26
|
Zhou Z, Park S, Kim JW, Zhao J, Lee MY, Choi KC, Lim CW, Kim B. Detrimental effects of nicotine on thioacetamide-induced liver injury in mice. Toxicol Mech Methods 2017; 27:501-510. [PMID: 28440100 DOI: 10.1080/15376516.2017.1323256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] [Imported: 05/12/2025]
Abstract
AIM Nicotine exerts a number of physiological effects. The purpose of this study was to determine the effects of nicotine on thioacetamide (TAA)-induced liver fibrosis in mice. MATERIALS AND METHODS For in vivo experiments, hepatic fibrosis was induced by TAA (0.25 g/kg, i.p.) three times a week for 6 weeks. Mice of TAA treated groups were administered daily with distilled water and nicotine (50 or 100 μg/mL) via gastrogavage throughout the experimental period. For in vitro experiments, HepG2 (human liver cancer cell line) and LX-2 (human hepatic stellate cell line) were used to determine oxidative stress and fibrosis, respectively. RESULTS Compared to control groups, TAA treated groups had significantly differences in serum alanine transferase and aspartate aminotransferase levels and nicotine accentuated liver injury. Moreover, nicotine increased the mRNA levels of TAA-induced transforming growth factor-β (TGF-β) and collagen type I alpha 1 in the liver. Nicotine also increased TAA-induced oxidative stress. Histological examination confirmed that nicotine aggravated the degree of fibrosis caused by TAA treatment. Additionally, nicotine enhanced hepatic stellate cell activation via promoting the expression of α-smooth muscle actin. CONCLUSIONS Oral administration of nicotine significantly aggravated TAA-induced hepatic fibrosis in mice through enhancing TGF-β secretion and TAA-induced oxidative stress. The increase in TGF-β levels might be associated with the strengthening of oxidative processes, subsequently leading to increased hepatic stellate cell activation and extracellular matrix deposition. These results suggest that patients with liver disease should be advised to abandon smoking since nicotine may exacerbate hepatic fibrosis.
Collapse
|
|
8 |
9 |
27
|
Choi N, Kim JW, Jeong H, Shin DG, Seo JH, Kim JH, Lim CW, Han KM, Kim B. Fermented ginseng, GBCK25, ameliorates steatosis and inflammation in nonalcoholic steatohepatitis model. J Ginseng Res 2017; 43:196-208. [PMID: 30962734 PMCID: PMC6437395 DOI: 10.1016/j.jgr.2017.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/27/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022] [Imported: 05/12/2025] Open
Abstract
Background Nonalcoholic steatohepatitis (NASH) is one of the chronic inflammatory liver diseases and a leading cause of advanced liver fibrosis, cirrhosis, and hepatocellular carcinoma. The main purpose of this study was to clarify the effects of GBCK25 fermented by Saccharomyces servazzii GB-07 and pectinase, on NASH severity in mice. Methods Six-wk-old male mice were fed either a normal diet (ND) or a Western diet (WD) for 12 wks to induce NASH. Each group was orally administered with vehicle or GBCK25 once daily at a dose of 10 mg/kg, 20 mg/kg, 100 mg/kg, 200 mg/kg, or 400 mg/kg during that time. The effects of GBCK25 on cellular damage and inflammation were determined by in vitro experiments. Results Histopathologic analysis and hepatic/serum biochemical levels revealed that WD-fed mice showed severe steatosis and liver injury compared to ND-fed mice. Such lesions were significantly decreased in the livers of WD-fed mice with GBCK25 administration. Consistently, mRNA expression levels of NASH-related inflammatory-, fibrogenic-, and lipid metabolism-related genes were decreased in the livers of WD-fed mice administered with GBCK25 compared to WD-fed mice. Western blot analysis revealed decreased protein levels of cytochrome P450 2E1 (CYP2E1) with concomitantly reduced activation of c-Jun N-terminal kinase (JNK) in the livers of WD-fed mice administered with GBCK25. Also, decreased cellular damage and inflammation were observed in alpha mouse liver 12 (AML12) cells and RAW264.7 cells, respectively. Conclusion Administration of GBCK25 ameliorates NASH severity through the modulation of CYP2E1 and its associated JNK-mediated cellular damage. GBCK25 could be a potentially effective prophylactic strategy to prevent metabolic diseases including NASH.
