1
|
Yang K, Wu Z, Zhang H, Zhang N, Wu W, Wang Z, Dai Z, Zhang X, Zhang L, Peng Y, Ye W, Zeng W, Liu Z, Cheng Q. Glioma targeted therapy: insight into future of molecular approaches. Mol Cancer 2022; 21:39. [PMID: 35135556 PMCID: PMC8822752 DOI: 10.1186/s12943-022-01513-z] [Citation(s) in RCA: 405] [Impact Index Per Article: 135.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] [Imported: 09/06/2023] Open
Abstract
Gliomas are the common type of brain tumors originating from glial cells. Epidemiologically, gliomas occur among all ages, more often seen in adults, which males are more susceptible than females. According to the fifth edition of the WHO Classification of Tumors of the Central Nervous System (WHO CNS5), standard of care and prognosis of gliomas can be dramatically different. Generally, circumscribed gliomas are usually benign and recommended to early complete resection, with chemotherapy if necessary. Diffuse gliomas and other high-grade gliomas according to their molecule subtype are slightly intractable, with necessity of chemotherapy. However, for glioblastoma, feasible resection followed by radiotherapy plus temozolomide chemotherapy define the current standard of care. Here, we discuss novel feasible or potential targets for treatment of gliomas, especially IDH-wild type glioblastoma. Classic targets such as the p53 and retinoblastoma (RB) pathway and epidermal growth factor receptor (EGFR) gene alteration have met failure due to complex regulatory network. There is ever-increasing interest in immunotherapy (immune checkpoint molecule, tumor associated macrophage, dendritic cell vaccine, CAR-T), tumor microenvironment, and combination of several efficacious methods. With many targeted therapy options emerging, biomarkers guiding the prescription of a particular targeted therapy are also attractive. More pre-clinical and clinical trials are urgently needed to explore and evaluate the feasibility of targeted therapy with the corresponding biomarkers for effective personalized treatment options.
Collapse
|
Review |
3 |
405 |
2
|
Zhang H, Dai Z, Wu W, Wang Z, Zhang N, Zhang L, Zeng WJ, Liu Z, Cheng Q. Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. J Exp Clin Cancer Res 2021; 40:184. [PMID: 34088360 PMCID: PMC8178863 DOI: 10.1186/s13046-021-01987-7] [Citation(s) in RCA: 309] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/17/2021] [Indexed: 02/01/2023] [Imported: 09/06/2023] Open
Abstract
The cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4)/B7 and programmed death 1 (PD-1)/ programmed cell death-ligand 1 (PD-L1) are two most representative immune checkpoint pathways, which negatively regulate T cell immune function during different phases of T-cell activation. Inhibitors targeting CTLA-4/B7 and PD1/PD-L1 pathways have revolutionized immunotherapies for numerous cancer types. Although the combined anti-CTLA-4/B7 and anti-PD1/PD-L1 therapy has demonstrated promising clinical efficacy, only a small percentage of patients receiving anti-CTLA-4/B7 or anti-PD1/PD-L1 therapy experienced prolonged survival. Regulation of the expression of PD-L1 and CTLA-4 significantly impacts the treatment effect. Understanding the in-depth mechanisms and interplays of PD-L1 and CTLA-4 could help identify patients with better immunotherapy responses and promote their clinical care. In this review, regulation of PD-L1 and CTLA-4 is discussed at the levels of DNA, RNA, and proteins, as well as indirect regulation of biomarkers, localization within the cell, and drugs. Specifically, some potential drugs have been developed to regulate PD-L1 and CTLA-4 expressions with high efficiency.
Collapse
|
Review |
4 |
309 |
3
|
Liu Y, Wu W, Cai C, Zhang H, Shen H, Han Y. Patient-derived xenograft models in cancer therapy: technologies and applications. Signal Transduct Target Ther 2023; 8:160. [PMID: 37045827 PMCID: PMC10097874 DOI: 10.1038/s41392-023-01419-2] [Citation(s) in RCA: 145] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/21/2023] [Indexed: 04/14/2023] [Imported: 09/06/2023] Open
Abstract
Patient-derived xenograft (PDX) models, in which tumor tissues from patients are implanted into immunocompromised or humanized mice, have shown superiority in recapitulating the characteristics of cancer, such as the spatial structure of cancer and the intratumor heterogeneity of cancer. Moreover, PDX models retain the genomic features of patients across different stages, subtypes, and diversified treatment backgrounds. Optimized PDX engraftment procedures and modern technologies such as multi-omics and deep learning have enabled a more comprehensive depiction of the PDX molecular landscape and boosted the utilization of PDX models. These irreplaceable advantages make PDX models an ideal choice in cancer treatment studies, such as preclinical trials of novel drugs, validating novel drug combinations, screening drug-sensitive patients, and exploring drug resistance mechanisms. In this review, we gave an overview of the history of PDX models and the process of PDX model establishment. Subsequently, the review presents the strengths and weaknesses of PDX models and highlights the integration of novel technologies in PDX model research. Finally, we delineated the broad application of PDX models in chemotherapy, targeted therapy, immunotherapy, and other novel therapies.
