2022] [Imported: 07/24/2024]
Abstract
Purpose: The purpose of this investigation was to characterize Merkel cell carcinomas (MCC) arisen in patients affected by autoimmune diseases and treated with biologic drugs.Experimental Design: Serum samples from patients with MCC were analyzed for the presence and titer of antibodies against antigens of the oncogenic Merkel cell polyomavirus (MCPyV). IgG antibodies against the viral oncoproteins large T (LT) and small T (ST) antigens and the viral capsid protein-1 were analyzed by indirect ELISA. Viral antigens were recombinant LT/ST and virus-like particles (VLP), respectively. MCPyV DNA sequences were studied using PCR methods in MCC tissues and in peripheral blood mononuclear cells (PBMC). Immunohistochemical (IHC) analyses were carried out in MCC tissues to reveal MCPyV LT oncoprotein.Results: MCPyV DNA sequences identified in MCC tissues showed 100% homology with the European MKL-1 strain. PBMCs from patients tested MCPyV-negative. Viral DNA loads in the three MCC tissues were in the 0.1 to 30 copy/cell range. IgG antibodies against LT/ST were detected in patients 1 and 3, whereas patient 2 did not react to the MCPyV LT/ST antigen. Sera from the three patients with MCC contained IgG antibodies against MCPyV VP1. MCC tissues tested MCPyV LT-antigen-positive in IHC assays, with strong LT expression with diffuse nuclear localization. Normal tissues tested MCPyV LT-negative when employed as control.Conclusions: We investigated three new MCCs in patients affected by rheumatologic diseases treated with biologic drugs, including TNF. A possible cause-effect relationship between pharmacologic immunosuppressive treatment and MCC onset is suggested. Indeed, MCC is associated with MCPyV LT oncoprotein activity. Clin Cancer Res; 23(14); 3929-34. ©2017 AACR.
Collapse
MESH Headings
- Aged
- Antibodies/blood
- Antibodies/immunology
- Antigens, Neoplasm/blood
- Antigens, Neoplasm/immunology
- Antigens, Viral/blood
- Antigens, Viral, Tumor/blood
- Arthritis, Rheumatoid/complications
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Biological Products/adverse effects
- Biological Products/immunology
- Biological Products/therapeutic use
- Carcinogenesis
- Carcinoma, Merkel Cell/blood
- Carcinoma, Merkel Cell/chemically induced
- Carcinoma, Merkel Cell/immunology
- Carcinoma, Merkel Cell/virology
- Female
- Humans
- Male
- Merkel cell polyomavirus/immunology
- Merkel cell polyomavirus/pathogenicity
- Middle Aged
- Spondylitis, Ankylosing/complications
- Spondylitis, Ankylosing/drug therapy
- Spondylitis, Ankylosing/immunology
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/therapeutic use
Collapse
|
|
8 |
52 |
14
|
Rotondo JC, Bosi S, Bazzan E, Di Domenico M, De Mattei M, Selvatici R, Patella A, Marci R, Tognon M, Martini F. Methylenetetrahydrofolate reductase gene promoter hypermethylation in semen samples of infertile couples correlates with recurrent spontaneous abortion. Hum Reprod 2012; 27:3632-3638. [PMID: 23010533 DOI: 10.1093/humrep/des319] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] [Imported: 07/24/2024] Open
Abstract
STUDY QUESTION Is the methylation status of the methylenetetrahydrofolate reductase (MTHFR) promoter region in semen samples associated with 'recurrent spontaneous abortion' (RSA)? SUMMARY ANSWER MTHFR promoter hypermethylation is more frequent in semen samples from RSA couples than in semen samples from infertile couples with no history of RSA (NRSA) and affects the whole sperm population significantly more often. WHAT IS KNOWN ALREADY Modifications to the MTHFR gene such as polymorphisms and promoter methylations are associated with male infertility. STUDY DESIGN, SIZE AND DURATION Retrospective cohort study of semen samples from 20 RSA couples, 147 NRSA couples and 20 fertile men between 2011 and 2012. MATERIALS, SETTING