1
|
Lee SY, Sohn KM, Ryu JY, Yoon YR, Shin JG, Kim JW. Sequence-based CYP2D6 genotyping in the Korean population. Ther Drug Monit 2006; 28:382-387. [PMID: 16778723 DOI: 10.1097/01.ftd.0000211823.80854.db] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] [Imported: 01/27/2025]
Abstract
For clinical application of pharmacogenetic tests, quantitative prediction of enzyme activity based on accurate determination of genotype is essential. There has been limited information available on the genetic polymorphism of CYP2D6 in the Korean population. In this study, CYP2D6 genotypes were assessed in 400 Korean subjects. Twenty-eight different CYP2D6 alleles and 35 genotypes were detected. On the basis of the genotype determined, the frequency of poor metabolizers and ultrarapid metabolizers were 0.22% and 1.25%, respectively. The CYP2D6 activity expected in regard to different allele combinations varies widely within the extensive and intermediate metabolizer groups. The frequencies of CYP2D6*10 and CYP2D6*5 were 45.00% and 6.13%, respectively. CYP2D6*10xN was found in 4 out of 9 cases with a CYP2D6 duplication. Fifteen heterozygotes for *41 were noted. In addition, the authors measured plasma concentrations of 16 healthy volunteers after administration of nortriptyline and identified the impact of the CYP2D6 genotype on nortriptyline metabolism. This is the first large-scale study to examine the genetic polymorphism of CYP2D6 using sequence-based genotyping in an Asian population. Our results further the understanding of CYP2D6 pharmacogenetics and could be helpful for future clinical studies in the Asian population.
Collapse
|
|
19 |
74 |
2
|
Lee SY, McLeod HL. Pharmacogenetic tests in cancer chemotherapy: what physicians should know for clinical application. J Pathol 2011; 223:15-27. [PMID: 20818641 DOI: 10.1002/path.2766] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 08/03/2010] [Accepted: 08/04/2010] [Indexed: 02/06/2023] [Imported: 01/27/2025]
Abstract
Significant efforts to develop pharmacogenomic predictors have been made to guide more effective and safer chemotherapy. Although a considerable amount of data has been generated from numerous experimental or clinical studies, there is a large gap between pharmacogenomic knowledge and clinical application. This review will focus on eight pharmacogenetic tests including TYMS, DPYD, UGT1A1, CYP2D6, EGFR, KRAS, FCGR3A, and BRCA1/2 to predict toxicity or response to commonly used chemotherapeutic agents. We will discuss the current level of evidence, if the current pharmacogenetic tests are appropriate for clinical application, and how to integrate the pharmacogenomic information into routine clinical practice.
Collapse
|
Review |
14 |
37 |
3
|
Lee SY, Lee KA, Ki CS, Kwon OJ, Kim HJ, Chung MP, Suh GY, Kim JW. Complete sequencing of a genetic polymorphism in NAT2 in the Korean population. Clin Chem 2002; 48:775-777. [PMID: 11978608 DOI: 10.1093/clinchem/48.5.775] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] [Imported: 04/02/2025]
|
|
23 |
35 |
4
|
Lee SY, Im SA, Park YH, Woo SY, Kim S, Choi MK, Chang W, Ahn JS, Im YH. Genetic polymorphisms of SLC28A3, SLC29A1 and RRM1 predict clinical outcome in patients with metastatic breast cancer receiving gemcitabine plus paclitaxel chemotherapy. Eur J Cancer 2014; 50:698-705. [PMID: 24361227 DOI: 10.1016/j.ejca.2013.11.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 10/17/2013] [Accepted: 11/25/2013] [Indexed: 12/29/2022] [Imported: 01/27/2025]