Collapse
|
Journal Article |
8 |
9 |
28
|
Cigarette smoking differentially regulates inflammatory responses in a mouse model of nonalcoholic steatohepatitis depending on exposure time point. Food Chem Toxicol 2019; 135:110930. [PMID: 31678261 DOI: 10.1016/j.fct.2019.110930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 10/25/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023] [Imported: 05/12/2025]
Abstract
Cigarette smoke (CS) is a risk factor for the development of nonalcoholic fatty liver disease. However, the role of mainstream CS (MSCS) in the pathogenesis of nonalcoholic steatohepatitis (NASH) remains unclear. During the first (early exposure) or last (late exposure) three weeks of methionine-choline deficient with high fat diet feeding (6 weeks), each diet group was exposed to MSCS (300 or 600 μg/L). Hepatic or serum biochemical analysis showed that MSCS differentially modulated hepatic injury in NASH milieu, depending on exposure time points. Consistently, NASH-related hepatocellular apoptosis and fibrosis were increased in the early exposure group, but decreased in the late exposure group, except for steatosis. Ex vivo experiments showed that CS extract differentially regulated inflammatory responses in co-cultured hepatocytes and macrophages isolated from steatohepatitic livers after 10 days or 3 weeks of diet feeding. Furthermore, CS differentially up- and down-regulated the expression levels of M1/M2 polarization markers and peroxisome proliferator-activated receptor-gamma (PPARγ) in livers (29% and 38%, respectively) or co-cultured macrophages (2 and 2.5 fold, respectively). Collectively, our findings indicate that opposite effects of MSCS on NASH progression are mediated by differential modulation of PPARγ and its-associated M1/M2 polarization in hepatic macrophages, depending on exposure time points.
Collapse
|
Journal Article |
6 |
9 |
29
|
Zhou Z, Qi J, Kim JW, You MJ, Lim CW, Kim B. AK-1, a Sirt2 inhibitor, alleviates carbon tetrachloride-induced hepatotoxicity in vivo and in vitro. Toxicol Mech Methods 2020; 30:324-335. [PMID: 32063085 DOI: 10.1080/15376516.2020.1729915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] [Imported: 05/12/2025]
Abstract
Background/Aim: Acute liver injury (ALI) is a life-threatening clinical syndrome that is usually caused by toxic chemicals, drugs, or pathogen infections. Sirtuin2 (Sirt2), an NAD+-dependent deacetylase, appears to play detrimental roles in liver injury. Here, we evaluated the therapeutic application targeting Sirt2 in carbon tetrachloride (CCl4)-induced ALI, by using AK-1 (a Sirt2 inhibitor).Methods: For in vivo experiments, a single injection of CCl4 was used to induce ALI. One hour later, mice were intraperitoneally injected with AK-1 and were sacrificed 24 h after CCl4 administration. For in vitro experiments, primary mouse hepatocytes were used to determine the effects of AK-1 on oxidative stress and hepatocellular death induced by CCl4.Results: AK-1 alleviated CCl4-induced ALI as confirmed by histopathologic analysis, and decreased levels of serum biochemicals and inflammatory cytokines. Although it barely affected the expression of hepatic cytochrome P450 enzymes, AK-1 attenuated CCl4-induced oxidative stress and its related cell death. Mechanistically, Sirt2 inhibition significantly increased the nuclear protein level of nuclear factor erythroid 2-related factor 2 (Nrf2), and meanwhile decreased phosphorylation of c-Jun N-terminal kinases (JNK), in normal and injured livers. Similar results were observed in vitro. AK-1 significantly attenuated CCl4-induced cytotoxicity and oxidative stress by up-regulating the activity of Nrf2, and down-regulating JNK signaling in hepatocytes.Conclusions: Our results suggest that AK-1 treatment attenuated oxidative stress and cell death in the ALI model, at least partially, via activating Nrf2 and inhibiting JNK signaling, and that Sirt2 inhibition might be a potential approach to cure ALI.
