1
|
Ajayi AF, Akhigbe RE. Codeine-induced sperm DNA damage is mediated predominantly by oxidative stress rather than apoptosis. Redox Rep 2020; 25:33-40. [PMID: 32290793 PMCID: PMC7189206 DOI: 10.1080/13510002.2020.1752003] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] [Imported: 02/08/2025] Open
Abstract
ABSTRACTBackground: Opioids have been implicated to induce infertility. Although codeine remains the most used opioid for recreational purpose, no study has documented its effect on sperm quality. Elucidating the effect of codeine on sperm cells and the associated mechanisms may provide an insight into preventing drug-induced sperm damage. Twenty-one New Zealand white rabbits were randomized into three groups; control and codeine-treated. The codeine-treated groups received either 4 or 10mg/kg b.w of codeine for six weeks.Results: Codeine treatment led to significant decrease in sperm count, motility, viability, normal morphology, and sperm membrane integrity. This was associated with significant rise in sperm DNA fragmentation, oxidative damage, and caspase 3 activity. The percentage of sperm DNA fragmentation correlates positively with 8-hydroxy-2'-deoxyguanosine, a biomarker of oxidative DNA damage, and caspase 3 activity, a biomarker of apoptosis. The observed correlation was stronger between sperm DNA fragmentation and oxidative DNA damage than sperm DNA fragmentation and caspase 3 activity.Conclusion: This study revealed that chronic codeine exposure causes sperm DNA fragmentation and poor sperm quality primarily via oxidative stress rather than activation of caspase 3-dependent apoptosis. Findings of the present study may explain drug-induced male factor infertility, particularly, those associated with opioid use.
Collapse
|
research-article |
5 |
45 |
2
|
Afolabi AO, Akhigbe TM, Odetayo AF, Anyogu DC, Hamed MA, Akhigbe RE. Restoration of Hepatic and Intestinal Integrity by Phyllanthus amarus Is Dependent on Bax/Caspase 3 Modulation in Intestinal Ischemia-/Reperfusion-Induced Injury. Molecules 2022; 27:5073. [PMID: 36014309 PMCID: PMC9413108 DOI: 10.3390/molecules27165073] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022] [Imported: 02/08/2025] Open
Abstract
Ethnopharmacological relevance: Oxidative stress is a key player in intestinal ischemia/reperfusion (I/R) injury (IIRI) with a tendency to trigger systemic inflammatory response, resulting in progressive distal organ injury. To date, the role of Bax/caspase 3 signaling in IIRI has not been reported. Furthermore, the discovery of a safe and effective drug remains pertinent in improving the outcome of IIRI. Therefore, this study investigated the role of Bax/caspase 3 signaling in intestinal I/R-induced intestinal and hepatic injury. In addition, the protective effect and possible associated mechanism of action of methanolic Phyllanthus amarus leaf extract (PA) against intestinal I/R-induced intestinal and hepatic injury were evaluated. Materials and methods: Fifty male Wistar rats were randomized into five groups (n = 10). The sham-operated group was received 0.5 mL of distilled water for seven days prior to the sham surgery, while the IIRI, febuxostat (FEB) + IIRI, low-dose PA (LDPA) + IIRI, and high-dose PA (HDPA) + IIRI groups underwent the I/R procedure. In addition to the procedure, IIRI, FEB + IIRI, LDPA + IIRI, and HDPA + IIRI received 0.5 mL of distilled water, 10 mg/kg of febuxostat, 200 mg/kg of PA, and 400 mg/kg of PA, respectively, for seven days prior to the I/R procedure. Results: Administration of methanolic Phyllanthus amarus leaf extracts attenuated the intestinal I/R-induced rise in intestinal and hepatic injury markers, malondialdehyde, nitric oxide, TNF-α, IL-6, and myeloperoxidase activities. In addition, Phyllanthus amarus ameliorated I/R-induced suppression of reduced glutathione, thiol and non-thiol proteins, and superoxide dismutase, catalase, and glutathione peroxidase activities in intestinal and hepatic tissues. These were coupled with the suppression of I/R-induced bacterial translocation, downregulation of I/R-induced activation of Bax/caspase 3 signaling, and improvement of I/R-induced distortion of intestinal and hepatic histoarchitecture by Phyllanthus amarus. Conclusion: Methanolic Phyllanthus amarus leaf extract protects against intestinal and hepatic injuries associated with intestinal I/R by suppressing oxidative-stress-mediated activation of Bax/caspase 3 signaling. The beneficial effects of Phyllanthus amarus may be ascribed to its constituent bioactive molecules, especially tannins, anthocyanin, alkaloids, and phenolics.