Abstract
BACKGROUND Paclitaxel and gemcitabine (PG) combination chemotherapy is effective as a maintenance chemotherapeutic regimen in metastatic breast cancer (MBC) patients because it increases progression-free survival (PFS), which increases overall survival (OS). The primary purpose of our study was to investigate the association between genetic polymorphisms in the genes involved in PG pathways and clinical outcomes in MBC patients treated with PG chemotherapy. METHODS A total of 324 MBC patients were enrolled in this prospective multicenter trial of PG as the first-line chemotherapy. Eighty-five of the 324 patients from two institutes were available for analysis of single nucleotide polymorphisms (SNPs). Germline DNA was extracted from peripheral blood mononuclear cells. Thirty-eight SNPs in 15 candidate genes selected from pathways that may influence the metabolism and transport of, or sensitivity, to PG were analysed. RESULTS The median PFS and OS of all 324 patients were 8.7 months (95% confidence interval [CI]: 7.5-9.6 months) and 26.9 months (95% CI: 23.6-30.1 months), respectively. An SNP in SLC28A3 (rs7867504, C/T) was associated with OS (CC or CT versus TT: 37 versus 21 months, p = 0.027, hazard ratio [HR] 2.6, 95% CI: 1.1-6.3). SLC29A1 GA haplotype had a significantly shorter OS (p = 0.030, HR 3.391, 95% CI: 1.13-10.19). RRM1 (ribonucleotide reductase large subunit M1) SNP (rs9937), and haplotypes ATAA and ATGA were significantly associated with neurotoxicity. CONCLUSION Genetic polymorphisms in SLC28A3, SLC29A1 and RRM1 can influence the clinical outcome of MBC patients treated with PG chemotherapy. Further studies on the functional mechanisms relating to these germline polymorphisms in these genes are warranted.
Collapse
|
Clinical Trial, Phase III |
11 |
27 |
5
|
Lee SY, Chun MR, Kim DJ, Kim JW. Determination of iohexol clearance by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). J Chromatogr B Analyt Technol Biomed Life Sci 2006; 839:124-129. [PMID: 16675312 DOI: 10.1016/j.jchromb.2006.03.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 03/29/2006] [Accepted: 03/30/2006] [Indexed: 10/24/2022] [Imported: 01/27/2025]
Abstract
We have developed a simple, rapid, and accurate HPLC-MS/MS method for the determination of iohexol in serum. The column used was a Zorbax Eclipse XDB-C8 (100 mm x 2.1 mm i.d., 3.5 microm). Mobile phases consisted of water containing 2mM ammonium acetate and 0.1% formic acid (A) and methanol containing 2 mM ammonium acetate and 0.1% formic acid (B). After simple protein precipitation with ZnSO4, serum samples were mixed with I.S. (bromperidol) and centrifuged for 3 min. The obtained extraction recovery at three levels was 94.6-107.4%. Quantitative analysis was performed in the multiple reaction-monitoring mode (m/z 822.0-->804.0 for iohexol, 420.1-->122.7 for I.S.) with the total running time of 3 min for each sample. The assay was linear between 0.5 and 1500 microg/mL (r2 > 0.997). The intra- and inter-assay coefficient of variations were 2.4-6.2% and 5.5-6.5%, respectively. Our method provided sufficient analytical range and specificity for the 210 clinical samples analyzed.