Collapse
|
Review |
2 |
145 |
4
|
Wang Y, Zhang H, Liu C, Wang Z, Wu W, Zhang N, Zhang L, Hu J, Luo P, Zhang J, Liu Z, Peng Y, Liu Z, Tang L, Cheng Q. Immune checkpoint modulators in cancer immunotherapy: recent advances and emerging concepts. J Hematol Oncol 2022; 15:111. [PMID: 35978433 PMCID: PMC9386972 DOI: 10.1186/s13045-022-01325-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/01/2022] [Indexed: 12/13/2022] [Imported: 09/06/2023] Open
Abstract
The discovery of immune checkpoint inhibitors (ICIs) has now been universally acknowledged as a significant breakthrough in tumor therapy after the targeted treatment of checkpoint molecules: anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) and anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) on several cancer types achieved satisfying results. However, there are still quite a lot of patients suffering from severe side effects and ineffective treatment outcomes. Although the current ICI therapy is far from satisfying, a series of novel immune checkpoint molecules with remarkable preclinical and clinical benefits are being widely investigated, like the V-domain Ig suppressor of T cell activation (VISTA), which can also be called PD-1 homolog (PD-1H), and ectonucleotidases: CD39, CD73, and CD38, which belong to the ribosyl cyclase family, etc. In this review, we systematically summarized and discussed these molecules' biological structures, molecular features, and the corresponding targeted drugs, aiming to help the in-depth understanding of immune checkpoint molecules and promote the clinical practice of ICI therapy.
Collapse
|
Review |
3 |
139 |
5
|
Zhang H, Yue X, Chen Z, Liu C, Wu W, Zhang N, Liu Z, Yang L, Jiang Q, Cheng Q, Luo P, Liu G. Define cancer-associated fibroblasts (CAFs) in the tumor microenvironment: new opportunities in cancer immunotherapy and advances in clinical trials. Mol Cancer 2023; 22:159. [PMID: 37784082 PMCID: PMC10544417 DOI: 10.1186/s12943-023-01860-5] [Citation(s) in RCA: 136] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023] [Imported: 01/12/2025] Open
Abstract
Despite centuries since the discovery and study of cancer, cancer is still a lethal and intractable health issue worldwide. Cancer-associated fibroblasts (CAFs) have gained much attention as a pivotal component of the tumor microenvironment. The versatility and sophisticated mechanisms of CAFs in facilitating cancer progression have been elucidated extensively, including promoting cancer angiogenesis and metastasis, inducing drug resistance, reshaping the extracellular matrix, and developing an immunosuppressive microenvironment. Owing to their robust tumor-promoting function, CAFs are considered a promising target for oncotherapy. However, CAFs are a highly heterogeneous group of cells. Some subpopulations exert an inhibitory role in tumor growth, which implies that CAF-targeting approaches must be more precise and individualized. This review comprehensively summarize the origin, phenotypical, and functional heterogeneity of CAFs. More importantly, we underscore advances in strategies and clinical trials to target CAF in various cancers, and we also summarize progressions of CAF in cancer immunotherapy.
Collapse
|
Review |
2 |
136 |
6
|
Hu Z, Zhang H, Yang SK, Wu X, He D, Cao K, Zhang W. Emerging Role of Ferroptosis in Acute Kidney Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8010614. [PMID: 31781351 PMCID: PMC6875218 DOI: 10.1155/2019/8010614] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] [Imported: 09/18/2023]
Abstract
Acute kidney injury (AKI) is a heterogeneous group of critical disease conditions with high incidence and mortality. Vasoconstriction, oxidative stress, apoptosis, and inflammation are generally thought to be the main pathogenic mechanisms of AKI. Ferroptosis is a type of iron-dependent nonapoptotic cell death characterized by membrane lipid peroxide accumulation and polyunsaturated fatty acid consumption, and it plays essential roles in many diseases, including cancers and neurologic diseases. Recent studies have revealed an emerging role of ferroptosis in the pathophysiological processes of AKI. Here, in the present review, we summarized the most recent discoveries on the role of ferroptosis in the pathogenesis of AKI as well as its therapeutic potential in AKI.
Collapse
|
Review |
6 |
116 |
7
|
Zhang H, Luo YB, Wu W, Zhang L, Wang Z, Dai Z, Feng S, Cao H, Cheng Q, Liu Z. The molecular feature of macrophages in tumor immune microenvironment of glioma patients. Comput Struct Biotechnol J 2021; 19:4603-4618. [PMID: 34471502 PMCID: PMC8383063 DOI: 10.1016/j.csbj.2021.08.019] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] [Imported: 09/06/2023] Open
Abstract
BACKGROUND Gliomas are one of the most common types of primary tumors in central nervous system. Previous studies have found that macrophages actively participate in tumor growth. METHODS Weighted gene co-expression network analysis was used to identify meaningful macrophage-related gene genes for clustering. Pamr, SVM, and neural network were applied for validating clustering results. Somatic mutation and methylation were used for defining the features of identified clusters. Differentially expressed genes (DEGs) between the stratified groups after performing elastic regression and principal component analyses were used for the construction of MScores. The expression of macrophage-specific genes were evaluated in tumor microenvironment based on single cell sequencing analysis. A total of 2365 samples from 15 glioma datasets and 5842 pan-cancer samples were used for external validation of MScore. RESULTS Macrophages were identified to be negatively associated with the survival of glioma patients. Twenty-six macrophage-specific DEGs obtained by elastic regression and PCA were highly expressed in macrophages at single-cell level. The prognostic value of MScores in glioma was validated by the active proinflammatory and metabolic profile of infiltrating microenvironment and response to immunotherapies of samples with this signature. MScores managed to stratify patient survival probabilities in 15 external glioma datasets and pan-cancer datasets, which predicted worse survival outcome. Sequencing data and immunohistochemistry of Xiangya glioma cohort confirmed the prognostic value of MScores. A prognostic model based on MScores demonstrated high accuracy rate. CONCLUSION Our findings strongly support a modulatory role of macrophages, especially M2 macrophages in glioma progression and warrants further experimental studies.
