1
|
Kim HS, Lee KS, Bae HJ, Eun JW, Shen Q, Park SJ, Shin WC, Yang HD, Park M, Park WS, Kang YK, Nam SW. MicroRNA-31 functions as a tumor suppressor by regulating cell cycle and epithelial-mesenchymal transition regulatory proteins in liver cancer. Oncotarget 2015; 6:8089-8102. [PMID: 25797269 PMCID: PMC4480737 DOI: 10.18632/oncotarget.3512] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/04/2015] [Indexed: 12/21/2022] [Imported: 10/18/2024] Open
Abstract
MicroRNA-31 (miR-31) is among the most frequently altered microRNAs in human cancers and altered expression of miR-31 has been detected in a large variety of tumor types, but the functional role of miR-31 still hold both tumor suppressive and oncogenic roles in different tumor types. MiR-31 expression was down-regulated in a large cohort of hepatocellular carcinoma (HCC) patients, and low expression of miR-31 was significantly associated with poor prognosis of HCC patients. Ectopic expression of miR-31 mimics suppressed HCC cell growth by transcriptional deregulation of cell cycle proteins. Additional study evidenced miR-31 directly to suppress HDAC2 and CDK2 expression by inhibiting mRNA translation in HCC cells. We also found that ectopic expression of miR-31 mimics reduced metastatic potential of HCC cells by selectively regulating epithelial-mesenchymal transition (EMT) regulatory proteins such as N-cadherin, E-cadherin, vimentin and fibronectin. HCC tissues derived from chemical-induced rat liver cancer models validated that miR-31 expression is significantly down-regulated, and that those cell cycle- and EMT-regulatory proteins are deregulated in rat liver cancer. Overall, we suggest that miR-31 functions as a tumor suppressor by selectively regulating cell cycle and EMT regulatory proteins in human hepatocarcinogenesis providing a novel target for the molecular treatment of liver malignancies.
Collapse
|
research-article |
10 |
92 |
2
|
Shen Q, Eun JW, Lee K, Kim HS, Yang HD, Kim SY, Lee EK, Kim T, Kang K, Kim S, Min DH, Oh SN, Lee YJ, Moon H, Ro SW, Park WS, Lee JY, Nam SW. Barrier to autointegration factor 1, procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3, and splicing factor 3b subunit 4 as early-stage cancer decision markers and drivers of hepatocellular carcinoma. Hepatology 2018; 67:1360-1377. [PMID: 29059470 DOI: 10.1002/hep.29606] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/20/2017] [Accepted: 10/16/2017] [Indexed: 01/05/2023] [Imported: 10/18/2024]
Abstract
UNLABELLED An accurate tool enabling early diagnosis of hepatocellular carcinoma (HCC) is clinically important, given that early detection of HCC markedly improves survival. We aimed to investigate the molecular markers underlying early progression of HCC that can be detected in precancerous lesions. We designed a gene selection strategy to identify potential driver genes by integrative analysis of transcriptome and clinicopathological data of human multistage HCC tissues, including precancerous lesions, low- and high-grade dysplastic nodules. The gene selection process was guided by detecting the selected molecules in both HCC and precancerous lesion. Using various computational approaches, we selected 10 gene elements as a candidate and, through immunohistochemical staining, showed that barrier to autointegration factor 1 (BANF1), procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 (PLOD3), and splicing factor 3b subunit 4 (SF3B4) are HCC decision markers with superior capability to diagnose early-stage HCC in a large cohort of HCC patients, as compared to the currently popular trio of HCC diagnostic markers: glypican 3, glutamine synthetase, and heat-shock protein 70. Targeted inactivation of BANF1, PLOD3, and SF3B4 inhibits in vitro and in vivo liver tumorigenesis by selectively modulating epithelial-mesenchymal transition and cell-cycle proteins. Treatment of nanoparticles containing small-interfering RNAs of the three genes suppressed liver tumor incidence as well as tumor growth rates in a spontaneous mouse HCC model. We also demonstrated that SF3B4 overexpression triggers SF3b complex to splice tumor suppressor KLF4 transcript to nonfunctional skipped exon transcripts. This contributes to malignant transformation and growth of hepatocyte through transcriptional inactivation of p27Kip1 and simultaneously activation of Slug genes. CONCLUSION The findings suggest molecular markers of BANF1, PLOD3, and SF3B4 indicating early-stage HCC in precancerous lesion, and also suggest drivers for understanding the development of hepatocarcinogenesis. (Hepatology 2018;67:1360-1377).