Collapse
|
|
19 |
18 |
6
|
Lee SY, Song MY, Kim D, Park C, Park DK, Kim DG, Yoo JS, Kim YH. A Proteotranscriptomic-Based Computational Drug-Repositioning Method for Alzheimer's Disease. Front Pharmacol 2020; 10:1653. [PMID: 32063857 PMCID: PMC7000455 DOI: 10.3389/fphar.2019.01653] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022] [Imported: 04/02/2025] Open
Abstract
Numerous clinical trials of drug candidates for Alzheimer's disease (AD) have failed, and computational drug repositioning approaches using omics data have been proposed as effective alternative approaches to the discovery of drug candidates. However, little multi-omics data is available for AD, due to limited availability of brain tissues. Even if omics data exist, systematic drug repurposing study for AD has suffered from lack of big data, insufficient clinical information, and difficulty in data integration on account of sample heterogeneity derived from poor diagnosis or shortage of qualified post-mortem tissue. In this study, we developed a proteotranscriptomic-based computational drug repositioning method named Drug Repositioning Perturbation Score/Class (DRPS/C) based on inverse associations between disease- and drug-induced gene and protein perturbation patterns, incorporating pharmacogenomic knowledge. We constructed a Drug-induced Gene Perturbation Signature Database (DGPSD) comprised of 61,019 gene signatures perturbed by 1,520 drugs from the Connectivity Map (CMap) and the L1000 CMap. Drugs were classified into three DRPCs (High, Intermediate, and Low) according to DRPSs that were calculated using drug- and disease-induced gene perturbation signatures from DGPSD and The Cancer Genome Atlas (TCGA), respectively. The DRPS/C method was evaluated using the area under the ROC curve, with a prescribed drug list from TCGA as the gold standard. Glioblastoma had the highest AUC. To predict anti-AD drugs, DRPS were calculated using DGPSD and AD-induced gene/protein perturbation signatures generated from RNA-seq, microarray and proteomic datasets in the Synapse database, and the drugs were classified into DRPCs. We predicted 31 potential anti-AD drug candidates commonly belonged to high DRPCs of transcriptomic and proteomic signatures. Of these, four drugs classified into the nervous system group of Anatomical Therapeutic Chemical (ATC) system are voltage-gated sodium channel blockers (bupivacaine, topiramate) and monamine oxidase inhibitors (selegiline, iproniazid), and their mechanism of action was inferred from a potential anti-AD drug perspective. Our approach suggests a shortcut to discover new efficacy of drugs for AD.
Collapse
|
research-article |
5 |
17 |
7
|
Lee SY, Oh HJ, Kim JW, Kim YG, Moon CJ, Lee EH. Pharmacokinetic study of orphenadrine using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). J Chromatogr B Analyt Technol Biomed Life Sci 2006; 839:118-123. [PMID: 16580894 DOI: 10.1016/j.jchromb.2006.02.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 02/28/2006] [Accepted: 02/28/2006] [Indexed: 10/22/2022] [Imported: 01/27/2025]
Abstract
We developed and validated a simple, rapid, and accurate HPLC-MS/MS method with simple protein precipitation for the determination of orphenadrine. Injection-to-injection running time was 3 min with a retention time of orphenadrine of 1.1 min. The linear assay range was 1-200 ng/mL (r2 > 0.99). The intra- and inter-assay imprecisions were CV 0.6-4.2% and CV 1.6-6.1%, respectively. The accuracy, extraction recovery, specificity and stability were satisfactory. Using the measured plasma concentrations of orphenadrine in 24 healthy subjects, pharmacokinetic profiles of orphenadrine were evaluated (AUC(0-72,) 1565+/-731 ng h/mL, Cmax 82.8+/-26.2 ng/mL, Tmax 3.0+/-0.9 h, elimination half-life 25.8+/-10.3 h).
Collapse
|
|
19 |
15 |
8
|
Lee SY, Lee ST, Kim JW. Contributions of CYP2C9/CYP2C19 genotypes and drug interaction to the phenytoin treatment in the Korean epileptic patients in the clinical setting. JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 40:448-452. [PMID: 17562299 DOI: 10.5483/bmbrep.2007.40.3.448] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] [Imported: 01/27/2025]
Abstract
We examined the contribution of CYP2C9 and CYP2C19 genotypes and drug interactions to the phenytoin metabolism among 97 Korean epileptic patients to determine if pharmacogenetic testing could be utilized in routine clinical practice. The CYP2C9 polymorphism is a wellknown major genetic factor responsible for phenytoin metabolism. The CYP219 polymorphism, with a high incidence of variant alleles, has a minor influence on phenytoin treated Koran patients. Using a multiple regression model for evaluation of the CYP2C9 and CYP2C19 genotypes, together with other non-genetic variables, we explained 39.6% of the variance in serum phenytoin levels. Incorporation of genotyping for CYP2C9 and CYP2C19 into a clinical practice may be of some help in the determination of phenytoin dosage. However, because concurrent drug treatment is common in patients taking phenytoin and many environmental factors are likely to play a role in drug metabolism, these factors may overwhelm the relevance of CYP polymorphisms in the clinical setting. Further investigations with an approach to dose assessment that includes comprehensive interpretation of both pharmacogenetic and pharmacokinetic data along with understanding of the mechanism of drug interactions in dosage adjustment is warranted.