AND METHODS DNA from the semen samples of RSA, NRSA and fertile men were analyzed by methylation-specific PCR amplification using primers which anneal to the methylated or unmethylated cytosine-phosphodiester bond guanine (CpG) islands within the promoter region of MTHFR. The specificity of the PCR products was assessed by DNA sequencing. MAIN RESULTS AND THE ROLE OF CHANCE The methylated MTHFR epigenotype (including samples where it co-existed with unmethylated MTHFR epigenotypes) was detected in 75% of RSA men, 54% of NRSA men and 15% of fertile men. MTHFR methylation was observed in the whole sperm population in semen samples from 55% of RSA men compared with 8% in NRSA men (P < 0.05) and 0% in fertile men (P < 0.05). DNA sequencing analysis was fully concordant with the PCR results and revealed that when MTHFR methylation occurred, CpG islands within the promoter region were 100% methylated (hypermethylation of MTHFR promoter). LIMITATIONS, REASONS FOR CAUTION The relatively small sample size of RSA infertile couples. WIDER IMPLICATIONS OF THE FINDINGS The hypermethylation of the MTHFR gene promoter should be taken into consideration as a novel putative risk factor in RSA etiology. STUDY FUNDING/COMPETING INTEREST(S) Our institution has received an FAR research grant from the University of Ferrara, Ferrara, Italy. No competing interests declared.
Collapse
|
|
13 |
52 |
15
|
Rotondo JC, Borghi A, Selvatici R, Magri E, Bianchini E, Montinari E, Corazza M, Virgili A, Tognon M, Martini F. Hypermethylation-Induced Inactivation of the IRF6 Gene as a Possible Early Event in Progression of Vulvar Squamous Cell Carcinoma Associated With Lichen Sclerosus. JAMA Dermatol 2016; 152:928-933. [PMID: 27223861 DOI: 10.1001/jamadermatol.2016.1336] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] [Imported: 07/24/2024]
Abstract
IMPORTANCE The molecular mechanism leading to the development of vulvar squamous cell carcinoma (VSCC) from vulvar lichen sclerosus (VLS) is unknown. OBJECTIVE To assess the possible involvement of the IRF6 tumor-suppressor gene in the development of VSCC from VLS. DESIGN In laboratories at the University of Ferrara, Ferrara, Italy, IRF6 gene expression and promoter methylation were investigated in paraffin-embedded VSCC and adjacent vulvar intraepithelial neoplasia (VIN) and VLS specimens, in cancer-free VLS (cfVLS) specimens, and in healthy skin specimens by reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) analysis and by sequencing of PCR-amplified bisulfite-treated DNA. Methylation-induced dysregulation was assessed by expression of p63, the IRF6-transactivator gene. MAIN OUTCOMES AND MEASURES IRF6 expression, correlation with promoter methylation and p63 expression, and association with development of VSCC from VLS. RESULTS Specimens from 60 participating women (1 specimen from each) were analyzed for the study (mean [SD] age, 66.3 [12.1] years): 20 paraffin-embedded specimens of VSCC (patient age, 75.3 [8.3] years) with adjacent VLS lesions, in 5 of which VIN preneoplastic tissue was also present (patient age, 64.3 [15.3] years); 20 cfVLS specimens (patient age, 62.1 [11.4] years) obtained from diagnostic biopsies; and 20 normal skin specimens from noncancer surgical patients (patient age, 61.4 [9.1] years). IRF6 messenger RNA was found to be reduced 4.5-, 2.9-, 6.6-, and 2.2-fold in VLS, VIN, VSCC, and cfVLS specimens, respectively, compared with controls, although p63 was still expressed in all specimens. IRF6 promoter was hypermethylated in 9 (45%) of 20 VLS specimens, 1 (20%) of 5 VIN specimens, 16 (80%) of 20 VSCC specimens, 2 (10%) of 20 cfVLS specimens, and 0 normal skin specimens. CONCLUSIONS AND RELEVANCE IRF6 dysregulation may be involved in the development of VSCC from VLS. Methylation of the IRF6 promoter may be a marker of cancer risk in patients with VLS.