Collapse
Key Words
- ACC, Adrenocortical carcinoma
- BBB, brain blood barrier
- BLCA, Bladder Urothelial Carcinoma
- BRCA, Breast invasive carcinoma
- CDF, cumulative distribution function
- CESC, Cervical squamous cell carcinoma and endocervical adenocarcinoma
- CGGA, Chinese Glioma Genome Atlas
- CHOL, Cholangiocarcinoma
- CNA, copy number alternations
- CNV, copy number variation
- COAD, Colon adenocarcinoma
- CSF-1, colony-stimulating factor-1
- DLBC, Lymphoid Neoplasm Diffuse Large B-cell Lymphoma
- DMP, differentially methylated position
- ESCA, Esophageal carcinoma
- GBM, glioblastoma
- GEO, Gene Expression Omnibus
- GO, gene ontology
- GSEA, gene set enrichment analysis
- GSVA, gene set variation analysis
- Glioma microenvironment
- HNSC, Head and Neck squamous cell carcinoma
- IGR, intergenic region
- IHC, immunohistochemistry
- IL, interleukin
- Immunotherapy
- KEGG, Kyoto Encyclopaedia of Genes and Genomes
- KICH, Kidney Chromophobe
- KIRC, Kidney renal clear cell carcinoma
- KIRP, Kidney renal papillary cell carcinoma
- LGG, low grade glioma
- LIHC, Liver hepatocellular carcinoma
- LUAD, Lung adenocarcinoma
- LUSC, Lung squamous cell carcinoma
- MMP-2, matrix metalloproteinase-2
- MT1, MMP membrane type 1 matrix metalloprotease
- Machine learning
- Macrophage
- OV, Ovarian serous cystadenocarcinoma
- PAAD, Pancreatic adenocarcinoma
- PAM, partition around medoids
- PCA, principal component analysis
- PCPG, Pheochromocytoma and Paraganglioma
- PRAD, Prostate adenocarcinoma
- Prognostic model
- READ, Rectum adenocarcinoma
- SARC, Sarcoma
- SKCM, Skin Cutaneous Melanoma
- SNP, single-nucleotide polymorphism
- SNV, single-nucleotide variant
- STAD, Stomach adenocarcinoma
- SVM, Support Vector Machines
- TAM, tumor associated macrophage
- TCGA, The Cancer Genome Atlas
- TGF-β, tumor growth factor-β
- THCA, Thyroid carcinoma
- THYM, Thymoma
- TIMP-2, tissue inhibitor of metalloproteinase-2
- TLR2, toll-like receptor 2
- TME, tumor microenvironment
- TNFα, tumor necrosis factor α
- TSS, transcription start site
- UCEC, Uterine Corpus Endometrial Carcinoma
- UCS, Uterine Carcinosarcoma
- WGCNA, weighted gene co-expression network analysis
- pamr, prediction analysis for microarrays
Collapse
|
research-article |
4 |
107 |
8
|
Zhang H, Wang R, Yu Y, Liu J, Luo T, Fan F. Glioblastoma Treatment Modalities besides Surgery. J Cancer 2019; 10:4793-4806. [PMID: 31598150 PMCID: PMC6775524 DOI: 10.7150/jca.32475] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/04/2019] [Indexed: 01/04/2023] [Imported: 09/18/2023] Open
Abstract
Glioblastoma multiforme (GBM) is commonly known as the most aggressive primary CNS tumor in adults. The mean survival of it is 14 to 15 months, following the standard therapy from surgery, chemotherapy, to radiotherapy. Efforts in recent decades have brought many novel therapies to light, however, with limitations. In this paper, authors reviewed current treatments for GBM besides surgery. In the past decades, only radiotherapy, temozolomide (TMZ), and tumor treating field (TTF) were approved by FDA. Though promising in preclinical experiments, therapeutic effects of other novel treatments including BNCT, anti-angiogenic therapy, immunotherapy, epigenetic therapy, oncolytic virus therapy, and gene therapy are still either uncertain or discouraging in clinical results. In this review, we went through current clinical trials, underlying causes, and future therapy designs to present neurosurgeons and researchers a sketch of this field.
Collapse
|
Review |
6 |
93 |
9
|
Zhang N, Zhang H, Wu W, Zhou R, Li S, Wang Z, Dai Z, Zhang L, Liu F, Liu Z, Zhang J, Luo P, Liu Z, Cheng Q. Machine learning-based identification of tumor-infiltrating immune cell-associated lncRNAs for improving outcomes and immunotherapy responses in patients with low-grade glioma. Theranostics 2022; 12:5931-5948. [PMID: 35966587 PMCID: PMC9373811 DOI: 10.7150/thno.74281] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/28/2022] [Indexed: 12/14/2022] [Imported: 09/06/2023] Open
Abstract
Rationale: Accumulating evidence demonstrated that long noncoding RNAs (lncRNAs) involved in the regulation of the immune system and displayed a cell-type-specific pattern in immune cell subsets. Given the vital role of tumor-infiltrating lymphocytes in effective immunotherapy, we explored the tumor-infiltrating immune cell-associated lncRNA (TIIClncRNA) in low-grade glioma (LGG), which has never been uncovered yet. Methods: This study utilized a novel computational framework and 10 machine learning algorithms (101 combinations) to screen out TIIClncRNAs by integratively analyzing the sequencing data of purified immune cells, LGG cell lines, and bulk LGG tissues. Results: The established TIIClnc signature based on the 16 most potent TIIClncRNAs could predict outcomes in public datasets and the Xiangya in-house dataset with decent efficiency and showed better performance when compared with 95 published signatures. The TIIClnc signature was strongly correlated to immune characteristics, including microsatellite instability, tumor mutation burden, and interferon γ, and exhibited a more active immunologic process. Furthermore, the TIIClnc signature predicted superior immunotherapy response in multiple datasets across cancer types. Notably, the positive correlation between the TIIClnc signature and CD8, PD-1, and PD-L1 was verified in the Xiangya in-house dataset. Conclusions: The TIIClnc signature enabled a more precise selection of the LGG population who were potential beneficiaries of immunotherapy.