Collapse
|
|
7 |
82 |
3
|
Bae HJ, Jung KH, Eun JW, Shen Q, Kim HS, Park SJ, Shin WC, Yang HD, Park WS, Lee JY, Nam SW. MicroRNA-221 governs tumor suppressor HDAC6 to potentiate malignant progression of liver cancer. J Hepatol 2015; 63:408-419. [PMID: 25817558 DOI: 10.1016/j.jhep.2015.03.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 03/04/2015] [Accepted: 03/16/2015] [Indexed: 12/31/2022] [Imported: 10/18/2024]
Abstract
BACKGROUND & AIMS Most common reason behind changes in histone deacetylase (HDAC) function is its overexpression in cancer. However, among HDACs in liver cancer, HDAC6 is uniquely endowed with a tumor suppressor, but the mechanism underlying HDAC6 inactivation has yet to be uncovered. METHODS Microarray profiling and target prediction programs were used to identify miRNAs targeting HDAC6. A series of inhibitors, activators and siRNAs was introduced to validate regulatory mechanisms for microRNA-221-3p (miR-221) governing HDAC6 in hepatocarcinogenesis. RESULTS Comprehensive miRNA profiling analysis identified seven putative endogenous miRNAs that are significantly upregulated in hepatocellular carcinoma (HCC). While miR-221 was identified as a suppressor of HDAC6 by ectopic expression of miRNA mimics in Dicer knockdown cells, targeted-disruption of miR-221 repressed cancer cell growth through derepressing HDAC6 expression. Suppression of HDAC6 via miR-221 was induced by JNK/c-Jun signaling in liver cancer cells but not in normal hepatic cells. Additionally, cytokine-induced NF-κBp65 independently regulated miR-221, thereby suppressing HDAC6 expression in HCC cells. HCC tissues derived from chemical-induced rat and H-ras12V transgenic mice liver cancer models validated that JNK/c-Jun activation and NF-κBp65 nuclear translocation are essential for the transcription of miR-221 leading to repression of HDAC6 in HCC. CONCLUSIONS Our findings suggest that the functional loss or suppression of the tumor suppressor HDAC6 is caused by induction of miR-221 through coordinated JNK/c-Jun- and NF-κB-signaling pathways during liver tumorigenesis, providing a novel target for the molecular treatment of liver malignancies.
Collapse
|
|
10 |
76 |
4
|
Yang HD, Kim PJ, Eun JW, Shen Q, Kim HS, Shin WC, Ahn YM, Park WS, Lee JY, Nam SW. Oncogenic potential of histone-variant H2A.Z.1 and its regulatory role in cell cycle and epithelial-mesenchymal transition in liver cancer. Oncotarget 2016; 7:11412-11423. [PMID: 26863632 PMCID: PMC4905482 DOI: 10.18632/oncotarget.7194] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/23/2016] [Indexed: 12/28/2022] [Imported: 10/18/2024] Open
Abstract
H2A.Z is a highly conserved H2A variant, and two distinct H2A.Z isoforms, H2A.Z.1 and H2A.Z.2, have been identified as products of two non-allelic genes, H2AFZ and H2AFV. H2A.Z has been reported to be overexpressed in breast, prostate and bladder cancers, but most studies did not clearly distinguish between isoforms. One recent study reported a unique role for the H2A.Z isoform H2A.Z.2 as a driver of malignant melanoma. Here we first report that H2A.Z.1 plays a pivotal role in the liver tumorigenesis by selectively regulating key molecules in cell cycle and epithelial-mesenchymal transition (EMT). H2AFZ expression was significantly overexpressed in a large cohort of hepatocellular carcinoma (HCC) patients, and high expression of H2AFZ was significantly associated with their poor prognosis. H2A.Z.1 overexpression was demonstrated in a subset of human HCC and cell lines. H2A.Z.1 knockdown suppressed HCC cell growth by transcriptional deregulation of cell cycle proteins and caused apoptotic cell death of HCC cells. We also observed that H2A.Z.1 knockdown reduced the metastatic potential of HCC cells by selectively modulating epithelial-mesenchymal transition regulatory proteins such as E-cadherin and fibronectin. In addition, H2A.Z.1 knockdown reduced the in vivo tumor growth rate in a mouse xenograft model. In conclusion, our findings suggest the oncogenic potential of H2A.Z.1 in liver tumorigenesis and that it plays established role in accelerating cell cycle transition and EMT during hepatocarcinogenesis. This makes H2A.Z.1 a promising target in liver cancer therapy.