Collapse
|
research-article |
3 |
20 |
3
|
Ashonibare VJ, Akorede BA, Ashonibare PJ, Akhigbe TM, Akhigbe RE. Gut microbiota-gonadal axis: the impact of gut microbiota on reproductive functions. Front Immunol 2024; 15:1346035. [PMID: 38482009 PMCID: PMC10933031 DOI: 10.3389/fimmu.2024.1346035] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/30/2024] [Indexed: 04/12/2024] [Imported: 02/08/2025] Open
Abstract
The influence of gut microbiota on physiological processes is rapidly gaining attention globally. Despite being under-studied, there are available data demonstrating a gut microbiota-gonadal cross-talk, and the importance of this axis in reproduction. This study reviews the impacts of gut microbiota on reproduction. In addition, the possible mechanisms by which gut microbiota modulates male and female reproduction are presented. Databases, including Embase, Google scholar, Pubmed/Medline, Scopus, and Web of Science, were explored using relevant key words. Findings showed that gut microbiota promotes gonadal functions by modulating the circulating levels of steroid sex hormones, insulin sensitivity, immune system, and gonadal microbiota. Gut microbiota also alters ROS generation and the activation of cytokine accumulation. In conclusion, available data demonstrate the existence of a gut microbiota-gonadal axis, and role of this axis on gonadal functions. However, majority of the data were compelling evidences from animal studies with a great dearth of human data. Therefore, human studies validating the reports of experimental studies using animal models are important.
Collapse
|
Review |
1 |
19 |
4
|
Besong EE, Akhigbe TM, Ashonibare PJ, Oladipo AA, Obimma JN, Hamed MA, Adeyemi DH, Akhigbe RE. Zinc improves sexual performance and erectile function by preventing penile oxidative injury and upregulating circulating testosterone in lead-exposed rats. Redox Rep 2023; 28:2225675. [PMID: 37345699 PMCID: PMC10291914 DOI: 10.1080/13510002.2023.2225675] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] [Imported: 02/08/2025] Open
Abstract
AIM The present study evaluated the effect of lead exposure with and without zinc therapy on male sexual and erectile function. METHODS Twenty male Wistar rats were randomly assigned into four groups; the control, zinc-treated, lead-exposed, lead + zinc-treated groups. Administrations were per os daily for 28 days. RESULTS Zinc co-administration significantly improved absolute and relative penile weights and the latencies and frequencies of mount, intromission, and ejaculation in lead-exposed rats. Also, zinc ameliorated lead-induced reductions in motivation to mate and penile reflex/erection. These findings were accompanied by attenuation of lead-induced suppression of circulating nitric oxide (NO), penile cyclic guanosine monophosphate (cGMP), dopamine, serum luteinizing hormone, follicle-stimulating hormone, and testosterone. In addition, zinc alleviated lead-induced upregulation of penile activities of acetylcholinesterase and xanthine oxidase (XO), and uric acid (UA) and malondialdehyde (MDA) levels. Furthermore, zinc ameliorated the lead-induced decline in penile nuclear factor erythroid 2-related factor 2 (Nrf2) and reduced glutathione (GSH) levels, and catalase, superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione-S-transferase (GST) activities. CONCLUSION This study revealed that co-administration of zinc improves lead-induced sexual and erectile dysfunction by suppressing XO/UA-driven oxidative stress and upregulating testosterone via Nrf2-mediated signaling.
Collapse
|
research-article |
2 |
18 |
5
|
Saka WA, Akhigbe RE, Popoola OT, Oyekunle OS. Changes in Serum Electrolytes, Urea, and Creatinine in Aloe Vera-treated Rats. J Young Pharm 2012; 4:78-81. [PMID: 22754258 PMCID: PMC3385221 DOI: 10.4103/0975-1483.96620] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] [Imported: 02/08/2025] Open
Abstract
This study was carried out to investigate the effect of Aloe vera extract (AvE) on serum electrolytes, urea, and creatinine as indices of renal function in Sprague-Dawley rats. Twelve male Sprague-Dawley rats weighing between 80 and 130 g were used. Rats were divided into two groups: The control and the test groups (n=6). The test group received 1 ml of AvE daily for 28 days. Both the groups fed on standard rat chow and water ad libitum. The results showed a decrease in serum levels of sodium, and potassium, but an increase in the serum levels of bicarbonate, urea, and creatinine in the test group. The changes seen were, however, statistically insignificant, except for the serum levels of sodium and creatinine (P<0.05). It is thus concluded that AvE impairs renal handling of electrolytes with consequent hyponatremia and hypercreatinemia. However, this might be of therapeutic value in conditions associated with hypernatremia.