Collapse
|
Journal Article |
5 |
9 |
30
|
Lee H, Jeong H, Park S, Yang MS, Kim J, Bae J, Kwon Y, Kim MS, Oem JK, Lee MH, Lim CW, Kim B. Experimental infection of cows with newly isolated Akabane virus strain (AKAV-7) causing encephalomyelitis. Vet Res 2016; 47:62. [PMID: 27287214 PMCID: PMC4901474 DOI: 10.1186/s13567-016-0349-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/25/2016] [Indexed: 11/25/2022] [Imported: 05/12/2025] Open
Abstract
Akabane virus (AKAV), an arthropod-transmitted bunyavirus, is a major cause of congenital abnormalities and encephalomyelitis in ruminants. In 2010, there was a major outbreak of encephalomyelitis in Korea and fifteen AKAV strains, including AKAV-7, were isolated from cows. To identify the neuropathogenicity of AKAV-7, we performed experimental infection of cows. Six-month-old female Korean Holstein dairy cattle were inoculated with AKAV-7 by various routes, including intracerebral (IC), intrasubarachnoid space (IS), subcutaneous (SC) and intravenous (IV); a separate group was vaccinated before intravenous infection. Five of the six cows in the IC group and two of the six cows in the IS group showed clinical signs such as locomotor ataxia and paralysis of the hind limbs. Three of six cows died after IC infection 9–12 days post infection (dpi). Histopathologic changes such as nonsuppurative encephalomyelitis were confirmed in various parts of the central nervous system in the IC, IS and SC groups. Early onset of neutralizing antibodies in the serum and lower viral mRNA levels in the peripheral blood mononuclear cells (PBMCs) and various tissues in the vaccinated group was noticeable compared to the unvaccinated group (IV group). We suggest that the AKAV vaccine currently used in Korea may be partially effective for protection against AKAV-7 in cows.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
5 |
31
|
Jeong H, Kim JW, Yang D, Jeong TW, Zhao J, Seo JH, Shin DG, Cha JD, Han KM, Lim CW, Kim B. Orostachys japonicus A. Berger (Crassulaceae) Exerts Antidiabetic Activity by Improving Glucose and Lipid Levels in Type 2 Diabetic Mice. J Med Food 2019; 22:797-809. [PMID: 31211640 DOI: 10.1089/jmf.2018.4391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] [Imported: 05/12/2025] Open
Abstract
Orostachys japonicus A. Berger and Momordica charantia Linn have been widely used as an alternative medicine. Recently, patients with type 2 diabetes (T2D) have paid increasing attention to medical nutrition therapy due to its safety and cost-effectiveness. Therefore, we have developed a new health functional food that consists of a mixed extract of O. japonicus and M. charantia. The aim of this study is designed to assess the antidiabetic efficacy of O. japonicus and M. charantia extracts (OME, in an 8:2 ratio), especially focusing on the effects of O. japonicus via in vivo and in vitro experiments. Seven-week-old C57BL/Ksj-db/db (db/db; a genetic animal model of T2D) mice were used for inducing diabetes. Mice were administered with various concentrations of OME (OME 0, 100, 200, or 400 mg/kg/day) for 6 weeks. Metabolic parameters, fasting blood glucose and glycosylated hemoglobin levels were measured. Histopathologic analysis and the levels of serum or hepatic biochemicals were assessed to evaluate diabetic liver injury and steatosis. The expression levels of lipogenic and gluconeogenic genes were determined by quantitative real-time polymerase chain reaction. Activation of Akt was assessed by western blot analysis. Administration of OME significantly improved metabolic parameters in db/db mice, and also reduced diabetic liver injury and steatosis were observed by OME administration in db/db mice as confirmed by histopathologic and serum or hepatic biochemical analysis. Consistently, treatment of OME significantly increased Akt activation resulting in decreased expression levels of lipid-accumulation or gluconeogenesis-related genes. Similar results were observed in in vitro experiments using single extract of O. japonicus and using OME. OME has antidiabetic effects with increased insulin sensitivity, and may be a safe alternative therapy for the management of T2D.
Collapse
|
|
6 |
4 |
32
|
Zhou Z, Qi J, Yang D, Yang MS, Jeong H, Lim CW, Kim JW, Kim B. Exogenous activation of toll-like receptor 5 signaling mitigates acetaminophen-induced hepatotoxicity in mice. Toxicol Lett 2021; 342:58-72. [PMID: 33571619 DOI: 10.1016/j.toxlet.2021.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/06/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] [Imported: 05/12/2025]
Abstract
Acetaminophen (APAP) poisoning is the most common cause of drug-induced acute liver injury (ALI). Our results showed that toll-like receptor 5 (TLR5) was abundantly expressed in hepatocytes and dramatically downregulated in the toxic mouse livers. Hence, we herein investigated the role of TLR5 signaling after APAP overdose. Mice were intraperitoneally (i.p.) injected with APAP to induce ALI, and then injected with flagellin at one hour after APAP administration. Flagellin attenuated APAP-induced ALI based on decreased histopathologic lesions, serum biochemical, oxidative stress, and inflammation. Furthermore, the protective effects of flagellin were abolished by TH1020 (a TLR5 antagonist) treatment. These results suggest that flagellin exerted protective effects on ALI via TLR5 activation. Mechanistically, flagellin injection promoted the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus in hepatocytes. Consistent with the in vivo results, flagellin increased the activation of Nrf2 in hepatocytes, resulting in decreased APAP toxicity. ML385, a selective inhibitor of Nrf2, abolished the flagellin-mediated hepatoprotective effects in damaged livers and hepatocytes. Additionally, the flagellin-induced Nrf2 translocation was dependent upon the activation of TLR5-JNK/p38 pathways. These findings suggest that TLR5 signaling-induced Nrf2 activation, at least partially, contributed to the protection against APAP-induced ALI by flagellin treatment.
