Zan X, Yang D, Xiao Y, Zhu Y, Chen H, Ni S, Zheng S, Zhu L, Shen J, Zhang X. Facile General Injectable Gelatin/Metal/Tea Polyphenol Double Nanonetworks Remodel Wound Microenvironment and Accelerate Healing.
ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024;
11:e2305405. [PMID:
38124471 PMCID:
PMC10916639 DOI:
10.1002/advs.202305405]
[Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/31/2023] [Indexed: 12/23/2023] [Imported: 10/15/2024]
Abstract
Treating the most widespread complication of diabetes: diabetic wounds poses a significant clinical obstacle due to the intricate nature of wound healing in individuals with diabetes. Here a novel approach is proposed using easily applicable injectable gelatin/metal/tea polyphenol double nanonetworks, which effectively remodel the wound microenvironment and accelerates the healing process. The gelatin(Gel) crosslink with metal ions (Zr4+ ) through the amino acids, imparting advantageous mechanical properties like self-healing, injectability, and adhesion. The nanonetwork's biological functions are further enhanced by incorporating the tea polyphenol metal nanonetwork through in situ doping of the epigallocatechin gallate (EGCG) with great antibacterial, self-healing, antioxidant, and anticancer capabilities. The in vitro and in vivo tests show that this double nanonetworks hydrogel exhibits faster cell migration and favorable anti-inflammatory and antioxidant properties and can greatly reshape the microenvironment of diabetic wounds and accelerate the wound healing rate. In addition, this hydrogel is completely degraded after subcutaneous injection for 7 days, with nondetectable cytotoxicity in H&E staining of major mice organs and the serum level of liver function indicators. Considering the above-mentioned merits of this hydrogel, it is believed that the injectable gelatin/metal/tea polyphenol double nanonetworks have broad biomedical potential, especially in diabetic wound repair and tissue engineering.
Collapse