Collapse
|
|
9 |
50 |
16
|
Mazzoni E, D'Agostino A, Iaquinta MR, Bononi I, Trevisiol L, Rotondo JC, Patergnani S, Giorgi C, Gunson MJ, Arnett GW, Nocini PF, Tognon M, Martini F. Hydroxylapatite-collagen hybrid scaffold induces human adipose-derived mesenchymal stem cells to osteogenic differentiation in vitro and bone regrowth in patients. Stem Cells Transl Med 2020; 9:377-388. [PMID: 31834992 PMCID: PMC7031637 DOI: 10.1002/sctm.19-0170] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/10/2019] [Indexed: 12/17/2022] [Imported: 07/24/2024] Open
Abstract
Tissue engineering-based bone graft is an emerging viable treatment modality to repair and regenerate tissues damaged as a result of diseases or injuries. The structure and composition of scaffolds should modulate the classical osteogenic pathways in human stem cells. The osteoinductivity properties of the hydroxylapatite-collagen hybrid scaffold named Coll/Pro Osteon 200 were investigated in an in vitro model of human adipose mesenchymal stem cells (hASCs), whereas the clinical evaluation was carried out in maxillofacial patients. Differentially expressed genes (DEGs) induced by the scaffold were analyzed using the Osteogenesis RT2 PCR Array. The osteoinductivity potential of the scaffold was also investigated by studying the alkaline phosphatase (ALP) activity, matrix mineralization, osteocalcin (OCN), and CLEC3B expression protein. Fifty patients who underwent zygomatic augmentation and bimaxillary osteotomy were evaluated clinically, radiologically, and histologically during a 3-year follow-up. Among DEGs, osteogenesis-related genes, including BMP1/2, ALP, BGLAP, SP7, RUNX2, SPP1, and EGFR, which play important roles in osteogenesis, were found to be upregulated. The genes to cartilage condensation SOX9, BMPR1B, and osteoclast cells TNFSF11 were detected upregulated at every time point of the investigation. This scaffold has a high osteoinductivity revealed by the matrix mineralization, ALP activity, OCN, and CLEC3B expression proteins. Clinical evaluation evidences that the biomaterial promotes bone regrowth. Histological results of biopsy specimens from patients showed prominent ossification. Experimental data using the Coll/Pro Osteon 200 indicate that clinical evaluation of bone regrowth in patients, after scaffold implantation, was supported by DEGs implicated in skeletal development as shown in "in vitro" experiments with hASCs.
Collapse
|
research-article |
5 |
45 |
17
|
Rotondo JC, Bosi S, Bassi C, Ferracin M, Lanza G, Gafà R, Magri E, Selvatici R, Torresani S, Marci R, Garutti P, Negrini M, Tognon M, Martini F. Gene expression changes in progression of cervical neoplasia revealed by microarray analysis of cervical neoplastic keratinocytes. J Cell Physiol 2015; 230:806-812. [PMID: 25205602 DOI: 10.1002/jcp.24808] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/05/2014] [Indexed: 12/28/2022] [Imported: 07/24/2024]
Abstract
To evaluate the gene expression changes involved in neoplastic progression of cervical intraepithelial neoplasia. Using microarray analysis, large-scale gene expression profile was carried out on HPV16-CIN2, HPV16-CIN3, and normal cervical keratinocytes derived from two HPV16-CIN2, two HPV-CIN3 lesions, and two corresponding normal cervical tissues, respectively. Differentially expressed genes were analyzed in normal cervical keratinocytes compared with HPV16-CIN2 keratinocytes and in HPV16-CIN2 keratinocytes compared with HPV16-CIN3 keratinocytes; 37 candidate genes with continuously increasing or decreasing expression during CIN progression were identified. One of these genes, phosphoglycerate dehydrogenase, was chosen for further characterization. Quantitative reverse transcription-polymerase chain reaction and immunohistochemical analysis confirmed that expression of phosphoglycerate dehydrogenase consistently increases during progression of CIN toward cancer. Gene expression changes occurring during CIN progression were investigated using microarray analysis, for the first time, in CIN2 and CIN3 keratinocytes naturally infected with HPV16. Phosphoglycerate dehydrogenase is likely to be associated with tumorigenesis and may be a potential prognostic marker for CIN progression.