Collapse
|
other |
13 |
16 |
6
|
Adelowo OE, Akindele BM, Adegbola CA, Oyedokun PA, Akhigbe TM, Akhigbe RE. Unraveling the complexity of the impact of physical exercise on male reproductive functions: a review of both sides of a coin. Front Physiol 2024; 15:1492771. [PMID: 39726860 PMCID: PMC11669690 DOI: 10.3389/fphys.2024.1492771] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] [Imported: 02/08/2025] Open
Abstract
Regular exercise is widely recognized for its numerous physical and mental benefits, but its effects on male reproductive health are less understood. This review aims to summarize the current evidence on the impact of exercise on male reproduction, including reproductive hormone regulation, spermatogenesis sperm quality, and fertility. Moderate exercise improves sperm quality, increasing count, motility, and morphology, while excessive and severe exercise may have detrimental effects. Exercise positively influences fertility by reducing oxidative stress and enhancing sperm DNA integrity. Regular physical activity regulates reproductive hormones, including testosterone, follicle-stimulating hormone, and luteinizing hormone. Exercise-induced weight management and improved insulin sensitivity also contribute to better reproductive health. In conclusion, exercise has a profound impact on male reproductive health, with moderate physical activity promoting improved hormonal balance, sperm quality, and fertility. However, severe/excessive exercise exerts negative effects. These findings imply that a balanced exercise routine, usually mild to moderate, combined with a healthy lifestyle is essential for optimal male reproductive health. However, once exercise is severe and prolonged, it could impair male reproductive health. Further research is needed to understand the mechanisms underlying the exercise-reproduction relationship fully.
Collapse
|
Review |
1 |
3 |
7
|
Besong EE, Akhigbe TM, Oyedokun PA, Hamed MA, Akhigbe RE. Acetate attenuates lead-induced dysregulation of testicular steroidogenesis and spermatogenesis by targeting oxidative stress, inflammatory cytokines, and apoptosis. Toxicol Res 2024; 40:613-626. [PMID: 39345745 PMCID: PMC11436558 DOI: 10.1007/s43188-024-00250-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 10/01/2024] [Imported: 02/08/2025] Open
Abstract
UNLABELLED Lead exposure has been implicated in the aetiopathogenesis of male infertility via an oxidative stress-sensitive pathway. Conversely, acetate has been shown to confer cellular protection by improving the antioxidant defense mechanism. Yet, the effect of acetate on lead-induced testicular toxicity, viz., dysregulation of testicular steroidogenesis and spermatogenesis, has not been reported. The present study probed the influence of acetate on lead-induced dysregulation of testicular steroidogenesis and spermatogenesis. In our study, a reduction in body weight gain and testicular weight was identified in lead-exposed rats. While histopathological results established distortion of testicular histoarchitecture, reduced germ cell count, and suppressed spermatogenesis, biochemical studies confirmed that lead-deregulated testicular steroidogenesis was associated with reduced circulating gonadotropin-releasing hormone and gonadotropins, as well as down-regulated testicular 3β-HSD and 17β-HSD activities. These findings were accompanied by increased testicular malondialdehyde, TNF-α, IL-1β, and IL-6, and reduced glutathione, thiol and non-thiol protein levels, total antioxidant capacity, superoxide dismutase, and catalase activities. In addition, lead exposure increased NFkB and Bax levels, as well as caspase 3 activity, but reduced Bcl-2 levels. However, co-administration of acetate ameliorated lead-induced alterations. Collectively, acetate attenuated lead-induced dysregulation of testicular steroidogenesis and spermatogenesis by targeting oxidative stress, NFkB-mediated inflammation, and caspase 3-driven apoptosis. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s43188-024-00250-3.