Collapse
|
research-article |
3 |
78 |
10
|
Wang Z, Zhang H, Xu S, Liu Z, Cheng Q. The adaptive transition of glioblastoma stem cells and its implications on treatments. Signal Transduct Target Ther 2021; 6:124. [PMID: 33753720 PMCID: PMC7985200 DOI: 10.1038/s41392-021-00491-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/30/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] [Imported: 09/06/2023] Open
Abstract
Glioblastoma is the most malignant tumor occurring in the human central nervous system with overall median survival time <14.6 months. Current treatments such as chemotherapy and radiotherapy cannot reach an optimal remission since tumor resistance to therapy remains a challenge. Glioblastoma stem cells are considered to be responsible for tumor resistance in treating glioblastoma. Previous studies reported two subtypes, proneural and mesenchymal, of glioblastoma stem cells manifesting different sensitivity to radiotherapy or chemotherapy. Mesenchymal glioblastoma stem cells, as well as tumor cells generate from which, showed resistance to radiochemotherapies. Besides, two metabolic patterns, glutamine or glucose dependent, of mesenchymal glioblastoma stem cells also manifested different sensitivity to radiochemotherapies. Glutamine dependent mesenchymal glioblastoma stem cells are more sensitive to radiotherapy than glucose-dependent ones. Therefore, the transition between proneural and mesenchymal subtypes, or between glutamine-dependent and glucose-dependent, might lead to tumor resistance to radiochemotherapies. Moreover, neural stem cells were also hypothesized to participate in glioblastoma stem cells mediated tumor resistance to radiochemotherapies. In this review, we summarized the basic characteristics, adaptive transition and implications of glioblastoma stem cells in glioblastoma therapy.
Collapse
|
Review |
4 |
65 |
11
|
Zhang H, Zhou Y, Cui B, Liu Z, Shen H. Novel insights into astrocyte-mediated signaling of proliferation, invasion and tumor immune microenvironment in glioblastoma. Biomed Pharmacother 2020; 126:110086. [PMID: 32172060 DOI: 10.1016/j.biopha.2020.110086] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/29/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022] [Imported: 09/06/2023] Open
Abstract
Glioblastoma (GBM) continues to be the most aggressive cancer of the brain. The dismal prognosis is largely attributed to the microenvironment surrounding tumor cells. Astrocytes, the main component of the GBM microenvironment, play several fundamental physiological roles in the central nervous system. During the development of GBM, tumor-associated astrocytes (TAAs) directly contact GBM cells, which activate astrocytes to form reactive astrocytes, facilitating tumor progression, proliferation and migration through multiple well-understood signaling pathways. Notably, TAAs also influence GBM cell behaviors via suppressing immune responses and enhancing the chemoradiotherapy resistance of tumor cells. These new activities are closely linked with the treatment and prognosis of GBM. In this review, we discuss recent advances regarding new functions of reactive astrocytes, including TAA-cancer cell interactions, mechanisms involved in immunosuppressive regulation, and chemoradiotherapy resistance. It is expected that these updated experimental or clinical studies of TAAs may provide a promising approach for GBM treatment in the near future.
Collapse
|
Review |
5 |
64 |
12
|
Wang Z, Su G, Dai Z, Meng M, Zhang H, Fan F, Liu Z, Zhang L, Weygant N, He F, Fang N, Zhang L, Cheng Q. Circadian clock genes promote glioma progression by affecting tumour immune infiltration and tumour cell proliferation. Cell Prolif 2021; 54:e12988. [PMID: 33442944 PMCID: PMC7941241 DOI: 10.1111/cpr.12988] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/07/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] [Imported: 09/06/2023] Open
Abstract
OBJECTIVES Circadian rhythm controls complicated physiological activities in organisms. Circadian clock genes have been related to tumour progression, but its role in glioma is unknown. Therefore, we explored the relationship between dysregulated circadian clock genes and glioma progression. MATERIALS AND METHODS Samples were divided into different groups based on circadian clock gene expression in training dataset (n = 672) and we verified the results in other four validating datasets (n = 1570). The GO and GSEA enrichment analysis were conducted to explore potential mechanism of how circadian clock genes affected glioma progression. The single-cell RNA-Seq analysis was conducted to verified previous results. The immune landscape was evaluated by the ssGSEA and CIBERSORT algorithm. Cell proliferation and viability were confirmed by the CCK8 assay, colony-forming assay and flow cytometry. RESULTS The cluster and risk model based on circadian clock gene expression can predict survival outcome. Samples were scoring by the least absolute shrinkage and selection operator regression analysis, and high scoring tumour was associated with worse survival outcome. Samples in high-risk group manifested higher activation of immune pathway and cell cycle. Tumour immune landscape suggested high-risk tumour infiltrated more immunocytes and more sensitivity to immunotherapy. Interfering TIMELESS expression affected circadian clock gene expression, inhibited tumour cell proliferation and arrested cell cycle at the G0/G1 phase. CONCLUSIONS Dysregulated circadian clock gene expression can affect glioma progression by affecting tumour immune landscape and cell cycle. The risk model can predict glioma survival outcome, and this model can also be applied to pan-cancer.