Collapse
|
Journal Article |
4 |
4 |
33
|
Yang D, Jeong H, Hwang SM, Kim JW, Moon HW, Lee YE, Oh HB, Park CB, Kim B. Oral administration of Jinan Red Ginseng and licorice extract mixtures ameliorates nonalcoholic steatohepatitis by modulating lipogenesis. J Ginseng Res 2022; 46:126-137. [PMID: 35058729 PMCID: PMC8753527 DOI: 10.1016/j.jgr.2021.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/20/2022] [Imported: 05/12/2025] Open
Abstract
Background Nonalcoholic steatohepatitis (NASH) is one of the main chronic liver diseases. NASH is identified by lipid accumulation, inflammation, and fibrosis. Jinan Red Ginseng (JRG) and licorice have been widely used because of their anti-inflammatory and hepatoprotective effects. Hence, this study assessed JRG and licorice extract mixtures' effects on NASH progression. Methods Palmitic acid (PA) and the western diet (WD) plus, high glucose-fructose water were used to induce in vitro and in vivo NASH. Mice were orally administered with JRG-single (JRG-S) and JRG-mixtures (JRG-M; JRG-S + licorice) at 0, 50, 100, 200 or 400 mg/kg/day once a day during the last half-period of diet feeding. Results JRG-S and JRG-M reduced NASH-related pathologies in WD-fed mice. JRG-S and JRG-M consistently decreased the mRNA level of genes related with inflammation, fibrosis, and lipid metabolism. The treatment of JRG-S and JRG-M also diminished the SREBP-1c protein levels and the p-AMPK/AMPK ratio. The FAS protein levels were decreased by JRG-M treatment both in vivo and in vitro but not JRG-S. Conclusion JRG-M effectively reduced lipogenesis by modulating AMPK downstream signaling. Our findings suggest that this mixture can be used as a prophylactic or therapeutic alternative for the remedy of NASH.
Collapse
|
|
3 |
4 |
34
|
Tung HC, Kim JW, Zhu J, Li S, Yan J, Liu Q, Koo I, Koshkin SA, Hao F, Zhong G, Xu M, Wang Z, Wang J, Huang Y, Xi Y, Cai X, Xu P, Ren S, Higashiyama T, Gonzalez FJ, Li S, Isoherranen N, Yang D, Ma X, Patterson AD, Xie W. Inhibition of heme-thiolate monooxygenase CYP1B1 prevents hepatic stellate cell activation and liver fibrosis by accumulating trehalose. Sci Transl Med 2024; 16:eadk8446. [PMID: 39321267 PMCID: PMC12084873 DOI: 10.1126/scitranslmed.adk8446] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/05/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024] [Imported: 05/12/2025]
Abstract
Activation of extracellular matrix-producing hepatic stellate cells (HSCs) is a key event in liver fibrogenesis. We showed that the expression of the heme-thiolate monooxygenase cytochrome P450 1B1 (CYP1B1) was elevated in human and mouse fibrotic livers and activated HSCs. Systemic or HSC-specific ablation and pharmacological inhibition of CYP1B1 attenuated HSC activation and protected male but not female mice from thioacetamide (TAA)-, carbon tetrachloride (CCl4)-, or bile duct ligation (BDL)-induced liver fibrosis. Metabolomic analysis revealed an increase in the disaccharide trehalose in CYP1B1-deficient HSCs resulting from intestinal suppression of the trehalose-metabolizing enzyme trehalase, whose gene we found to be a target of RARα. Trehalose or its hydrolysis-resistant derivative lactotrehalose exhibited potent antifibrotic activity in vitro and in vivo by functioning as an HSC-specific autophagy inhibitor, which may account for the antifibrotic effect of CYP1B1 inhibition. Our study thus reveals an endobiotic function of CYP1B1 in liver fibrosis in males, mediated by liver-intestine cross-talk and trehalose. At the translational level, pharmacological inhibition of CYP1B1 or the use of trehalose/lactotrehalose may represent therapeutic strategies for liver fibrosis.
Collapse
|
research-article |
1 |
4 |
35
|
Kim JW, Yun H, Choi SJ, Lee SH, Park S, Lim CW, Lee K, Kim B. Evaluating the Influence of Side Stream Cigarette Smoke at an Early Stage of Non-Alcoholic Steatohepatitis Progression in Mice. Toxicol Res 2017; 33:31-41. [PMID: 28133511 PMCID: PMC5266378 DOI: 10.5487/tr.2017.33.1.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/23/2016] [Indexed: 12/29/2022] [Imported: 05/12/2025] Open
Abstract
Side stream cigarette smoke (SSCS) is known to be as harmful and hazardous to human health as is active smoking. In this study, we investigated the relationship between the exposure to SSCS and its stimulatory and subacute effects on the progression of non-alcoholic steatohepatitis (NASH). A methionine and choline-deficient plus high fat (MCDHF) diet was administered to C57BL/6 mice for 6 weeks. During the first three weeks of MCDHF diet feeding, each diet group was exposed to SSCS (0, 20, 40 μg/L) or fresh air for 2 hrs per day and 5 days per week. Additional experiments were performed by increasing the concentration (0, 30, 60 μg/L) and exposure time (6 hours per day) of SSCS. According to histopathologic analysis and serum levels of Alanine Aminotransferase (ALT) and Aspartate Aminotransferase (AST), there were no differences in hepatic fat deposition, fibrosis, apoptosis or liver damage in MCDHF-fed mice based on SSCS exposure. There were also no differences in the expression of inflammation-, oxidative stress- or fibrosis-related genes between MCDHF-fed mice with or without SSCS exposure. Therefore, it is concluded that SSCS with current exposure amounts does not have additive detrimental effects on the early stage of NASH.