Collapse
|
research-article |
1 |
|
8
|
Kukoyi OS, Ashonibare VJ, Adegbola CA, Akhigbe TM, Akhigbe RE. Ureaplasma urealyticum upregulates seminal fluid leukocytes and lowers human semen quality: a systematic review and meta-analysis. Basic Clin Androl 2025; 35:14. [PMID: 40247169 PMCID: PMC12004628 DOI: 10.1186/s12610-025-00262-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 04/08/2025] [Indexed: 04/19/2025] [Imported: 05/04/2025] Open
Abstract
BACKGROUND Ureaplasma urealyticum belongs to the class Mollicutes and causes non-gonococcal urethritis, an inflammation of the urethra that is linked with impaired semen quality. However, some reports are contradictory, and the reported effect of U. urealyticum on specific sperm variables is not consistent. Thus, this study synthesized findings from published primary data and provides a robust and reliable inference on the impact and associated mechanisms of U. urealyticum on sperm quality. METHODS A systematic search was conducted until 31st May, 2024, on Cochrane, Google Scholar, and Pubmed. The Population, Exposure, Comparator/Comparison, Outcomes, and Study Design (PECOS) model was adopted. The populations were male in their reproductive ages who were infected with Ureaplasma urealyticum and confirmed positive versus the control who were age-matched non-infected or treated, while the outcomes included conventional semen parameters, seminal fluid leucocyte count, and sperm interleukin-6 (IL-6) concentrations, and the studies were either cross-sectional or longitudinal. RESULTS When compared with the control, quantitative analysis demonstrated that U. urealyticum significantly reduced ejaculate volume (SMD 0.33 [95% CI: 0.15, 0.52] p = 0.0004), sperm concentration (SMD 0.47 [95% CI: 0.31, 0.64] p < 0.00001), total sperm motility (SMD 0.73 [95% CI: 0.43, 1.02] p < 0.00001), total motile sperm count (SMD 0.21 [95% CI: 0.17, 0.26] p < 0.00001), normal sperm morphology (SMD 0.88 [95% CI: 0.42, 1.35] p = 0.0002), but increased seminal fluid leukocyte count (SMD -0.82 [95% CI: -1.61, -0.02] p = 0.04). In addition, qualitative analysis revealed that U. urealyticum-positive subjects had significantly higher levels of IL-1β, IL-6, IL-8, TNF-α, peroxidase, leukocytes, neutrophils, CD4 + T cells, and CD8 + T cells in the seminal fluid when compared with the control. Furthermore, higher sperm DNA fragmentation and apoptotic sperm cells were observed in U. urealyticum-positive subjects when compared to the control. CONCLUSIONS These findings revealed that U. urealyticum lowers semen quality via the upregulation of seminal fluid leukocytes, elastase, pro-inflammatory cytokines, and DNA fragmentation. However, further studies are required to elucidate the mechanisms underlying the association between U. urealyticum and semen quality decline and to develop effective therapies for this condition.
Collapse
|
Review |
1 |
|
9
|
Akhigbe RE, Oyedokun PA, Akhigbe TM, Adenike S, Oladipo AA, Hughes JR. Does pyrethroid exposure lower human semen quality? a systematic review and meta-analysis. FRONTIERS IN TOXICOLOGY 2024; 6:1395010. [PMID: 38919453 PMCID: PMC11196980 DOI: 10.3389/ftox.2024.1395010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/13/2024] [Indexed: 06/27/2024] [Imported: 02/08/2025] Open
Abstract
Background: Pyrethroids are natural organic compounds extracted from flowers of pyrethrums and commonly used as domestic and commercial insecticides. Although it is effective in insect and parasitic control, its associated toxicity, including spermotoxicity, remains a challenge globally. Currently, the available reports on the effect of pyrethroids on semen quality are conflicting, hence an evaluation of its detrimental effect is pertinent. This study conducts a detailed systematic review and meta-analysis of the effects of pyrethroids on sperm quality. Materials and methods: The present study was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Using a pre-defined strategic protocol, an internet search was done using combined text words. The criteria for eligibility were selected based on Population, Exposure, Comparator, Outcome, and Study Designs (PECO) framework, and relevant data were collected. Appraisal was done using The Office of Health Assessment and Translation (OHAT) tool for the evaluation of the Risk of Bias and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group guidelines for the certainty of evidence. A quantitative meta-analysis was conducted with the Review Manager (RevMan). Results: Only 12 out of the 4, 050 studies screened were eligible for inclusion in this study. The eligible studies were from China (4), Japan (3), Poland (3), and United States (2). All the eligible studies were cross-sectional. A total of 2, 050 male subjects were included in the meta-analysis. Pyrethroid exposure significantly reduced sperm motility. Region-stratified subgroup analyses revealed that pyrethroid significantly reduced sperm motility among men in Poland and United States, and decreased sperm count among men in Japan. Pyrethroid exposure also reduced sperm concentration among men in Poland but increased sperm concentration among men in the United States. Conclusion: Although the study revealed inconsistent evidence on the detrimental effect of pyrethroids on semen quality, the findings showed that pyrethroids have deleterious potentials on sperm motility, count, and concentration. Studies focusing on the assessment of semen quality in pyrethroid-exposed men, especially at specific varying levels of exposure, and employing prospective cohort studies or controlled cross-sectional designs are recommended.
