26
|
Zhang L, Xu H, Ding N, Li X, Chen X, Chen Z. Beneficial Effects on Brain Micro-Environment by Caloric Restriction in Alleviating Neurodegenerative Diseases and Brain Aging. Front Physiol 2021; 12:715443. [PMID: 34899367 PMCID: PMC8660583 DOI: 10.3389/fphys.2021.715443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/15/2021] [Indexed: 11/18/2022] [Imported: 12/09/2024] Open
Abstract
Aging and neurodegenerative diseases are frequently associated with the disruption of the extracellular microenvironment, which includes mesenchyme and body fluid components. Caloric restriction (CR) has been recognized as a lifestyle intervention that can improve long-term health. In addition to preventing metabolic disorders, CR has been shown to improve brain health owing to its enhancing effect on cognitive functions or retarding effect on the progression of neurodegenerative diseases. This article summarizes current findings regarding the neuroprotective effects of CR, which include the modulation of metabolism, autophagy, oxidative stress, and neuroinflammation. This review may offer future perspectives for brain aging interventions.
Collapse
|
Review |
4 |
|
27
|
Wu J, Xu H, Wang S, Weng H, Luo Z, Ou G, Chen Y, Xu L, So KF, Deng L, Zhang L, Chen X. Regular exercise ameliorates high-fat diet-induced depressive-like behaviors by activating hippocampal neuronal autophagy and enhancing synaptic plasticity. Cell Death Dis 2024; 15:737. [PMID: 39389946 PMCID: PMC11467387 DOI: 10.1038/s41419-024-07132-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] [Imported: 12/09/2024]
Abstract
Exercise enhances synaptic plasticity and alleviates depression symptoms, but the mechanism through which exercise improves high-fat diet-induced depression remains unclear. In this study, 6-week-old male C57BL/6J mice were administered a high-fat diet (HFD, 60% kcal from fat) to a HFD model for 8 weeks. The RUN group also received 1 h of daily treadmill exercise in combination with the HFD. Depressive-like behaviors were evaluated by behavioral assessments for all groups. The key mediator of the effect of exercise on high-fat diet-induced depressive-like behaviors was detected by RNA-seq. The morphology and function of the neurons were evaluated via Nissl staining, Golgi staining, electron microscopy and electrophysiological experiments. The results showed that exercise attenuated high-fat diet-induced depressive-like behavior and reversed hippocampal gene expression changes. RNA-seq revealed Wnt5a, which was a key mediator of the effect of exercise on high-fat diet-induced depressive-like behaviors. Further work revealed that exercise significantly activated neuronal autophagy in the hippocampal CA1 region via the Wnt5a/CamkII signaling pathway, which enhanced synaptic plasticity to alleviate HFD-induced depressive-like behavior. However, the Wnt5a inhibitor Box5 suppressed the ameliorative effects of exercise. Therefore, this work highlights the critical role of Wnt5a, which is necessary for exercise to improve high-fat diet-induced depression.
Collapse
|
research-article |
1 |
|
28
|
Ma S, Yang B, Shi Y, Du Y, Lv Y, Liu J, Liu E, Xu H, Deng L, Chen XY. Adlay (Coix lacryma-jobi L.) Polyphenol Improves Hepatic Glucose and Lipid Homeostasis through Regulating Intestinal Flora via AMPK Pathway. Mol Nutr Food Res 2022; 66:e2200447. [PMID: 36214059 DOI: 10.1002/mnfr.202200447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/06/2022] [Indexed: 01/18/2023] [Imported: 12/09/2024]
Abstract
SCOPE Non-alcoholic fatty liver disease (NAFLD) is a type of metabolic syndrome characterized of abnormal lipid deposition in the liver. Adlay polyphenol (AP), an effective component extracted from Coix lacryma-jobi L., has been reported that it can be used as a dietary supplement to prevent NAFLD. In this study, the mechanism and action of AP on lipid metabolism and regulation of intestinal flora are investigated. METHODS AND RESULTS AP significantly decreases the lipid accumulation in free fatty acid-treated HepG2 cells. Western blot results indicate that AP improves lipid metabolism via activating the p-AMPK/p-ACC pathway. In vivo experiments show AP treatment significantly decreases the body weight, liver weight, hepatic triglyceride, and total cholesterol contents, as well as the serum glucose levels in high fat diet-fed mice, which may affect lipid accumulation by activating AMPK pathway and changing intestinal bacterial communities and intestinal microbiome metabolism. CONCLUSION AP can be used as a food supplement for improving lipid metabolic dysfunction and reducing the incidence of metabolic diseases.