Collapse
|
research-article |
4 |
59 |
13
|
Zhang H, Zhang N, Wu W, Zhou R, Li S, Wang Z, Dai Z, Zhang L, Liu Z, Zhang J, Luo P, Liu Z, Cheng Q. Machine learning-based tumor-infiltrating immune cell-associated lncRNAs for predicting prognosis and immunotherapy response in patients with glioblastoma. Brief Bioinform 2022; 23:bbac386. [PMID: 36136350 DOI: 10.1093/bib/bbac386] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 12/14/2022] [Imported: 09/06/2023] Open
Abstract
Long noncoding ribonucleic acids (RNAs; lncRNAs) have been associated with cancer immunity regulation. However, the roles of immune cell-specific lncRNAs in glioblastoma (GBM) remain largely unknown. In this study, a novel computational framework was constructed to screen the tumor-infiltrating immune cell-associated lncRNAs (TIIClnc) for developing TIIClnc signature by integratively analyzing the transcriptome data of purified immune cells, GBM cell lines and bulk GBM tissues using six machine learning algorithms. As a result, TIIClnc signature could distinguish survival outcomes of GBM patients across four independent datasets, including the Xiangya in-house dataset, and more importantly, showed superior performance than 95 previously established signatures in gliomas. TIIClnc signature was revealed to be an indicator of the infiltration level of immune cells and predicted the response outcomes of immunotherapy. The positive correlation between TIIClnc signature and CD8, PD-1 and PD-L1 was verified in the Xiangya in-house dataset. As a newly demonstrated predictive biomarker, the TIIClnc signature enabled a more precise selection of the GBM population who would benefit from immunotherapy and should be validated and applied in the near future.
Collapse
|
|
3 |
54 |
14
|
Wang Z, Zhang H, Cheng Q. PDIA4: The basic characteristics, functions and its potential connection with cancer. Biomed Pharmacother 2020; 122:109688. [PMID: 31794946 DOI: 10.1016/j.biopha.2019.109688] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/07/2019] [Accepted: 11/16/2019] [Indexed: 12/19/2022] [Imported: 09/18/2023] Open
Abstract
Disulfide bond formation is catalyzed by the protein disulfide Isomerases (PDI) family. This is a critical step in protein folding which occurs within the endoplasmic reticulum. PDIA4, as a member of the PDI family, can cause the adjustment of αIIβ 3 affinities which activate platelet and promote thrombosis formation. Endoplasmic reticulum response is triggered by accumulation of abnormal folding proteins concomitant with increasing PDIA4 expression. Besides, current researches indicate that activated platelets and ERS response affect tumor progression. And PDIA4, as previous reported, also participates in tumor progression by affecting cell apoptosis and DNA repair machinery without specific mechanisms revealed.Therefore, PDI inhibitor might possess great potential value in against tumor progression. In this review, we summarize information on PDIA4 including its the basic characteristics and its implication on tumor.
Collapse
|
Review |
5 |
53 |
15
|
Zhang H, Cui B, Zhou Y, Wang X, Wu W, Wang Z, Dai Z, Cheng Q, Yang K. B2M overexpression correlates with malignancy and immune signatures in human gliomas. Sci Rep 2021; 11:5045. [PMID: 33658560 PMCID: PMC7930032 DOI: 10.1038/s41598-021-84465-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/17/2021] [Indexed: 12/11/2022] [Imported: 09/06/2023] Open
Abstract
Because of the limited treatment strategy of gliomas, the key of diagnosis and treatment is finding new molecular biomarkers. Here, we explored the potential of β2-microglobulin (B2M) to serve as a hopeful candidate for immunotherapy or diagnostic biomarker in gliomas. The genomic profiles, clinical characteristics, and immune signatures were analyzed based on TCGA and CGGA databases. We carried out the whole statistical analyses using R project. High B2M expression correlated with worse prognosis. Somatic mutations of gliomas with high B2M expression are associated with PTEN deletion and EGFR amplification. Isocitrate dehydrogenase (IDH) mutations accounted for 82% in gliomas with low B2M expression. In addition, B2M positively correlated with ESTIMATE scores, interacted with infiltrating immune and stromal cell types. B2M also suppressed anti-tumor immunity through immune related processes. Meanwhile, B2M was associated with immune checkpoint molecules and inflammatory activities. Finally, functional annotation of the identified B2M related genes verified that B2M was a potential candidate for immunotherapy. We confirmed that B2M played a critical role in tumor progression, patient prognosis and immunotherapy of gliomas.
Collapse
|
research-article |
4 |
52 |
16
|
Qu C, Zhang H, Cao H, Tang L, Mo H, Liu F, Zhang L, Yi Z, Long L, Yan L, Wang Z, Zhang N, Luo P, Zhang J, Liu Z, Ye W, Liu Z, Cheng Q. Tumor buster - where will the CAR-T cell therapy 'missile' go? Mol Cancer 2022; 21:201. [PMID: 36261831 PMCID: PMC9580202 DOI: 10.1186/s12943-022-01669-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] [Imported: 09/06/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell (CAR-T cell) therapy based on gene editing technology represents a significant breakthrough in personalized immunotherapy for human cancer. This strategy uses genetic modification to enable T cells to target tumor-specific antigens, attack specific cancer cells, and bypass tumor cell apoptosis avoidance mechanisms to some extent. This method has been extensively used to treat hematologic diseases, but the therapeutic effect in solid tumors is not ideal. Tumor antigen escape, treatment-related toxicity, and the immunosuppressive tumor microenvironment (TME) limit their use of it. Target selection is the most critical aspect in determining the prognosis of patients receiving this treatment. This review provides a comprehensive summary of all therapeutic targets used in the clinic or shown promising potential. We summarize CAR-T cell therapies' clinical trials, applications, research frontiers, and limitations in treating different cancers. We also explore coping strategies when encountering sub-optimal tumor-associated antigens (TAA) or TAA loss. Moreover, the importance of CAR-T cell therapy in cancer immunotherapy is emphasized.