Collapse
|
research-article |
9 |
68 |
5
|
Yang HD, Kim HS, Kim SY, Na MJ, Yang G, Eun JW, Wang HJ, Cheong JY, Park WS, Nam SW. HDAC6 Suppresses Let-7i-5p to Elicit TSP1/CD47-Mediated Anti-Tumorigenesis and Phagocytosis of Hepatocellular Carcinoma. Hepatology 2019; 70:1262-1279. [PMID: 30991448 DOI: 10.1002/hep.30657] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/30/2019] [Indexed: 12/24/2022] [Imported: 10/18/2024]
Abstract
Histone deacetylase 6 (HDAC6) uniquely serves as a tumor suppressor in hepatocellular carcinogenesis, but the underlying mechanisms leading to tumor suppression are not fully understood. To identify comprehensive microRNAs (miRNAs) regulated by HDAC6 in hepatocellular carcinogenesis, differential miRNA expression analysis of HDAC6-transfected Hep3B cells was performed. Using integrative analyses of publicly available transcriptome data and miRNA target prediction, we selected five candidate miRNAs and, through in vitro functional validation, showed that let-7i-5p specifically suppressed thrombospondin-1 (TSP1) in hepatocellular carcinoma (HCC). Ectopic expression of antisense let-7i-5p (AS-let-7i-5p) inhibited in vitro tumorigenesis of HCC cells. In addition, treatments of partially purified TSP1 from culture cell media (ppTSP1) and recombinant TSP1 (rTSP1) exhibited similar effects with AS-let-7i-5p treatment on the same HCC cells, whereas TSP1 neutralizing antibody treatment significantly attenuated these effects. Notably, treatments of HDAC6 plasmid, AS-let-7i-5p, ppTSP1, and rTSP1 significantly suppressed in vitro angiogenesis and metastatic potential of HCC cells, but the co-treatment of TSP1 antibody specific to cluster of differentiation 47 (CD47) binding domain successfully blocked these effects in the same cells. Furthermore, we demonstrated that recovery of HDAC6 elicited let-7i-5p suppression to de-repress TSP1 expression; therefore, it occupied the CD47 receptor to block CD47-SIRPα-mediated anti-phagocytosis of macrophage in HCC. We also observed that HCC-derived exosomal let-7i-5p suppressed TSP1 of recipient hepatocyte cells. Treatments of HDAC6 plasmid, AS-let-7i-5p, and rTSP1 suppressed tumor incidence as well as tumor growth rates in a spontaneous mouse HCC model. Conclusion: Our findings suggest that the HDAC6-let-7i-5p-TSP1 regulatory pathway suppresses neoplastic and antiphagocytic behaviors of HCC by interacting with cell surface receptor CD47 in HCC and neighboring cells of tumor microenvironment, providing a therapeutic target for the treatment of liver malignancy and metastasis.
Collapse
|
|
6 |
63 |
6
|
Noh JH, Bae HJ, Eun JW, Shen Q, Park SJ, Kim HS, Nam B, Shin WC, Lee EK, Lee K, Jang JJ, Park WS, Lee JY, Nam SW. HDAC2 provides a critical support to malignant progression of hepatocellular carcinoma through feedback control of mTORC1 and AKT. Cancer Res 2014; 74:1728-1738. [PMID: 24448241 DOI: 10.1158/0008-5472.can-13-2109] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] [Imported: 10/18/2024]
Abstract
Aberrant regulation of histone deacetylase 2 (HDAC2) contributes to malignant progression in various cancers, but the underlying mechanism leading to the activation of oncogenic HDAC2 remains unknown. In this study, we show that HDAC2 expression is upregulated in a large cohort of patients with human hepatocellular carcinoma, and that high expression of HDAC2 was significantly associated with poor prognosis of patients with hepatocellular carcinoma. We found that mTORC1/NF-κBp50 signaling is necessary for the growth factor-induced HDAC2 and is sustained in hepatocellular carcinoma, but not in normal hepatic cells. Growth factor-induced mTORC1 activates the nuclear translocation of NF-κBp50, where it binds to the intragenic sequences of the HDAC2 gene and promotes its transcription. Hepatocellular carcinoma tissues derived from chemical-induced mouse and rat liver cancer models validated that mTORC1 activation and NF-κBp50 nuclear translocation are essential for the transcriptional activation of oncogenic HDAC2 in hepatocellular carcinoma. In addition, we demonstrate that HDAC2 is required to maintain mTORC1 activity by stabilizing the mTOR/RAPTOR complex. Elevated expression of HDAC2 triggers a positive feedback loop that activates AKT phosphorylation via the transcriptional modulation of phosphoinositide signaling molecules. Bioinformatics analysis of HDAC2 signature and immunoblot analysis of mesenchymal genes also evidenced that HDAC2 plays a role in the malignant behavior of tumor cells by Snail induction and simultaneously E-cadherin suppression in hepatocellular carcinoma cells. These findings establish a molecular mechanism responsible for the activation of oncogenic HDAC2, which explains how growth factor-induced HDAC2 maintains mitogenic signaling and function during hepatocellular malignant progression and provide a novel strategy for therapeutic intervention in liver cancer. Cancer Res; 74(6); 1728-38. ©2014 AACR.