Collapse
|
|
8 |
3 |
36
|
Yang D, Kim JW, Jeong H, Kim MS, Lim CW, Lee K, Kim B. Effects of maternal cigarette smoke exposure on the progression of nonalcoholic steatohepatitis in offspring mice. Toxicol Res 2023; 39:91-103. [PMID: 36726830 PMCID: PMC9839905 DOI: 10.1007/s43188-022-00153-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 02/04/2023] [Imported: 05/12/2025] Open
Abstract
Cigarette smoke (CS) is a dominant carcinogenic agent in a variety of human cancers. CS exposure during pregnancy can adversely affect the fetus. Non-alcoholic fatty liver disease (NAFLD) is considered as a hepatic manifestation of a metabolic disorder, and ranges from simple steatosis to cirrhosis leading to hepatocellular carcinoma. Non-alcoholic steatohepatitis (NASH) is a more severe phase of NAFLD. Recently, there is increasing apprehension about the CS-related chronic liver diseases. Therefore, we examined whether maternal CS exposure could affect the pathogenesis of NASH in offspring. Mainstream CS (MSCS) was exposed to pregnant C57BL/6 mice via nose-only inhalation for 2 h/day, 5 days/week for 2 weeks from day 6 to 17 of gestation at 0, 300, or 600 μg/L. Three-week-old male offspring mice were fed methionine and choline-supplemented (MCS) diet or methionine and choline-deficient including high-fat (MCDHF) diet for 6 weeks to induce NASH. Maternal MSCS exposure increased the severity of NASH by increasing serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, hepatic total cholesterol (TC) and triglyceride (TG) levels, pro-inflammation, fibrosis, and steatosis in offspring mice. Especially, maternal MSCS exposure significantly downregulated the phosphorylation of AMP-activated protein kinase (AMPK) in MCDHF diet-fed offspring mice. Subsequently, the protein levels of sterol regulatory element-binding protein (SREBP)-1c and stearoyl-CoA desaturase-1 (SCD1) were upregulated by maternal MSCS exposure. In conclusion, maternal MSCS exposure exacerbates the progression of NASH by modulating lipogenesis on offspring mice. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-022-00153-1.
Collapse
|
research-article |
2 |
2 |
37
|
Yang D, Jeong H, Kim MS, Oh SI, Lee K, Kim JW, Kim B. Prenatal cigarette smoke exposure sensitizes acetaminophen-induced liver injury by modulating miR-34a-5p in male offspring mice. Front Cell Dev Biol 2024; 12:1393618. [PMID: 39139452 PMCID: PMC11319911 DOI: 10.3389/fcell.2024.1393618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/01/2024] [Indexed: 08/15/2024] [Imported: 05/12/2025] Open
Abstract
Introduction: Cigarette smoke (CS) exacerbates the severity of diseases not only in lungs, but also in systemic organs having no direct contact with smoke. In addition, smoking during pregnancy can have severe health consequences for both the mother and the fetus. Therefore, our aim was to evaluate effects of prenatal exposure to CS on acetaminophen (APAP)-induced acute liver injury (ALI) in offspring. Methods: Female C57BL/6 mice on day 6 of gestation were exposed to mainstream CS (MSCS) at 0, 150, 300, or 600 μg/L for 2 h a day, 5 days a week for 2 weeks using a nose-only exposure system. At four weeks old, male offspring mice were injected intraperitoneally with a single dose of APAP at 300 mg/kg body weight to induce ALI. Results: Maternal MSCS exposure significantly amplified pathological effects associated with ALI as evidenced by elevated serum alanine aminotransferase levels, increased hepatocellular apoptosis, higher oxidative stress, and increased inflammation. Interestingly, maternal MSCS exposure reduced microRNA (miR)-34a-5p expression in livers of offspring. Moreover, treatment with a miR-34a-5p mimic significantly mitigated the severity of APAP-induced hepatotoxicity. Overexpression of miR-34a-5p completely abrogated adverse effects of maternal MSCS exposure in offspring with ALI. Mechanistically, miR-34a-5p significantly decreased expression levels of hepatocyte nuclear factor 4 alpha, leading to down-regulated expression of cytochrome P450 (CYP)1A2 and CYP3A11. Discussion: Prenatal exposure to MSCS can alter the expression of miRNAs, even in the absence of additional MSCS exposure, potentially increasing susceptibility to APAP exposure in male offspring mice.