Collapse
|
Review |
3 |
38 |
17
|
Zhang N, Zhang H, Wang Z, Dai Z, Zhang X, Cheng Q, Liu Z. Immune Infiltrating Cells-Derived Risk Signature Based on Large-scale Analysis Defines Immune Landscape and Predicts Immunotherapy Responses in Glioma Tumor Microenvironment. Front Immunol 2021; 12:691811. [PMID: 34489938 PMCID: PMC8418124 DOI: 10.3389/fimmu.2021.691811] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/21/2021] [Indexed: 01/22/2023] [Imported: 09/06/2023] Open
Abstract
The glioma tumor microenvironment (TME), composed of several noncancerous cells and biomolecules is known for its complexity of cancer-immune system interaction. Given that, novel risk signature is required for predicting glioma patient responses to immunotherapy. In this study, we systematically evaluated the TME infiltration pattern of 2877 glioma samples. TME phenotypes were determined using the Partitioning Around Medoid method. Machine learning including SVM-RFE and Principal component analysis (PCA) were used to construct a TME scoring system. A total of 857 glioma samples from four datasets were used for external validation of the TME-score. The correlation of TME phenotypes and TME-scores with diverse clinicopathologic characteristics, genomic features, and immunotherapeutic efficacy in glioma patients was determined. Immunohistochemistry staining for the M2 macrophage marker CD68 and CD163, mast cell marker CD117, neutrophil marker CD66b, and RNA sequencing of glioma samples from the XYNS cohort were performed. Two distinct TME phenotypes were identified. High TME-score correlated with a high number of immune infiltrating cells, elevated expression of immune checkpoints, increased mutation rates of oncogenes, and poor survival of glioma patients. Moreover, high TME-score exhibited remarkable association with multiple immunomodulators that could potentially mediate immune escape of cancer. Thus, the TME-score showed the potential to predict the efficacy of anti-PD-1 immunotherapy. Univariate and multivariate analyses demonstrated the TME-score to be a valuable prognostic biomarker for gliomas. Our study demonstrated that TME could potentially influence immunotherapy efficacy in melanoma patients whereas its role in immunotherapy of glioma patients remains unknown. Therefore, a better understanding of the TME landscape in gliomas would promote the development of novel immunotherapy strategies against glioma.
Collapse
|
research-article |
4 |
37 |
18
|
Zhang H, Zhou Y, Cheng Q, Dai Z, Wang Z, Liu F, Fan F, Cui B, Cao H. PDIA3 correlates with clinical malignant features and immune signature in human gliomas. Aging (Albany NY) 2020; 12:15392-15413. [PMID: 32687065 PMCID: PMC7467394 DOI: 10.18632/aging.103601] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/13/2020] [Indexed: 01/03/2023] [Imported: 09/18/2023]
Abstract
Since therapeutic strategies are limited in gliomas, new molecules or biomarkers are essential for diagnosis and therapy. Here, we investigated expression of protein disulfide isomerase family A member 3 (PDIA3) in gliomas to evaluate its potential as a promising immune target or biomarker. Transcriptome level, genomic profiles and its association with clinical practice from TCGA and CGGA databases were analyzed. All statistical analyses were performed using R project. In gliomas with high PDIA3 expression, somatic mutations showed the correlation with loss of PTEN and amplification of EGFR; meanwhile, in PDIA3 low gliomas, mutations in isocitrate dehydrogenase (IDH) took 80%. Moreover, PDIA3 was found to positively correlate with ESTIMATE scores and diverse infiltrating immune and stromal cell types localizing in tumor microenvironment. PDIA3 was found to be highly correlated with macrophage and T cells based on single cell sequencing. Additionally, PDIA3 was also involved in suppression of anti-tumor immunity via multiple immune regulatory processes. Finally, PDIA3 was observed to correlate with other immune checkpoint inhibitors and associated with inflammation. Our findings identified the significance of PDIA3 in the process of gliomas and demonstrated the potential of PDIA3 as a molecular target in prognosis and immune related treatment of gliomas.
Collapse
|
research-article |
5 |
36 |
19
|
Zhang N, Dai Z, Wu W, Wang Z, Cao H, Zhang Y, Wang Z, Zhang H, Cheng Q. The Predictive Value of Monocytes in Immune Microenvironment and Prognosis of Glioma Patients Based on Machine Learning. Front Immunol 2021; 12:656541. [PMID: 33959130 PMCID: PMC8095378 DOI: 10.3389/fimmu.2021.656541] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] [Imported: 09/06/2023] Open
Abstract
Gliomas are primary malignant brain tumors. Monocytes have been proved to actively participate in tumor growth. Weighted gene co-expression network analysis was used to identify meaningful monocyte-related genes for clustering. Neural network and SVM were applied for validating clustering results. Somatic mutation and copy number variation were used for defining the features of identified clusters. Differentially expressed genes (DEGs) between the stratified groups after performing elastic regression and principal component analyses were used for the construction of risk scores. Monocytes were associated with glioma patients' survival and exhibited high predictive value. The prognostic value of risk score in glioma was validated by the abundant expression of immune checkpoint and metabolic profile. Additionally, high risk score was positively associated with the expression of immunogenic and antigen presenting factors, which indicated high immune infiltration. A prognostic model based on risk score demonstrated high accuracy rate of receiver operating characteristic curves. Compared with previous studies, our research dissected functional roles of monocytes from large-scale analysis. Findings of our analyses strongly support an immune modulatory and prognostic role of monocytes in glioma progression. Notably, monocyte could be an effective predictor for therapy responses of glioma patients.