Collapse
|
Systematic Review |
1 |
|
10
|
Adegbola CA, Akhigbe TM, Adeogun AE, Tvrdá E, Pizent A, Akhigbe RE. A systematic review and meta-analysis of the impact of triclosan exposure on human semen quality. FRONTIERS IN TOXICOLOGY 2024; 6:1469340. [PMID: 39483697 PMCID: PMC11525012 DOI: 10.3389/ftox.2024.1469340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024] [Imported: 02/08/2025] Open
Abstract
INTRODUCTION Triclosan is an antibacterial and antifungal compound that is frequently found in personal care and consumer products, and its its impact on male reproductive health is a growing concern. Despite existing experimental studies demonstrating its potential threats to male fertility, reports on its effects on human semen quality remains limited and inconsistent. Therefore, this study presents a systematic review and meta-analysis assessing the relationship between triclosan exposure and semen quality. METHODS This study was registered with PROSPERO (CRD42024524192) and adhered to PRISMA guidelines. RESULTS The study analyzed 562 screened studies, out of which five articles including 1,312 male subjects were finally included in the study. The eligible studies were geographically diverse, with three from China, one from Belgium, and one from Poland. More so, the eligible studies were both case-control and cross-sectional. The meta-analysis revealed that triclosan exposure significantly reduced sperm concentration (Standard Mean Difference (SMD) -0.42 [95% CI: -0.75, -0.10], P = 0.01) and sperm total motility (SMD -1.30 [95% CI: -2.26, -0.34], P = 0.008). Mechanistic insights from animal and in vitro studies showed that oxidative stress may mediate the adverse effects of triclosan on semen quality. DISCUSSION This meta-analysis is the first comprehensive evaluation of the impact of triclosan on human semen quality, highlighting its potential to impair male fertility through reductions in sperm concentration and motility. However, the high heterogeneity among the included studies underscores the need for further high-quality research to establish more definitive conclusions regarding the effects of triclosan exposure on human reproductive health.
Collapse
|
Systematic Review |
1 |
|
11
|
Akhigbe RE, Afolabi OA, Ajayi AF. L-Arginine abrogates maternal and pre-pubertal codeine exposure-induced impaired spermatogenesis and sperm quality by modulating the levels of mRNA encoding spermatogenic genes. Front Endocrinol (Lausanne) 2023; 14:1180085. [PMID: 37529606 PMCID: PMC10390314 DOI: 10.3389/fendo.2023.1180085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/13/2023] [Indexed: 08/03/2023] [Imported: 02/08/2025] Open
Abstract
INTRODUCTION Although, codeine has been demonstrated to lower sperm quality; the effects of maternal and prepubertal codeine exposure on male offspring is yet to be reported. In addition, the effect of arginine on codeine-induced decline in sperm quality has not been explored. This study investigated the impact of maternal and prepubertal codeine exposure on spermatogenesis and sperm quality in F1 male Wistar rats to study the effect that codeine may have during recreational use in humans. Also, the effect of arginine supplementation on codeine-induced alteration in spermatogenesis and sperm quality was evaluated. METHODS Female rats were treated with either 0.5 ml distilled water or codeine orally for eight weeks, and then mated with male rats (female:male, 2:1). The F1 male offsprings of both cohorts were weaned at 3 weeks old and administered distilled water, codeine, arginine, or codeine with arginine orally for eight weeks. RESULTS Prepubertal codeine exposure in rats whose dams (female parents) were exposed to codeine delayed puberty and reduced the weight at puberty. Prepubertal codeine exposure exacerbated maternal codeine exposure-induced reduced total and daily spermatid production, sperm count, sperm motility, and normal sperm form, as well as impaired sperm plasma membrane integrity and increased not intact acrosome and damaged sperm DNA integrity. These perturbations were accompanied by a decrease in mRNA levels encoding spermatogenic genes, testicular testosterone and androgen receptor (AR) concentrations, and upregulation of sperm 8-hydroxydeoxyguanosine (8OHdG). Prepubertal arginine supplementation mitigated codeine-induced alterations. DISCUSSION This study provides novel experimental evidence that maternal and prepubertal codeine exposure reprogramed spermatogenesis and sperm quality of male FI generation by decreasing mRNA levels encoding spermatogenic genes and AR via oxidative stress-mediated signaling, which was abrogated by prepubertal arginine supplementation.
Collapse
|
research-article |
2 |
|