Collapse
|
|
11 |
47 |
7
|
Shen Q, Bae HJ, Eun JW, Kim HS, Park SJ, Shin WC, Lee EK, Park S, Park WS, Lee JY, Nam SW. MiR-101 functions as a tumor suppressor by directly targeting nemo-like kinase in liver cancer. Cancer Lett 2014; 344:204-211. [PMID: 24189458 DOI: 10.1016/j.canlet.2013.10.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/25/2013] [Accepted: 10/27/2013] [Indexed: 12/17/2022] [Imported: 10/18/2024]
Abstract
Nemo-like kinase (NLK), an evolutionarily conserved MAP kinase-related kinase, has been reported to be involved in the development of hepatocellular carcinoma (HCC), but the underlying mechanisms leading to oncogenic NLK are poorly understood. A comprehensive microRNA (miRNA) profiling analysis on human HCC tissues identified four downregulated miRNAs that may target NLK. Ectopic expression of miRNA mimics suggested that miR-101 could suppress NLK in HCC cells. Notably, ectopic miR-101 expression repressed cancer cell growth and proliferation and imitated NLK knockdown effect on HCC cells. In conclusion, we suggest that miR-101 functions as a tumor suppressor by regulating abnormal NLK activity in liver.
Collapse
|
|
11 |
46 |
8
|
Eun JW, Kim HS, Shen Q, Yang HD, Kim SY, Yoon JH, Park WS, Lee JY, Nam SW. MicroRNA-495-3p functions as a tumor suppressor by regulating multiple epigenetic modifiers in gastric carcinogenesis. J Pathol 2018; 244:107-119. [PMID: 28991363 DOI: 10.1002/path.4994] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/18/2017] [Accepted: 10/03/2017] [Indexed: 02/06/2023] [Imported: 10/18/2024]
Abstract
MicroRNAs (miRNAs) engage in complex interactions with the machinery that controls the transcriptome and concurrently target multiple mRNAs. Here, we demonstrate that microRNA-495-3p (miR-495-3p) functions as a potent tumor suppressor by governing ten oncogenic epigenetic modifiers (EMs) in gastric carcinogenesis. From the large cohort transcriptome datasets of gastric cancer (GC) patients available from The Cancer Genome Atlas (TCGA) and the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO), we were able to recapitulate 15 EMs as significantly overexpressed in GC among the 51 EMs that were previously reported to be involved in cancer progression. Computational target prediction yielded miR-495-3p, which targets as many as ten of the 15 candidate oncogenic EMs. Ectopic expression of miRNA mimics in GC cells caused miR-495-3p to suppress ten EMs, and inhibited tumor cell growth and proliferation via caspase-dependent and caspase-independent cell death processing. In addition, in vitro metastasis assays showed that miR-495-3p plays a role in the metastatic behavior of GC cells by regulating SLUG, vimentin, and N-cadherin. Furthermore, treatment of GC cells with 5-aza-2'-deoxcytidine restored miR-495-3p expression; sequence analysis revealed hypermethylation of the miR-495-3p promoter region in GC cells. A negative regulatory loop is proposed, whereby DNMT1, among ten oncogenic EMs, regulates miR-495-3p expression via hypermethylation of the miR-495-3p promoter. Our findings suggest that the functional loss or suppression of miR-495-3p triggers overexpression of multiple oncogenic EMs, and thereby contributes to malignant transformation and growth of gastric epithelial cells. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
|
|
7 |
37 |
9
|
Kim SY, Shen Q, Son K, Kim HS, Yang HD, Na MJ, Shin E, Yu S, Kang K, You JS, Yu KR, Jeong SM, Lee EK, Ahn YM, Park WS, Nam SW. SMARCA4 oncogenic potential via IRAK1 enhancer to activate Gankyrin and AKR1B10 in liver cancer. Oncogene 2021; 40:4652-4662. [PMID: 34140644 DOI: 10.1038/s41388-021-01875-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/28/2021] [Indexed: 01/04/2023] [Imported: 10/14/2024]
Abstract
SWItch/Sucrose Non-Fermentable (SWI/SNF) is a multiprotein complex essential for the regulation of eukaryotic gene expression. SWI/SNF complex genes are genetically altered in over 20% of human malignancies, but the aberrant regulation of the SWI/SNF subunit genes and subsequent dysfunction caused by abnormal expression of subunit gene in cancer, remain poorly understood. Among the SWI/SNF subunit genes, SMARCA4, SMARCC1, and SMARCA2 were identified to be overexpressed in human hepatocellular carcinoma (HCC). Modulation of SMARCA4, SMARCC1, and SMARCA2 inhibited in vitro tumorigenesis of HCC cells. However, SMARCA4-targeting elicited remarkable inhibition in an in vivo Ras-transgenic mouse HCC model (Ras-Tg), and high expression levels of SMARCA4 significantly associated with poor prognosis in HCC patients. Furthermore, most HCC patients (72-86%) showed SMARCA4 overexpression compared to healthy controls. To identify SMARCA4-specific active enhancers, mapping, and analysis of chromatin state in liver cancer cells were performed. Integrative analysis of SMARCA4-regulated genes and active chromatin enhancers suggested 37 genes that are strongly activated by SMARCA4 in HCC. Through chromatin immunoprecipitation-qPCR and luciferase assays, we demonstrated that SMARCA4 activates Interleukin-1 receptor-associated kinase 1 (IRAK1) expression through IRAK1 active enhancer in HCC. We then showed that transcriptional activation of IRAK1 induces oncoprotein Gankyrin and aldo-keto reductase family 1 member B10 (AKR1B10) in HCC. The regulatory mechanism of the SMARCA4-IRAK1-Gankyrin, AKR1B10 axis was further demonstrated in HCC cells and in vivo Ras-Tg mice. Our results suggest that aberrant overexpression of SMARCA4 causes SWI/SNF to promote IRAK1 enhancer to activate oncoprotein Gankyrin and AKR1B10, thereby contributing to hepatocarcinogenesis.