Collapse
|
research-article |
4 |
35 |
20
|
Luo H, Zhang H, Mao J, Cao H, Tao Y, Zhao G, Zhang Z, Zhang N, Liu Z, Zhang J, Luo P, Xia Y, Cheng Y, Xie Z, Cheng Q, Liu G. Exosome-based nanoimmunotherapy targeting TAMs, a promising strategy for glioma. Cell Death Dis 2023; 14:235. [PMID: 37012233 PMCID: PMC10070666 DOI: 10.1038/s41419-023-05753-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 04/05/2023] [Imported: 09/06/2023]
Abstract
Exosomes, the cell-derived small extracellular vehicles, play a vital role in intracellular communication by reciprocally transporting DNA, RNA, bioactive protein, chains of glucose, and metabolites. With great potential to be developed as targeted drug carriers, cancer vaccines and noninvasive biomarkers for diagnosis, treatment response evaluation, prognosis prediction, exosomes show extensive advantages of relatively high drug loading capacity, adjustable therapeutic agents release, enhanced permeation and retention effect, striking biodegradability, excellent biocompatibility, low toxicity, etc. With the rapid progression of basic exosome research, exosome-based therapeutics are gaining increasing attention in recent years. Glioma, the standard primary central nervous system (CNS) tumor, is still up against significant challenges as current traditional therapies of surgery resection combined with radiotherapy and chemotherapy and numerous efforts into new drugs showed little clinical curative effect. The emerging immunotherapy strategy presents convincing results in many tumors and is driving researchers to exert its potential in glioma. As the crucial component of the glioma microenvironment, tumor-associated macrophages (TAMs) significantly contribute to the immunosuppressive microenvironment and strongly influence glioma progression via various signaling molecules, simultaneously providing new insight into therapeutic strategies. Exosomes would substantially assist the TAMs-centered treatment as drug delivery vehicles and liquid biopsy biomarkers. Here we review the current potential exosome-mediated immunotherapeutics targeting TAMs in glioma and conclude the recent investigation on the fundamental mechanisms of diversiform molecular signaling events by TAMs that promote glioma progression.
Collapse
|
Review |
2 |
34 |
21
|
Du J, Jiang S, Hu Z, Tang S, Sun Y, He J, Li Z, Yi B, Wang J, Zhang H, Li YC. Vitamin D receptor activation protects against lipopolysaccharide-induced acute kidney injury through suppression of tubular cell apoptosis. Am J Physiol Renal Physiol 2019; 316:F1068-F1077. [PMID: 30864841 DOI: 10.1152/ajprenal.00332.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] [Imported: 09/18/2023] Open
Abstract
Acute kidney injury (AKI) is a common complication of sepsis characterized by a rapid degradation of renal function. The effect of vitamin D on AKI remains poorly understood. Here, we showed that vitamin D receptor (VDR) activation protects against lipopolysaccharide (LPS)-induced AKI by blocking renal tubular epithelial cell apoptosis. Mice lacking VDR developed more severe AKI than wild-type (WT) control mice after LPS treatment, which was manifested by marked increases in body weight loss and accumulation of serum blood urea nitrogen and creatinine as well as the magnitude of apoptosis of tubular epithelial cells. In the renal cortex, LPS treatment led to more dramatic downregulation of Bcl-2, more robust induction of p53-upregulated modulator of apoptosis (PUMA) and miR-155, and more severe caspase-3 activation in VDR knockout mice compared with WT control mice. Conversely, paricalcitol pretreatment markedly prevented LPS-induced AKI. Paricalcitol ameliorated body weight loss, attenuated serum blood urea nitrogen and creatinine accumulation, blocked tubular cell apoptosis, prevented the suppression of Bcl-2, and reversed PUMA and miR-155 induction and caspase-3 activation in LPS-treated WT mice. In HK2 cells, LPS induced PUMA and miR-155 by activating NF-κB, whereas 1,25(OH)2D3 blocked PUMA and miR-155 induction by repressing NF-κB activation. Both PUMA and miR-155 target Bcl-2 to promote apoptosis; namely, PUMA inhibits Bcl-2 activity, whereas miR-155 promotes Bcl-2 mRNA degradation and inhibits Bcl-2 protein translation. Collectively, these data provide strong evidence that LPS induces tubular cell apoptosis via upregulating PUMA and miR-155, whereas vitamin D/VDR signaling protects against AKI by blocking NF-κB-mediated PUMA and miR-155 upregulation.
Collapse
|
|
6 |
32 |
22
|
Hu LF, Yin SJ, Zhang H, Yang FQ. Recent developments of monolithic and open-tubular capillary electrochromatography (2017-2019). J Sep Sci 2020; 43:1942-1966. [PMID: 31909566 DOI: 10.1002/jssc.201901168] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/26/2019] [Accepted: 12/28/2019] [Indexed: 12/21/2022] [Imported: 01/12/2025]
Abstract
Capillary electrochromatography, which combined the high selectivity of high-performance liquid chromatography and the high separation efficiency of capillary electrophoresis, is an attractive separation tool. In this review, the developments on monolithic and open tubular capillary electrochromatography during 2017 to August 2019 are summarized. Considering the development of novel stationary phases is the most active research field in capillary electrochromatography, monolithic capillary electrochromatography is classified according to the polymer-based and hybrid monolithic columns, while open-tubular capillary electrochromatography is categorized by cyclodextrin, silica, polymer, nanomaterials, microporous materials, and biomaterials-based open tubular columns.