Collapse
|
|
10 |
45 |
18
|
Rotondo JC, Oton-Gonzalez L, Selvatici R, Rizzo P, Pavasini R, Campo GC, Lanzillotti C, Mazziotta C, De Mattei M, Tognon M, Martini F. SERPINA1 Gene Promoter Is Differentially Methylated in Peripheral Blood Mononuclear Cells of Pregnant Women. Front Cell Dev Biol 2020; 8:550543. [PMID: 33015055 PMCID: PMC7494783 DOI: 10.3389/fcell.2020.550543] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/18/2020] [Indexed: 12/23/2022] [Imported: 07/24/2024] Open
Abstract
SERine Protein INhibitor-A1 (SERPINA1) is an inducible blood cell gene coding for alpha1-antitrypsin (AAT), a plasma protease inhibitor whose circulating levels are raised during inflammation, infection and advanced pregnancy. DNA methylation has been suggested to play a role in SERPINA1 gene expression regulation in peripheral blood mononuclear cells (PBMCs). The methylation status of SERPINA1 in PBMCs is unknown. The aim of this study was to evaluate the methylation profile of the SERPINA1 promoter in PBMC. To this purpose PBMCs and serum were collected from healthy subjects (HS) (n = 75), including blood donors (BD) (n = 25), pregnant women at early pregnancy (EP) (n = 25), i.e., within the first trimester, and pregnant women at late pregnancy (LP) (n = 25), i.e., at the third trimester. DNA from PBMCs was treated with sodium bisulfite and PCR amplified for SERPINA1 gene promoter, followed by sequencing analyses. AAT serum levels were determined by ELISA test. SERPINA1 was found hypermethylated in 58.7% of HS. The prevalence of SERPINA1 hypermethylation was significantly higher in BD (68%) and EP (88%) than in LP (20%) (p < 0.01). The median serum AAT concentration was 1.07, 0.63, and 3.15 mg/ml in BD, EP, and LP, respectively (p < 0.05, BD and EP vs LP). This study indicates, for the first time, that SERPINA1 gene promoter is differentially methylated in PBMCs from HS. Likely, modulation of the methylation may be a novel epigenetic regulator mechanism of AAT expression in the PBMC of HS. Therefore, SERPINA1 gene promoter methylation may represent an epigenetic biomarker of PBMCs in healthy subjects.
Collapse
|
research-article |
5 |
44 |
19
|
Rotondo JC, Martini F, Maritati M, Caselli E, Gallenga CE, Guarino M, De Giorgio R, Mazziotta C, Tramarin ML, Badiale G, Tognon M, Contini C. Advanced Molecular and Immunological Diagnostic Methods to Detect SARS-CoV-2 Infection. Microorganisms 2022; 10:1193. [PMID: 35744711 PMCID: PMC9231257 DOI: 10.3390/microorganisms10061193] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 02/06/2023] [Imported: 08/30/2023] Open
Abstract
COVID-19 emerged in late 2019 in China and quickly spread across the globe, causing over 521 million cases of infection and 6.26 million deaths to date. After 2 years, numerous advances have been made. First of all, the preventive vaccine, which has been implemented in record time, is effective in more than 95% of cases. Additionally, in the diagnostic field, there are numerous molecular and antigenic diagnostic kits that are equipped with high sensitivity and specificity. Real Time-PCR-based assays for the detection of viral RNA are currently considered the gold-standard method for SARS-CoV-2 diagnosis and can be used efficiently on pooled nasopharyngeal, or oropharyngeal samples for widespread screening. Moreover, additional, and more advanced molecular methods such as droplet-digital PCR (ddPCR), clustered regularly interspaced short palindromic repeats (CRISPR) and next-generation sequencing (NGS), are currently under development to detect the SARS-CoV-2 RNA. However, as the number of subjects infected with SARS-CoV-2 continuously increases globally, health care systems are being placed under increased stress. Thus, the clinical laboratory plays an important role, helping to select especially asymptomatic individuals who are actively carrying the live replicating virus, with fast and non-invasive molecular technologies. Recent diagnostic strategies, other than molecular methods, have been adopted to either detect viral antigens, i.e., antigen-based immunoassays, or human anti-SARS-CoV-2 antibodies, i.e., antibody-based immunoassays, in nasal or oropharyngeal swabs, as well as in blood or saliva samples. However, the role of mucosal sIgAs, which are essential in the control of viruses entering the body through mucosal surfaces, remains to be elucidated, and in particular the role of the immune response in counteracting SARS-CoV-2 infection, primarily at the site(s) of virus entry that appears to be promising.