Collapse
|
|
4 |
24 |
10
|
Park SJ, Kim JK, Bae HJ, Eun JW, Shen Q, Kim HS, Shin WC, Yang HD, Lee EK, You JS, Park WS, Lee JY, Nam SW. HDAC6 sustains growth stimulation by prolonging the activation of EGF receptor through the inhibition of rabaptin-5-mediated early endosome fusion in gastric cancer. Cancer Lett 2014; 354:97-106. [PMID: 25111897 DOI: 10.1016/j.canlet.2014.07.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 01/04/2023] [Imported: 10/18/2024]
Abstract
The aberrant regulation of histone deacetylase 6 (HDAC6) contributes to malignant progression in various types of cancer, but the mechanism underlying gastric carcinogenesis remains unknown. Aberrant HDAC6 overexpression was observed in a subset of human gastric cancer cells. HDAC6 knockdown caused the significant inhibition of gastric cancer cell growth without affecting the transition of cell cycles or the processing of cell death. We demonstrate that an increase in epidermal growth factor receptor (EGFR) signaling through decreased EGFR degradation was mediated by HDAC6 in gastric carcinogenesis. These results establish a molecular mechanism responsible for oncogenic HDAC6, explaining how EGFR signaling induced by the growth factor is sustained during the malignant progression of gastric cancer.
Collapse
|
|
11 |
24 |
11
|
Kim HS, Shen Q, Nam SW. Histone Deacetylases and Their Regulatory MicroRNAs in Hepatocarcinogenesis. J Korean Med Sci 2015; 30:1375-1380. [PMID: 26425032 PMCID: PMC4575924 DOI: 10.3346/jkms.2015.30.10.1375] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/23/2015] [Indexed: 12/21/2022] [Imported: 10/18/2024] Open
Abstract
A growing body of evidence suggests that epigenetic modifications are promising potential mechanisms in cancer research. Among the molecules that mediate epigenetic mechanisms, histone deacetylases (HDACs) are critical regulators of gene expression that promote formation of heterochromatin by deacetylating histone and non-histone proteins. Aberrant regulation of HDACs contributes to malignant transformation and progression in a wide variety of human cancers, including hepatocellular carcinoma (HCC), gastric cancer, lung cancer, and other cancers. Thus, the roles of HDACs have been extensively studied because of their potential as therapeutic targets. However, the underlying mechanism leading to deregulation of individual HDACs remains largely unknown. Some reports have suggested that functional microRNAs (miRNAs) modulate epigenetic effector molecules including HDACs. Here, we describe the oncogenic or tumor suppressive functions of HDAC families and their regulatory miRNAs governing HDAC expression in hepatocarcinogenesis.
Collapse
|
Review |
10 |
22 |
12
|
Yang HD, Eun JW, Lee KB, Shen Q, Kim HS, Kim SY, Seo DW, Park WS, Lee JY, Nam SW. T-cell immune regulator 1 enhances metastasis in hepatocellular carcinoma. Exp Mol Med 2018; 50:e420. [PMID: 29303507 PMCID: PMC5992982 DOI: 10.1038/emm.2017.166] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 05/11/2017] [Indexed: 12/21/2022] [Imported: 10/18/2024] Open
Abstract
Recurrence and metastasis are major challenges in the management of hepatocellular carcinoma (HCC) patients after resection. To identify a metastasis-associated gene signature, we performed comparative gene expression analysis with recurrent HCC tissues from HCC patients who underwent partial or total hepatectomy and from non-metastatic primary HCC tissues. From this, we were able to identify genes associated with HCC recurrence. TCIRG1 (T-Cell Immune Regulator 1) was one of the aberrantly overexpressed genes in patients with recurrent HCC who had undergone total hepatectomy. The significant overexpression of TCIRG1 was confirmed using the Liver Hepatocellular Carcinoma dataset from The Cancer Genome Atlas. High expression of TCIRG1 was significantly associated with poor 5-year disease-free and recurrence-free survival of HCC patients. TCIRG1 knockdown suppressed tumor cell growth and proliferation in HCC cell lines; caused a significant increase in the proportion of cells in the G1/S phase of cell cycle; induced cell death; suppressed the metastatic potential of HCC cells by selectively regulating the epithelial-mesenchymal transition (EMT) regulatory proteins E-cadherin, N-cadherin, Fibronectin, Snail and Slug; and significantly attenuated the metastatic potential of ras-transformed NIH-3T3 cells in vitro and in vivo. These findings suggest that TCIRG1 functions as a metastatic enhancer by modulating growth, death and EMT in HCC cells. TCIRG1 could be a therapeutic target for the treatment of liver malignancy and metastasis.