Collapse
|
|
3 |
|
29
|
Wang S, Ou G, Wu J, Chen Y, Xu L, Xu H. Genetically Predicted Peripheral Immune Cells Mediate the Effect of Gut Microbiota on Influenza Susceptibility. Int J Mol Sci 2024; 25:7706. [PMID: 39062949 PMCID: PMC11276963 DOI: 10.3390/ijms25147706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] [Imported: 12/09/2024] Open
Abstract
The communication mechanism of the gut-lung axis has received increasing attention in recent years, particularly in acute respiratory infectious diseases such as influenza. The peripheral immune system serves as a crucial bridge between the gut and the lungs, two organs that are not in close proximity to each other. However, the specific communication mechanism involving gut microbiota, immune cells, and their anti-influenza effects in the lung remains to be further elucidated. In this study, the effects of 731 species of peripheral immune cells and 211 different gut microbiota on influenza outcomes were analyzed using a two-sample Mendelian randomization analysis. After identifying specific species of gut microbiota and peripheral immune cells associated with influenza outcomes, mediation analyses were conducted to determine the mediating effects of specific immune cells in the protective or injurious effects of influenza mediated by gut microbiota. 19 species of gut microbiota and 75 types of peripheral immune cells were identified as being associated with influenza susceptibility. After rigorous screening, 12 combinations were analyzed for mediated effects. Notably, the down-regulation of CD64 on CD14- CD16- cells mediated 21.10% and 18.55% of the protective effect of Alcaligenaceae and Dorea against influenza, respectively. In conclusion, focusing on influenza, this study genetically inferred different types of gut microbiota and peripheral immune cells to determine their protective or risk factors. Furthermore, mediation analysis was used to determine the proportion of mediating effects of peripheral immune cells in gut microbiota-mediated susceptibility to influenza. This helps elucidate the gut-lung axis mechanism by which gut microbiota affects influenza susceptibility from the perspective of regulation of peripheral immune cells.
Collapse
|
research-article |
1 |
|
30
|
Ma S, Yang B, Du Y, Lv Y, Liu J, Shi Y, Huang T, Xu H, Deng L, Chen X. 1,8-cineole ameliorates colon injury by downregulating macrophage M1 polarization via inhibiting the HSP90-NLRP3-SGT1 complex. J Pharm Anal 2023; 13:984-998. [PMID: 37842654 PMCID: PMC10568110 DOI: 10.1016/j.jpha.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/08/2023] [Accepted: 07/01/2023] [Indexed: 10/17/2023] [Imported: 12/09/2024] Open
Abstract
Ulcerative colitis (UC) is characterized by chronic relapsing intestinal inflammation. Currently, there is no effective treatment for the disease. According to our preliminary data, 1,8-cineole, which is the main active compound of Amomum compactum Sol. ex Maton volatile oil and an effective drug for the treatment of pneumonia, showed remarkable anti-inflammatory effects on colitis pathogenesis. However, its mechanism of action and direct targets remain unclear. This study investigated the direct targets and mechanism through which 1,8-cineole exerts its anti-inflammatory effects using a dextran sulfate sodium salt-induced colitis mouse model. The effects of 1,8-cineole on macrophage polarization were investigated using activated bone marrow-derived macrophages and RAW264.7 cells. In addition, 1,8-cineole targets were revealed by drug affinity responsive target stability, thermal shift assay, cellular thermal shift assay, and heat shock protein 90 (HSP90) adenosine triphosphatases (ATPase) activity assays. The results showed that 1,8-cineole exhibited powerful anti-inflammatory properties in vitro and in vivo by inhibiting the macrophage M1 polarization and protecting intestinal barrier function. Mechanistically, 1,8-cineole directly interacted with HSP90 and decreased its ATPase activity, also inhibited nucleotide-binding and oligomerization domain-, leucine rich repeat-, and pyrin domain-containing 3 (NLRP3) binding to HSP90 and suppressor of G-two allele of SKP1 (SGT1) and suppressed NLRP3 inflammasome activation in macrophages. These results demonstrated that 1,8-cineole is a potential drug candidate for UC treatment.