Collapse
|
Review |
3 |
44 |
20
|
Rotondo JC, Giari L, Guerranti C, Tognon M, Castaldelli G, Fano EA, Martini F. Environmental doses of perfluorooctanoic acid change the expression of genes in target tissues of common carp. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:942-948. [PMID: 29105837 DOI: 10.1002/etc.4029] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/28/2017] [Accepted: 11/02/2017] [Indexed: 05/27/2023] [Imported: 07/24/2024]
Abstract
We aimed to evaluate the effects of environmental doses of perfluorooctanoic acid (PFOA) on bioconcentration and gene expression in common carp (Cyprinus carpio). Adult male and female carp were exposed to environmental (200 ng/L) and experimental (2 mg/L) doses of PFOA for 56 d. Carp exposed to 200 ng/L had levels of PFOA below the level of detection in all tissue samples analyzed, whereas variable concentrations were measurable in various tissues from carp exposed to 2 mg/L. The expression level of the glutathione S-transferase (GST) gene, coding for a detoxifying enzyme, increased in a PFOA dose-dependent manner in liver tissues from 200 ng/L to 2 mg/L exposure (p < 0.05). The expression levels of CYP19A gene, coding for the enzyme that converts testosterone into estrogen, were altered in gonadal tissues from male and female carp exposed to either 200 ng/L or 2 mg/L; expression increased in male gonads and decreased in female gonads. Unexpectedly, the expression levels of CYP19A in male and female gonads from carp exposed to 200 ng/L or 2 mg/L were similar (p > 0.05). Therefore, even though environmental doses of PFOA did not accumulate in tissues of the common carp, they did affect the gene expression levels of GST in the liver and CYP19A in the gonads. These observations raise concerns that exposure to environmental doses of PFOA may affect gene expression in animals and possibly in humans, with important health consequences. Environ Toxicol Chem 2018;37:942-948. © 2017 SETAC.
Collapse
|
|
7 |
43 |
21
|
Rotondo JC, Selvatici R, Di Domenico M, Marci R, Vesce F, Tognon M, Martini F. Methylation loss at H19 imprinted gene correlates with methylenetetrahydrofolate reductase gene promoter hypermethylation in semen samples from infertile males. Epigenetics 2013; 8:990-997. [PMID: 23975186 PMCID: PMC3883776 DOI: 10.4161/epi.25798] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/15/2013] [Accepted: 07/18/2013] [Indexed: 11/19/2022] [Imported: 07/24/2024] Open
Abstract
Aberrant methylation at the H19 paternal imprinted gene has been identified in different cohorts of infertile males. The causes of H19 methylation errors are poorly understood. In this study, we investigated the methylation status of the H19 gene in semen DNA samples from infertile males affected by MTHFR gene promoter hypermethylation. DNA from normal and abnormal semen samples harbouring MTHFR gene promoter hypermethylated, hmMTHFR-nor and hmMTHFR-abn, and without MTHFR methylation, MTHFR-nor and MTHFR-abn, were investigated for methylation status in the H19 locus using bisulfite-treated DNA PCR, followed by cloning and sequencing. The prevalence of H19 hypomethylated clones was 20% in hmMTHFR-nor and 0% in MTHFR-nor semen samples (p<0.05), and 28% in hmMTHFR-abn compared with 16% in MTHFR-abn semen samples (p>0.05). These results underscore the association between H19 methylation defects and hypermethylation of the MTHFR gene promoter in normal semen samples and suggest that aberrant methylation at H19 may occur in the normal sperm of infertile males affected by MTHFR gene dysfunction. These findings provide new insights into the mechanisms causing abnormal methylation in imprinted genes and, in turn, male infertility.