Collapse
|
research-article |
7 |
18 |
13
|
Kim HS, Na MJ, Son KH, Yang HD, Kim SY, Shin E, Ha JW, Jeon S, Kang K, Moon K, Park WS, Nam SW. ADAR1-dependent miR-3144-3p editing simultaneously induces MSI2 expression and suppresses SLC38A4 expression in liver cancer. Exp Mol Med 2023; 55:95-107. [PMID: 36599932 PMCID: PMC9898302 DOI: 10.1038/s12276-022-00916-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/26/2022] [Accepted: 11/07/2022] [Indexed: 01/06/2023] [Imported: 04/01/2025] Open
Abstract
Aberrant adenosine-to-inosine (A-to-I) RNA editing, catalyzed by adenosine deaminase acting on double-stranded RNA (ADAR), has been implicated in various cancers, but the mechanisms by which microRNA (miRNA) editing contributes to cancer development are largely unknown. Our multistage hepatocellular carcinogenesis transcriptome data analyses, together with publicly available data, indicated that ADAR1 was the most profoundly dysregulated gene among RNA-editing enzyme family members in liver cancer. Targeted inactivation of ADAR1 inhibited the in vitro tumorigenesis of liver cancer cells. An integrative computational analyses of RNA-edited hotspots and the known editing frequency of miRNAs suggested that the miRNA miR-3144-3p was edited by ADAR1 during liver cancer progression. Specifically, ADAR1 promoted A-to-I editing of canonical miR-3144-3p to replace the adenosine at Position 3 in the seed region with a guanine (ED_miR-3144-3p(3_A < G)) in liver cancer cells. We then demonstrated that Musashi RNA-binding protein 2 (MSI2) was a specific target of miR-3144-3p and that MSI2 overexpression was due to excessive ADAR1-dependent over-editing of canonical miR-3144-3p in liver cancer. In addition, target prediction analyses and validation experiments identified solute carrier family 38 member 4 (SLC38A4) as a specific gene target of ED_miR-3144-3p(3_A < G). The ectopic expression of both ADAR1 and the ED_miR-3144-3p(3_A < G) mimic enhanced mitotic activities, and ADAR1 suppressed SLC38A4 expression in liver cancer cells. Treatments with mouse-specific ADAR1-, MSI2-siRNA-, or SLC38A4-expressing plasmids suppressed tumorigenesis and tumor growth in a mouse model of spontaneous liver cancer. Our findings suggest that the aberrant regulation of ADAR1 augments oncogenic MSI2 effects by excessively editing canonical miR-3144-3p and that the resultant ED_miR-3144-3p(3_A < G) simultaneously suppresses tumor suppressor SLC38A4 expression, contributing to hepatocellular carcinogenesis.
Collapse
|
research-article |
2 |
13 |
14
|
Eun JW, Bae HJ, Shen Q, Park SJ, Kim HS, Shin WC, Yang HD, Jin CY, You JS, Kang HJ, Kim H, Ahn YM, Park WS, Lee JY, Nam SW. Characteristic molecular and proteomic signatures of drug-induced liver injury in a rat model. J Appl Toxicol 2015; 35:152-164. [PMID: 25231249 DOI: 10.1002/jat.3062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 12/21/2022] [Imported: 10/18/2024]
Abstract
Drug-induced liver injury (DILI) is a major safety concern during drug development and remains one of the main reasons for withdrawal of drugs from the market. Although it is crucial to develop methods that will detect potential hepatotoxicity of drug candidates as early and as quickly as possible, there is still a lack of sensitive and specific biomarkers for DILI that consequently leads to a scarcity of reliable hepatotoxic data. Hence, in this study, we assessed characteristic molecular signatures in rat liver treated with drugs (pyrazinamide, ranitidine, enalapril, carbamazepine and chlorpromazine) that are known to cause DILI in humans. Unsupervised hierarchical clustering analysis of transcriptome changes induced by DILI-causing drugs resulted in three different subclusters on dendrogram, i.e., hepatocellular, cholestatic and mixed type of DILI at early time points (2 days), and multiclassification analysis suggested 31 genes as discernible markers for each DILI pattern. Further analysis for characteristic molecular signature of each DILI pattern provided a molecular basis for different modes of DILI action. A proteomics study of the same rat livers was used to confirm the results, and the two sets of data showed 60 matching classifiers. In conclusion, the data of different DILI-causing drug treatments from genomic analysis in a rat model suggest that DILI-specific molecular signatures can discriminate different patterns of DILI at an early exposure time point, and that they provide useful information for mechanistic studies that may lead to a better understanding of the molecular basis of DILI.