Collapse
|
research-article |
2 |
|
31
|
Weng H, Deng L, Wang T, Xu H, Wu J, Zhou Q, Yu L, Chen B, Huang L, Qu Y, Zhou L, Chen X. Humid heat environment causes anxiety-like disorder via impairing gut microbiota and bile acid metabolism in mice. Nat Commun 2024; 15:5697. [PMID: 38972900 PMCID: PMC11228019 DOI: 10.1038/s41467-024-49972-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 06/25/2024] [Indexed: 07/09/2024] [Imported: 12/09/2024] Open
Abstract
Climate and environmental changes threaten human mental health, but the impacts of specific environmental conditions on neuropsychiatric disorders remain largely unclear. Here, we show the impact of a humid heat environment on the brain and the gut microbiota using a conditioned housing male mouse model. We demonstrate that a humid heat environment can cause anxiety-like behaviour in male mice. Microbial 16 S rRNA sequencing analysis reveals that a humid heat environment caused gut microbiota dysbiosis (e.g., decreased abundance of Lactobacillus murinus), and metabolomics reveals an increase in serum levels of secondary bile acids (e.g., lithocholic acid). Moreover, increased neuroinflammation is indicated by the elevated expression of proinflammatory cytokines in the serum and cortex, activated PI3K/AKT/NF-κB signalling and a microglial response in the cortex. Strikingly, transplantation of the microbiota from mice reared in a humid heat environment readily recapitulates these abnormalities in germ-free mice, and these abnormalities are markedly reversed by Lactobacillus murinus administration. Human samples collected during the humid heat season also show a decrease in Lactobacillus murinus abundance and an increase in the serum lithocholic acid concentration. In conclusion, gut microbiota dysbiosis induced by a humid heat environment drives the progression of anxiety disorders by impairing bile acid metabolism and enhancing neuroinflammation, and probiotic administration is a potential therapeutic strategy for these disorders.
Collapse
|
research-article |
1 |
|
32
|
Ou G, Xu H, Wu J, Wang S, Chen Y, Deng L, Chen X. The gut-lung axis in influenza A: the role of gut microbiota in immune balance. Front Immunol 2023; 14:1147724. [PMID: 37928517 PMCID: PMC10623161 DOI: 10.3389/fimmu.2023.1147724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] [Imported: 12/09/2024] Open
Abstract
Influenza A, the most common subtype, induces 3 to 5 million severe infections and 250,000 to 500,000 deaths each year. Vaccination is traditionally considered to be the best way to prevent influenza A. Yet because the Influenza A virus (IAV) is highly susceptible to antigenic drift and Antigenic shift, and because of the lag in vaccine production, this poses a significant challenge to vaccine effectiveness. Additionally, much information about the resistance of antiviral drugs, such as Oseltamivir and Baloxavir, has been reported. Therefore, the search for alternative therapies in the treatment of influenza is warranted. Recent studies have found that regulating the gut microbiota (GM) can promote the immune effects of anti-IAV via the gut-lung axis. This includes promoting IAV clearance in the early stages of infection and reducing inflammatory damage in the later stages. In this review, we first review the specific alterations in GM observed in human as well as animal models regarding IAV infection. Then we analyzed the effect of GM on host immunity against IAV, including innate immunity and subsequent adaptive immunity. Finally, our study also summarizes the effects of therapies using probiotics, prebiotics, or herbal medicine in influenza A on intestinal microecological composition and their immunomodulatory effects against IAV.
Collapse
|
Review |
2 |
|
33
|
Pang P, Shi Y, Xu H, Deng L, Wu S, Chen X. Prueba de métodos de acupuntura para un estudio del tinnitus: análisis Bayesiano. REVISTA INTERNACIONAL DE ACUPUNTURA 2019; 13:124-136. [DOI: 10.1016/j.acu.2018.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2024] [Imported: 12/30/2024]
|
|
6 |
|
34
|
Wang S, Wu J, Ran D, Ou G, Chen Y, Xu H, Deng L, Chen X. Study of the Relationship between Mucosal Immunity and Commensal Microbiota: A Bibliometric Analysis. Nutrients 2023; 15:2398. [PMID: 37242281 PMCID: PMC10222536 DOI: 10.3390/nu15102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] [Imported: 12/30/2024] Open
Abstract
This study presents the first bibliometric evaluation and systematic analysis of publications related to mucosal immunity and commensal microbiota over the last two decades and summarizes the contribution of countries, institutions, and scholars in the study of this field. A total of 1423 articles related to mucosal immunity and commensal microbiota in vivo published in 532 journals by 7774 authors from 1771 institutions in 74 countries/regions were analyzed. The interaction between commensal microbiota in vivo and mucosal immunity is essential in regulating the immune response of the body, maintaining communication between different kinds of commensal microbiota and the host, and so on. Several hot spots in this field have been found to have received extensive attention in recent years, especially the effects of metabolites of key strains on mucosal immunity, the physiopathological phenomena of commensal microbiota in various sites including the intestine, and the relationship between COVID-19, mucosal immunity and microbiota. We hope that the full picture of the last 20 years in this research area provided in this study will serve to deliver necessary cutting-edge information to relevant researchers.
Collapse
|
Review |
2 |
|