Collapse
|
|
18 |
11 |
9
|
Lee SY, Nam MH, Kim JS, Kim JW. A case report of a patient carrying CYP2C9*3/4 genotype with extremely low warfarin dose requirement. J Korean Med Sci 2007; 22:557-559. [PMID: 17596671 PMCID: PMC2693655 DOI: 10.3346/jkms.2007.22.3.557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 02/03/2006] [Indexed: 11/20/2022] [Imported: 01/27/2025] Open
Abstract
We report a case of intolerance to warfarin dosing due to impaired drug metabolism in a patient with CYP2C9*3/*4. A 73-yr-old woman with atrial fibrilation was taking warfarin. She attained a high prothrombin time international normalized ratio (INR) at the standard doses during the induction of anticoagulation and extremely low dose of warfarin (6.5 mg/week) was finally chosen to reach the target INR. Genotyping for CYP2C9 revealed that this patient had a genotype CYP2C9*3/*4. This is the first Korean compound heterozygote for CYP2C9*3 and *4. This case suggests the clinical usefulness of pharmacogenetic testing for individualized dosage adjustments of warfarin.
Collapse
|
Case Reports |
18 |
6 |
10
|
Lee SY, Ki CS, Hong KS, Kim JW. A case report of a poor metabolizer of CYP2D6 presented with unusual responses to nortriptyline medication. J Korean Med Sci 2004; 19:750-752. [PMID: 15483356 PMCID: PMC2816343 DOI: 10.3346/jkms.2004.19.5.750] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Accepted: 11/01/2003] [Indexed: 11/20/2022] [Imported: 04/02/2025] Open
Abstract
We present a case with decreased metabolic activity of CYP2D6, a cytochrome P450 enzyme catalyzing the metabolism of nortriptyline (NT). Conventional dosage regimen led to toxic plasma concentration of NT and adverse effects such as dry mouth, constipation, and dizziness in this case with genotype CYP2D6*5/*10B. This case suggests the clinical usefulness of pharmacogenetic testing in individualized dosage adjustments of NT.
Collapse
|
Case Reports |
21 |
6 |
11
|
Lee SY, Kim JS, Kim JW. A case of intolerance to warfarin dosing in an intermediate metabolizer of CYP2C9. Yonsei Med J 2005; 46:843-846. [PMID: 16385662 PMCID: PMC2810600 DOI: 10.3349/ymj.2005.46.6.843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Accepted: 08/23/2004] [Indexed: 11/27/2022] [Imported: 01/27/2025] Open
Abstract
We report a case of intolerance to warfarin dosing due to impaired drug metabolism in a patient heterozygous for the CYP2C9*3 allele. A 30-year-old woman with an artificial cardiac pacemaker was taking warfarin to prevent thromboembolism. This patient had an extremely elevated international normalized ratio (INR) of prothrombin time (PT) following standard doses of warfarin and experienced difficulties during the induction of anticoagulation. Genotyping for CYP2C9 revealed that this patient was an intermediate metabolizer with genotype CYP2C9*1/*3. This case suggests the clinical usefulness of pharmacogenetic testing for individualized dosage adjustments of warfarin.