Collapse
|
research-article |
12 |
43 |
22
|
Mazziotta C, Lanzillotti C, Iaquinta MR, Taraballi F, Torreggiani E, Rotondo JC, Otòn-Gonzalez L, Mazzoni E, Frontini F, Bononi I, De Mattei M, Tognon M, Martini F. MicroRNAs Modulate Signaling Pathways in Osteogenic Differentiation of Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:2362. [PMID: 33673409 PMCID: PMC7956574 DOI: 10.3390/ijms22052362] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] [Imported: 07/24/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have been identified in many adult tissues and they have been closely studied in recent years, especially in view of their potential use for treating diseases and damaged tissues and organs. MSCs are capable of self-replication and differentiation into osteoblasts and are considered an important source of cells in tissue engineering for bone regeneration. Several epigenetic factors are believed to play a role in the osteogenic differentiation of MSCs, including microRNAs (miRNAs). MiRNAs are small, single-stranded, non-coding RNAs of approximately 22 nucleotides that are able to regulate cell proliferation, differentiation and apoptosis by binding the 3' untranslated region (3'-UTR) of target mRNAs, which can be subsequently degraded or translationally silenced. MiRNAs control gene expression in osteogenic differentiation by regulating two crucial signaling cascades in osteogenesis: the transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) and the Wingless/Int-1(Wnt)/β-catenin signaling pathways. This review provides an overview of the miRNAs involved in osteogenic differentiation and how these miRNAs could regulate the expression of target genes.
Collapse
|
Review |
4 |
42 |
23
|
Oton-Gonzalez L, Mazziotta C, Iaquinta MR, Mazzoni E, Nocini R, Trevisiol L, D’Agostino A, Tognon M, Rotondo JC, Martini F. Genetics and Epigenetics of Bone Remodeling and Metabolic Bone Diseases. Int J Mol Sci 2022; 23:1500. [PMID: 35163424 PMCID: PMC8836080 DOI: 10.3390/ijms23031500] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] [Imported: 08/30/2023] Open
Abstract
Bone metabolism consists of a balance between bone formation and bone resorption, which is mediated by osteoblast and osteoclast activity, respectively. In order to ensure bone plasticity, the bone remodeling process needs to function properly. Mesenchymal stem cells differentiate into the osteoblast lineage by activating different signaling pathways, including transforming growth factor β (TGF-β)/bone morphogenic protein (BMP) and the Wingless/Int-1 (Wnt)/β-catenin pathways. Recent data indicate that bone remodeling processes are also epigenetically regulated by DNA methylation, histone post-translational modifications, and non-coding RNA expressions, such as micro-RNAs, long non-coding RNAs, and circular RNAs. Mutations and dysfunctions in pathways regulating the osteoblast differentiation might influence the bone remodeling process, ultimately leading to a large variety of metabolic bone diseases. In this review, we aim to summarize and describe the genetics and epigenetics of the bone remodeling process. Moreover, the current findings behind the genetics of metabolic bone diseases are also reported.