Collapse
|
research-article |
1 |
|
38
|
Yang D, Kim YJ, Kim JW. Maternal smoking and its short- or long-term impact on offspring liver pathologies: a review of experimental and clinical studies. Toxicol Res 2025; 41:123-129. [PMID: 40013082 PMCID: PMC11850666 DOI: 10.1007/s43188-024-00271-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/13/2024] [Accepted: 12/02/2024] [Indexed: 02/28/2025] [Imported: 05/12/2025] Open
Abstract
This review investigates the correlation between prenatal tobacco exposure and the risk of liver diseases in offspring. By synthesizing data from clinical trials and animal studies, it provides a comprehensive overview of the potential mechanisms underlying this association. This review begins by analyzing the prevalence of maternal smoking and its impact on fetal development. It then discusses specific liver diseases observed in offspring exposed prenatally to tobacco, such as acute liver injuries and metabolic dysfunction-associated fatty liver disease, and discusses the underlying pathophysiological pathways. Current evidence indicates that altered fetal liver development, oxidative stress, and genetic modifications may predispose offspring to liver diseases. Furthermore, this review highlights the gaps in current research and the need for longitudinal studies to better understand the long-term effects of prenatal tobacco exposure on the liver. The review concludes with recommendations for public health policies aimed at enhancing our understanding of maternal smoking and mitigating its adverse effects on offspring, emphasizing the importance of smoking cessation during pregnancy. Graphical abstract
Collapse
|
Review |
1 |
|
39
|
Jeong H, Yang D, Zhao J, Seo JH, Shin DG, Cha JD, Lim CW, Kim JW, Kim B. Ethanol Extract of Orostachys japonicus A. Berger (Crassulaceae) Protects Against Type 2 Diabetes by Reducing Insulin Resistance and Hepatic Inflammation in Mice. J Med Food 2021; 24:464-478. [PMID: 34009023 DOI: 10.1089/jmf.2020.4790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] [Imported: 05/12/2025] Open
Abstract
Type 2 diabetes (T2D) is a threaten human health problem, and accompanied by hyperglycemia and disorder of insulin secretion, is a major cause of abnormalities in maintaining blood glucose homeostasis. Also, low-grade inflammation, as well as insulin resistance (IR), is a common feature in patients with T2D. Numerous causes of the outbreak of T2D have been suggested by researchers, who indicate that genetic background and epigenetic predisposition, such as overnutrition and deficient physical activity, hasten the promotion of T2D milieu. Orostachys japonicus A. Berger (O. japonicus) is a herbal and remedial plant whose various activities include hemostatic, antidotal, febrile, and anti-inflammatory. Hence, we designed to evaluate the antidiabetic efficacy of ethanol extracts of O. japonicus (OJE). Six-week-old C57BL/Ksj-db/db (db/db) mice were used. The results showed that mice given various concentrations of OJE (0, 50, 100, and 200 mg/kg per day) for 8 weeks showed significantly reduced hyperglycemia, IR, and liver injury, confirmed by measuring diabetic parameters, serum, and hepatic biochemicals. Furthermore, the treatment of OJE markedly decreased the mRNA levels of proinflammatory cytokines, lipid accumulation, and gluconeogenesis-related genes. Consistently, western blot analysis indicated that mice treated with OJE showed increased levels of phospho-c-Jun N-terminal kinase, phospho-Akt, glucose transporters 2 and 4 (GLUT2 and GLUT4) in T2D mice. Likewise, much the same results were obtained in in vitro experiments. Taken together, OJE had hopeful advantage in sustaining the glucose homeostasis and diminishing IR, and could be a safe alternative remedy for treating T2D.
Collapse
|
Journal Article |
4 |
|
40
|
Zhao J, Jeong H, Yang D, Tian W, Kim JW, Woong Lim C, Kim B. Toll-like receptor-7 signaling in Kupffer cells exacerbates concanavalin A-induced liver injury in mice. Int Immunopharmacol 2023; 119:110238. [PMID: 37126986 DOI: 10.1016/j.intimp.2023.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023] [Imported: 05/12/2025]
Abstract
Concanavalin A (ConA) is a plant lectin that can induce immune-mediated liver damage. ConA induced liver damage animal model is a widely accepted model that can mimic clinical acute hepatitis and immune-mediated liver injury in humans. Toll-like receptor-7 (TLR7), a member of the TLR family, plays a key role in pathogen recognition and innate immune activation. The aim of this study was to examine the role of TLR7 in the pathogenesis of ConA-induced liver injury. Acute liver injury was induced by intravenous injection with ConA in WT (wild-type) and TLR7 knockout (KO) mice. Results showed that attenuated liver injury in TLR7-deficient mice, as indicated by increased survival rate, decreased aminotransferase levels, and reduced pathological lesions, was associated with decreased release of pro-inflammatory cytokines in livers. Consistently, significantly decreased proliferation of CD4+ T cell was detected in ConA-stimulated TLR7-deficient splenocytes, but not in CD3/CD28 stimulated TLR7-deficient CD4+ T cells. Moreover, TLR7 deficiency in KCs specifically suppressed the expression of TNF-α (tumor necrosis factor-α). Depletion of KCs abolished the detrimental role of TLR7 in ConA-induced liver injury. Taken together, these results demonstrate that TLR7 can regulate the expression of TNF-α in KCs, which is necessary for the full progression of ConA-induced liver injury.