Collapse
|
Review |
5 |
30 |
23
|
Zhang H, Wang Y, Zhao Y, Liu T, Wang Z, Zhang N, Dai Z, Wu W, Cao H, Feng S, Zhang L, Cheng Q, Liu Z. PTX3 mediates the infiltration, migration, and inflammation-resolving-polarization of macrophages in glioblastoma. CNS Neurosci Ther 2022; 28:1748-1766. [PMID: 35855654 PMCID: PMC9532932 DOI: 10.1111/cns.13913] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] [Imported: 09/06/2023] Open
Abstract
INTRODUCTION Pentraxin 3 (PTX3) is an essential regulator of the immune system. However, the immune-modulatory role of PTX3 in the tumor microenvironment of glioma has not been elucidated. METHODS The RNA seq samples were obtained from The Cancer Genome Atlas (TCGA) and the China Glioma Genome Atlas (CGGA) datasets. The single-cell sequencing data of glioblastoma (GBM) samples were obtained from the Single Cell Portal platform (http://singlecell.broadinstitute.org). Immunohistochemistry was used to assess PTX3 expression, HAVCR2, PD-1, PD-L1, and CD276 in glioma sections from the Xiangya cohort (n = 60). Multiplex immunofluorescence staining of PTX3, CD68, and CD163 was performed in several solid cancer types, including GBM. HMC3 was cocultured with U251 and U87, and transwell assay and flow cytometry assay were performed to explore the migration and polarization activity of HMC3. RESULTS PTX3 expression is significantly increased in GBM. PTX3 expression predicts worse survival in the Xiangya cohort. PTX3 is closely related to the expression of PD-1, PD-L1, CD276, and HAVCR2 in the tumor microenvironment. Additionally, PTX3 is involved in tumorigenic and immunogenic processes, especially the activity of macrophages based on various signaling pathways in cellular communications and critical transcription factors. Specifically, PTX3 actively mediates macrophages' infiltration, migration, and inflammation-resolving-polarization. PTX3 could also predict immunotherapy response. CONCLUSION PTX3 is critically involved in macrophage infiltration, migration, and inflammation-resolving-polarization and modulates an immunosuppressive microenvironment.
Collapse
|
research-article |
3 |
29 |
24
|
Li S, Zhang N, Liu S, Zhang H, Liu J, Qi Y, Zhang Q, Li X. ITGA5 Is a Novel Oncogenic Biomarker and Correlates With Tumor Immune Microenvironment in Gliomas. Front Oncol 2022; 12:844144. [PMID: 35371978 PMCID: PMC8971292 DOI: 10.3389/fonc.2022.844144] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022] [Imported: 09/06/2023] Open
Abstract
Gliomas are the most aggressive primary intracranial malignancies with poor overall survival. ITGA5 is one member of the integrin adhesion molecule family and is implicated in cancer metastasis and oncogenesis. However, few studies have explored the association between tumor immune microenvironment and ITGA5 expression level in gliomas. Firstly, we analyzed 3,047 glioma patient samples collected from the TCGA, the CGGA, and the GEO databases, proving that high ITGA5 expression positively related to aggressive clinicopathological features and poor survival in glioma patients. Then, based on the ITGA5 level, immunological characteristics and genomic alteration were explored through multiple algorithms. We observed that ITGA5 was involved in pivotal oncological pathways, immune-related processes, and distinct typical genomic alterations in gliomas. Notably, ITGA5 was found to engage in remolding glioma immune infiltration and immune microenvironment, manifested by higher immune cell infiltration when ITGA5 is highly expressed. We also demonstrated a strong correlation between ITGA5 and immune checkpoint molecules that may be beneficial from immune checkpoint blockade strategies. In addition, ITGA5 was found to be a robust and sensitive indicator for plenty of chemotherapy drugs through drug sensitivity prediction. Altogether, our comprehensive analyses deciphered the prognostic, immunological, and therapeutic value of ITGA5 in glioma, thus improving individual and precise therapy for combating gliomas.
Collapse
|
research-article |
3 |
29 |
25
|
Zhang N, Zhang H, Liu Z, Dai Z, Wu W, Zhou R, Li S, Wang Z, Liang X, Wen J, Zhang X, Zhang B, Ouyang S, Zhang J, Luo P, Li X, Cheng Q. An artificial intelligence network-guided signature for predicting outcome and immunotherapy response in lung adenocarcinoma patients based on 26 machine learning algorithms. Cell Prolif 2023; 56:e13409. [PMID: 36822595 PMCID: PMC10068958 DOI: 10.1111/cpr.13409] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/27/2022] [Accepted: 01/12/2023] [Indexed: 02/25/2023] [Imported: 09/06/2023] Open
Abstract
The immune cells play an increasingly vital role in influencing the proliferation, progression, and metastasis of lung adenocarcinoma (LUAD) cells. However, the potential of immune cells' specific genes-based model remains largely unknown. In the current study, by analysing single-cell RNA sequencing (scRNA-seq) data and bulk RNA sequencing data, the tumour-infiltrating immune cell (TIIC) associated signature was developed based on a total of 26 machine learning (ML) algorithms. As a result, the TIIC signature score could predict survival outcomes of LUAD patients across five independent datasets. The TIIC signature score showed superior performance to 168 previously established signatures in LUAD. Moreover, the TIIC signature score developed by the immunofluorescence staining of the tissue array of LUAD patients showed a prognostic value. Our research revealed a solid connection between TIIC signature score and tumour immunity as well as metabolism. Additionally, it has been discovered that the TIIC signature score can forecast genomic change, chemotherapeutic drug susceptibility, and-most significantly-immunotherapeutic response. As a newly demonstrated biomarker, the TIIC signature score facilitated the selection of the LUAD population who would benefit from future clinical stratification.
Collapse
|
research-article |
2 |
29 |