Collapse
|
|
10 |
11 |
15
|
Eun JW, Ahn HR, Baek GO, Yoon MG, Son JA, Weon JH, Yoon JH, Kim HS, Han JE, Kim SS, Cheong JY, Kim BW, Cho HJ. Aberrantly Expressed MicroRNAs in Cancer-Associated Fibroblasts and Their Target Oncogenic Signatures in Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:4272. [PMID: 36901700 PMCID: PMC10002073 DOI: 10.3390/ijms24054272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] [Imported: 10/14/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) contribute to tumor progression, and microRNAs (miRs) play an important role in regulating the tumor-promoting properties of CAFs. The objectives of this study were to clarify the specific miR expression profile in CAFs of hepatocellular carcinoma (HCC) and identify its target gene signatures. Small-RNA-sequencing data were generated from nine pairs of CAFs and para-cancer fibroblasts isolated from human HCC and para-tumor tissues, respectively. Bioinformatic analyses were performed to identify the HCC-CAF-specific miR expression profile and the target gene signatures of the deregulated miRs in CAFs. Clinical and immunological implications of the target gene signatures were evaluated in The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA_LIHC) database using Cox regression and TIMER analysis. The expressions of hsa-miR-101-3p and hsa-miR-490-3p were significantly downregulated in HCC-CAFs. Their expression in HCC tissue gradually decreased as HCC stage progressed in the clinical staging analysis. Bioinformatic network analysis using miRWalks, miRDB, and miRTarBase databases pointed to TGFBR1 as a common target gene of hsa-miR-101-3p and hsa-miR-490-3p. TGFBR1 expression was negatively correlated with miR-101-3p and miR-490-3p expression in HCC tissues and was also decreased by ectopic miR-101-3p and miR-490-3p expression. HCC patients with TGFBR1 overexpression and downregulated hsa-miR-101-3p and hsa-miR-490-3p demonstrated a significantly poorer prognosis in TCGA_LIHC. TGFBR1 expression was positively correlated with the infiltration of myeloid-derived suppressor cells, regulatory T cells, and M2 macrophages in a TIMER analysis. In conclusion, hsa-miR-101-3p and hsa-miR-490-3p were substantially downregulated miRs in CAFs of HCC, and their common target gene was TGFBR1. The downregulation of hsa-miR-101-3p and hsa-miR-490-3p, as well as high TGFBR1 expression, was associated with poor clinical outcome in HCC patients. In addition, TGFBR1 expression was correlated with the infiltration of immunosuppressive immune cells.
Collapse
|
research-article |
2 |
5 |
16
|
Eun JW, Cheong JY, Jeong JY, Kim HS. A New Understanding of Long Non-Coding RNA in Hepatocellular Carcinoma-From m 6A Modification to Blood Biomarkers. Cells 2023; 12:2272. [PMID: 37759495 PMCID: PMC10528438 DOI: 10.3390/cells12182272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] [Imported: 10/14/2024] Open
Abstract
With recent advancements in biological research, long non-coding RNAs (lncRNAs) with lengths exceeding 200 nucleotides have emerged as pivotal regulators of gene expression and cellular phenotypic modulation. Despite initial skepticism due to their low sequence conservation and expression levels, their significance in various biological processes has become increasingly apparent. We provided an overview of lncRNAs and discussed their defining features and modes of operation. We then explored their crucial function in the hepatocarcinogenesis process, elucidating their complex involvement in hepatocellular carcinoma (HCC). The influential role of lncRNAs within the HCC tumor microenvironment is emphasized, illustrating their potential as key modulators of disease dynamics. We also investigated the significant influence of N6-methyladenosine (m6A) modification on lncRNA function in HCC, enhancing our understanding of both their roles and their upstream regulators. Additionally, the potential of lncRNAs as promising biomarkers was discussed in liver cancer diagnosis, suggesting a novel avenue for future research and clinical application. Finally, our work underscored the dual potential of lncRNAs as both contributors to HCC pathogenesis and innovative tools for its diagnosis. Existing challenges and prospective trajectories in lncRNA research are also discussed, emphasizing their potential in advancing liver cancer research.