Collapse
|
Case Reports |
20 |
2 |
12
|
Lee SY, Kim YG, Kim HG, Kim JW. Pharmacokinetic parameters of bromperidol in Korean subjects. Hum Psychopharmacol 2006; 21:409-412. [PMID: 16915578 DOI: 10.1002/hup.776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] [Imported: 01/27/2025]
Abstract
We have presented pharmacokinetic parameters of bromperidol (BP) in 14 healthy Korean subjects. Additionally, we have investigated the effects of dose and genetic polymorphisms on BP metabolism and on extrapyramidal symptoms (EPS). The T(max) (3.9 +/- 0.9 h), clearance (1.37 +/- 0.52 ml/h/kg), and t(1/2) (20.4 +/- 3.7 h) obtained in our study are comparable to those in previous Caucasian studies, although pharmacokinetic profiles were affected by the BP dose. We could not prove any significant correlations between BP metabolism or adverse effects and genetic factors because the number of subjects was small. Further studies with a larger population are needed to determine the influence of genetic factors on BP therapy.
Collapse
|
Clinical Trial |
19 |
2 |
13
|
Lee SY. Therapeutic Drug Monitoring of Biologic Agents in the Era of Precision Medicine. Ann Lab Med 2020; 40:95-96. [PMID: 31650723 PMCID: PMC6822007 DOI: 10.3343/alm.2020.40.2.95] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] [Imported: 01/27/2025] Open
|
Editorial |
5 |
1 |
14
|
Lee SY, Hwang H, Kang YM, Kim H, Kim DG, Jeong JE, Kim JY, Yoo JS. SAAVpedia: Identification, Functional Annotation, and Retrieval of Single Amino Acid Variants for Proteogenomic Interpretation. J Proteome Res 2019; 18:4133-4142. [PMID: 31612721 DOI: 10.1021/acs.jproteome.9b00366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] [Imported: 04/02/2025]
Abstract
Next-generation genome sequencing has enabled the discovery of numerous disease- or drug-response-associated nonsynonymous single nucleotide variants (nsSNVs) that alter the amino acid sequences of a protein. Although several studies have attempted to characterize pathogenic nsSNVs, few have been confirmed as single amino acid variants (SAAVs) at the protein level. Here we developed the SAAVpedia platform to identify, annotate, and retrieve pathogenic SAAV candidates from proteomic and genomic data. The platform consists of four modules: SAAVidentifier, SAAVannotator, SNV/SAAVretriever, and SAAVvisualizer. The SAAVidentifier provides a reference database containing 18 206 090 SAAVs and performs the identification and quality assessment of SAAVs. The SAAVannotator provides functional annotation with biological, clinical, and pharmacological information for the interpretation of condition-specific SAAVs. The SNV/SAAVretriever module enables bidirectional navigation between relevant SAAVs and nsSNVs with diverse genomic and proteomic data. SAAVvisualizer provides various statistical plots based on functional annotations of detected SAAVs. To demonstrate the utility of SAAVpedia, the proteogenomic pipeline with protein-protein interaction network analysis was applied to proteomic data from breast cancer and glioblastoma patients. We identified 1326 and 12 breast-cancer- and glioblastoma-related genes that contained one or more SAAVs, including BRCA2 and FAM49B, respectively. SAAVpedia is a suitable platform for confirming whether a genomic variant is maintained in an amino acid sequence. Furthermore, as a result of the SAAV discovery of these positive controls, the SAAVpedia could play a key role in the protein functional study for the Human Proteome Project (HPP).
Collapse
|
|
6 |
1 |
15
|
Lee SY, Chun MR, Kim DJ, Kim JW. Corrigendum to “Determination of iohexol clearance by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS)” [J. Chromatogr. B 839 (2006) 124]. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:106. [DOI: 10.1016/j.jchromb.2008.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] [Imported: 04/02/2025]
|
|
16 |
|