Collapse
|
|
2 |
|
41
|
Leya M, Yang D, Bao THTN, Jeong H, Oh SI, Kim JH, Kim JW, Kim B. The role of 2'-5'-oligoadenylate synthase-like protein (OASL1) in biliary and hepatotoxin-induced liver injury in mice. Sci Rep 2024; 14:21873. [PMID: 39300174 PMCID: PMC11413013 DOI: 10.1038/s41598-024-72465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024] [Imported: 05/12/2025] Open
Abstract
Following an injury, the liver embarks on a process that drives the accumulation and reformation of the extracellular matrix, leading to hepatic fibrosis. Type I interferons (IFNs), including IFN-α and IFN-β, play a crucial role in averting chronic liver injury through the activation of IFN-stimulated genes (ISGs), which are instrumental in sculpting adaptive immunity. The role of 2'-5'-oligoadenylate synthase-like protein 1 (OASL1), an antiviral ISG, in the context of liver fibrosis remains to be elucidated. To elicit liver fibrosis, a diet containing 0.1% diethoxycarbonyl-1,4-dihydrocollidine (DDC) and carbon tetrachloride (CCl4) were employed to induce cholestatic- and hepatotoxin-mediated liver fibrosis, respectively. Histological analyses of both models revealed that OASL1-/- mice exhibited reduced liver damage and, consequently, expressed lower levels of fibrotic mediators, notably α-smooth muscle actin. OASL1-/- mice demonstrated significantly elevated IFN-α and IFN-β mRNA levels, regulated by the IFN regulatory factor 7 (IRF7). Additionally, OASL1-/- ameliorated chronic liver fibrosis through the modulation of nuclear factor-κB (NF-κB) signaling. The effect of OASL1 on type I IFN production in acute liver damage was further explored and OASL1-/- mice consistently showed lower alanine transaminase levels and pro-inflammatory cytokines, but IFN-α and IFN-β mRNA levels were upregulated, leading to amelioration of acute liver injury. Additionally, the study discovered that F4/80-positive cells were observed more frequently in OASL1-/- CCl4 acutely treated mice. This implies that there is a significant synergy in the function of macrophages and OASL1 deficiency. These results demonstrate that in instances of liver injury, OASL1 inhibits the production of type I IFN by modulating the NF-κB signaling pathway, thereby worsening disease.
Collapse
|
research-article |
1 |
|
42
|
Kim JW, Tung HC, Ke M, Xu P, Cai X, Xi Y, Xu M, Ren S, Huang Y, Bhowmik A, Carroll KS, Bae YS, Li S, Xie W. The de-sulfinylation enzyme sulfiredoxin-1 attenuates hepatic stellate cell activation and liver fibrosis by modulating the PTPN12-NLRP3 axis. Hepatology 2024:01515467-990000000-01060. [PMID: 39446334 DOI: 10.1097/hep.0000000000001133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/01/2024] [Indexed: 11/03/2024] [Imported: 05/12/2025]
Abstract
BACKGROUND AIMS Liver fibrosis is characterized by the progressive scarring of liver tissue. Oxidative stress is a critical causal factor of hepatic stellate cell (HSC) activation and the subsequent liver fibrogenesis, but the mechanism is not fully understood. Cysteine sulfinic acid (Cys-SO2H), a modification of reactive cysteine residues, is a unique form of oxidative response that alters the structure and function of proteins. Sulfiredoxin 1 (SRXN1) is responsible for ATP-dependent reduction of the Cys-SO2H to sulfenic acid (Cys-SOH). APPROACH RESULTS We found that the expression of SRXN1 was increased in activated HSCs and in human and mouse fibrotic livers. HSC-specific ablation of Srxn1 or pharmacological inhibition of Srxn1 exacerbated HSC activation and sensitized mice to liver fibrosis. Mechanistically, SRXN1 inhibited HSC activation by de-sulfinylating the phosphatase protein tyrosine phosphatase non-receptor type 12 (PTPN12), which enhanced its phosphatase activity and protein stability, leading to decreased tyrosine phosphorylation and reduced activation of the pro-fibrotic inflammasome protein NLRP3. The anti-fibrotic effect of SRXN1 was abolished when NLRP3 was inhibited. In contrast, overexpression of PTPN12 attenuated NLRP3 activation, and this effect was further amplified by the C164A S-sulfinylation resistant mutant of PTPN12. CONCLUSIONS Our findings have uncovered an important role of SRXN1 and protein S-sulfinylation in HSC activation and liver fibrosis. The SRXN1-PTPN12-NLRP3 axis represents potential therapeutic targets for liver fibrosis.