Collapse
|
Review |
2 |
5 |
17
|
Kim HS, Eun JW, Jang SH, Kim JY, Jeong JY. The diverse landscape of RNA modifications in cancer development and progression. Genes Genomics 2025; 47:135-155. [PMID: 39643826 DOI: 10.1007/s13258-024-01601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024] [Imported: 01/12/2025]
Abstract
BACKGROUND RNA modifications, a central aspect of epitranscriptomics, add a regulatory layer to gene expression by modifying RNA function without altering nucleotide sequences. These modifications play vital roles across RNA species, influencing RNA stability, translation, and interaction dynamics, and are regulated by specific enzymes that add, remove, and interpret these chemical marks. OBJECTIVE This review examines the role of aberrant RNA modifications in cancer progression, exploring their potential as diagnostic and prognostic biomarkers and as therapeutic targets. We focus on how altered RNA modification patterns impact oncogenes, tumor suppressor genes, and overall tumor behavior. METHODS We performed an in-depth analysis of recent studies and advances in RNA modification research, highlighting key types and functions of RNA modifications and their roles in cancer biology. Studies involving preclinical models targeting RNA-modifying enzymes were reviewed to assess therapeutic efficacy and potential clinical applications. RESULTS Aberrant RNA modifications were found to significantly influence cancer initiation, growth, and metastasis. Dysregulation of RNA-modifying enzymes led to altered gene expression profiles in oncogenes and tumor suppressors, correlating with tumor aggressiveness, patient outcomes, and response to immunotherapy. Notably, inhibitors of these enzymes demonstrated potential in preclinical models by reducing tumor growth and enhancing the efficacy of existing cancer treatments. CONCLUSIONS RNA modifications present promising avenues for cancer diagnosis, prognosis, and therapy. Understanding the mechanisms of RNA modification dysregulation is essential for developing targeted treatments that improve patient outcomes. Further research will deepen insights into these pathways and support the clinical translation of RNA modification-targeted therapies.
Collapse
|
Review |
1 |
|
18
|
Kim HS, Lee SI, Choi YR, Kim J, Eun JW, Song KS, Jeong JY. GNAQ-Regulated ZO-1 and ZO-2 Act as Tumor Suppressors by Modulating EMT Potential and Tumor-Repressive Microenvironment in Lung Cancer. Int J Mol Sci 2023; 24:8801. [PMID: 37240145 PMCID: PMC10218451 DOI: 10.3390/ijms24108801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] [Imported: 10/14/2024] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) plays a critical role in the development and progression of lung cancer by promoting its invasiveness and metastasis. Using integrative analyses of the public lung cancer database, we found that the expression levels of the tight junction proteins, zonula occluden (ZO)-1 and ZO-2, were lower in lung cancer tissues, including both lung adenocarcinoma and lung squamous cell carcinoma than in normal lung tissues analyzed using The Cancer Genome Atlas (TCGA). Although the ectopic expression or knockdown of ZO-1 and ZO-2 did not affect the growth of lung cancer cells, they significantly regulated cell migration and invasion. When M0 macrophages were co-cultured with ZO-1 or ZO-2 knockdown Calu-1 cells, M2-like polarization was efficiently induced. Conversely, co-culture of M0 THP-1 cells with A549 cells stably expressing ZO-1 or ZO-2 significantly reduced M2 differentiation. We also identified G protein subunit alpha q (GNAQ) as a potential ZO-1- and ZO-2-specific activator through analysis of correlated genes with the TCGA lung cancer database. Our results suggest that the GNAQ-ZO-1/2 axis may play a tumor-suppressive role in lung cancer development and progression and highlight ZO-1 and ZO-2 as key EMT- and tumor microenvironment-suppressive proteins. These findings provide new insights for the development of targeted therapies for lung cancer.
Collapse
|
research-article |
2 |
|
19
|
Kim HS, Yoon JH, Baek GO, Yoon MG, Han JE, Cho HJ, Kim SS, Jeong JY, Cheong JY, Eun JW. Tumor Endothelial Cells-Associated Integrin Alpha-6 as a Promising Biomarker for Early Detection and Prognosis of Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:4156. [PMID: 37627184 PMCID: PMC10453423 DOI: 10.3390/cancers15164156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] [Imported: 10/14/2024] Open
Abstract
HCC remains a lethal cancer type, with early detection being critical for improved patient outcomes. This study introduces a comprehensive methodological approach to identify the ITGA6 gene as a potential blood marker for early HCC (eHCC) detection. We initially analyzed the GSE114564 dataset encompassing various stages of liver disease, identifying 972 differentially expressed genes in HCC. A refined analysis yielded 59 genes specifically differentially expressed in early HCC, including ITGA6. Subsequent validation in multiple datasets confirmed the consistent upregulation of ITGA6 in HCC. In addition, when analyzing progression-free survival (PFS) within the entire patient cohort and overall survival (OS) specifically among patients classified as tumor grade G1, the group of patients characterized by high expression levels of ITGA6 displayed an elevated risk ratio in relation to prognosis. Further analyses demonstrated the predominant expression of ITGA6 in TECs and its enrichment in angiogenesis-related pathways. Additionally, positive correlations were found between ITGA6 expression and pro-tumorigenic immune cells, but not with anti-tumorigenic immune cells. Our study elucidates the potential of ITGA6 as a blood-based marker for HCC early detection and diagnosis and its complex interplay with the tumor microenvironment. Further research may lead to novel strategies for HCC management and patient care.
Collapse
|
research-article |
2 |
|