Collapse
|
Review |
3 |
39 |
24
|
Mazziotta C, Pellielo G, Tognon M, Martini F, Rotondo JC. Significantly Low Levels of IgG Antibodies Against Oncogenic Merkel Cell Polyomavirus in Sera From Females Affected by Spontaneous Abortion. Front Microbiol 2021; 12:789991. [PMID: 34970247 PMCID: PMC8712937 DOI: 10.3389/fmicb.2021.789991] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] [Imported: 07/24/2024] Open
Abstract
Merkel cell polyomavirus (MCPyV) is a small DNA tumor virus ubiquitous in humans. MCPyV establishes a clinically asymptomatic lifelong infection in healthy immunocompetent individuals. Viral infections are considered to be risk factors for spontaneous abortion (SA), which is the most common adverse complication of pregnancy. The role of MCPyV in SA remains undetermined. Herein, the impact of MCPyV infection in females affected by SA was investigated. Specifically, an indirect enzyme-linked immunosorbent assay (ELISA) method with two linear synthetic peptides/mimotopes mimicking MCPyV antigens was used to investigate immunoglobulin G (IgG) antibodies against MCPyV in sera from 94 females affected by SA [mean ± standard deviation (SD) age 35 ± (6) years] and from 96 healthy females undergoing voluntary pregnancy interruption [VI, mean (±SD) age 32 ± (7) years]. MCPyV seroprevalence and serological profiles were analyzed. The overall prevalence of serum IgG antibodies against MCPyV was 35.1% (33/94) and 37.5% (36/96) in SA and VI females, respectively (p > 0.05). Notably, serological profile analyses indicated lower optical densities (ODs) in females with SA compared to those undergoing VI (p < 0.05), thus indicating a reduced IgG antibody response in SA females. Circulating IgGs were identified in sera from SA and VI females. Our immunological findings indicate that a relatively reduced fraction of pregnant females carry serum anti-MCPyV IgG antibodies, while SA females presented a more pronounced decrease in IgG antibody response to MCPyV. Although yet to be determined, this immunological decrease might prompt an increase in MCPyV multiplication events in females experiencing abortive events. The role of MCPyV in SA, if present, remains to be determined.
Collapse
|
research-article |
4 |
39 |
25
|
Contini C, Rotondo JC, Magagnoli F, Maritati M, Seraceni S, Graziano A, Poggi A, Capucci R, Vesce F, Tognon M, Martini F. Investigation on silent bacterial infections in specimens from pregnant women affected by spontaneous miscarriage. J Cell Physiol 2018; 234:100-107. [PMID: 30078192 DOI: 10.1002/jcp.26952] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/01/2018] [Indexed: 12/12/2022] [Imported: 07/24/2024]
Abstract
Miscarriage is one of the main complications occurring in pregnancy. The association between adverse pregnancy outcomes and silent bacterial infections has been poorly investigated. Ureaplasma parvum and urealiticum, Mycoplasma genitalium and hominis and Chlamydia trachomatis DNA sequences have been investigated by polymerase chain reaction (PCR) methods in chorionic villi tissues and peripheral blood mononuclear cells (PBMCs) from females with spontaneous abortion (SA, n = 100) and females who underwent voluntary interruption of pregnancy (VI, n = 100). U. parvum DNA was detected in 14% and 15% of SA and VI, respectively, with a mean of bacterial DNA load of 1.3 × 10-1 copy/cell in SA and 2.8 × 10 -3 copy/cell in VI; U. urealiticum DNA was detected in 3% and 2% of SA and VI specimens, respectively, with a mean DNA load of 3.3 × 10-3 copy/cell in SA and 1.6 × 10-3 copy/cell in VI; M. hominis DNA was detected in 5% of SA specimens with a DNA load of 1.3 × 10-4 copy/cell and in 6% of VI specimens with a DNA load of 1.4 × 10-4 copy/cell; C. trachomatis DNA was detected in 3% of SA specimens with a DNA load of 1.5 × 10-4 copy/cell and in 4% of VI specimens with a mean DNA load of 1.4 × 10-4 copy/cell. In PBMCs from the SA and VI groups, Ureaplasma spp, Mycoplasma spp and C. trachomatis DNAs were detected with a prevalence of 1%-3%. Bacteria were investigated, for the first time, by quantitative real-time PCR (qPCR) in chorionic villi tissues and PBMCs from women affected by SA and VI. These data may help to understand the role and our knowledge of the silent infections in SA.
Collapse
|
|
7 |
38 |