Collapse
|
|
1 |
|
43
|
Feng Y, Kim JW, Xie W. The intestinal functions of PXR and CAR. Pharmacol Res 2025; 216:107779. [PMID: 40378938 DOI: 10.1016/j.phrs.2025.107779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2025] [Revised: 05/03/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025] [Imported: 06/04/2025]
Abstract
Pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are so-called xenobiotic nuclear receptors that play pivotal roles in xenobiotic metabolism and detoxification. Both receptors, highly expressed in the liver and intestine, also have endobiotic functions by regulating the homeostasis of endogenous chemicals. While their hepatic functions are well-documented, the functional roles of PXR and CAR in the gastrointestinal tract are less understood. This review highlights the intestinal functions of PXR and CAR, focusing on their involvement in colon cancer, host-microbiome interactions, inflammation, and gut barrier integrity. PXR exhibits dual roles in colon cancer, acting either as a tumor suppressor by inducing cell-cycle arrest or as a promoter of cancer aggressiveness through activating the FGF19 signaling. CAR, on the other hand, regulates intestinal barrier integrity and immune responses, particularly in the context of inflammatory bowel disease (IBD). Both PXR and CAR interact with gut microbiota, modulating microbial composition and the production of metabolites, such as indole-3-propionic acid (IPA) that influences the gut barrier function and inflammation. Activation of PXR also mitigates intestinal inflammation by antagonizing the NF-κB signaling, while CAR activation affects bile acid metabolism and T-cell homeostasis. These findings underscore the complex and context-dependent roles of PXR and CAR in the intestinal tracts, offering potential therapeutic targets for gastrointestinal diseases.
Collapse
|
Review |
1 |
|
44
|
Kim JW, Tung HC, Yang B, Pant R, Guan X, Feng Y, Xie W. Heme-thiolate monooxygenase cytochrome P450 1B1, an old dog with many new tricks. Pharmacol Rev 2025; 77:100045. [PMID: 40054133 DOI: 10.1016/j.pharmr.2025.100045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 05/12/2025] [Imported: 05/12/2025] Open
Abstract
Cytochrome P450 CYP1B1 is a heme-thiolate monooxygenase traditionally recognized for its xenobiotic functions and extrahepatic expressions. Recent studies have suggested that CYP1B1 is also expressed in hepatic stellate cells, immune cells, endothelial cells, and fibroblasts within the tumor microenvironment, as well as tumor cells themselves. CYP1B1 is responsible for the metabolism of a wide range of substrates, including xenobiotics such as drugs, environmental chemicals, and endobiotics such as steroids, retinol, and fatty acids. Consequently, CYP1B1 and its associated exogenous and endogenous metabolites have been critically implicated in the pathogenesis of many diseases. Understanding the mode of action of CYP1B1 in different pathophysiological conditions and developing pharmacological inhibitors that allow for systemic or cell type-specific modulation of CYP1B1 may pave the way for novel therapeutic opportunities. This review highlights the significant role of CYP1B1 in maintaining physiological homeostasis and provides a comprehensive discussion of recent advancements in our understanding of CYP1B1's involvement in the pathogenesis of diseases such as fibrosis, cancer, glaucoma, and metabolic disorders. Finally, the review emphasizes the therapeutic potential of targeting CYP1B1 for drug development, particularly in the treatment and prevention of cancers and liver fibrosis. SIGNIFICANCE STATEMENT: CYP1B1 plays a critical role in various physiological processes. Dysregulation or genetic mutations of the gene encoding this enzyme can lead to health complications and may increase the risk of diseases such as cancer and liver fibrosis. In this review, we summarize recent preclinical and clinical evidence that underscores the potential of CYP1B1 as a therapeutic target.
Collapse
|
Review |
1 |
|
45
|
Kim JW, Kim YJ. Cholesin and GPR146 in Modulating Cholesterol Biosynthesis. Pharmacology 2024; 109:305-311. [PMID: 39008961 DOI: 10.1159/000540351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024] [Imported: 05/12/2025]
Abstract
BACKGROUND Cholesterol homeostasis in the human body is a crucial process that involves a delicate balance between dietary cholesterol absorption in the intestine and de novo cholesterol synthesis in the liver. Both pathways contribute significantly to the overall pool of cholesterol in the body, influencing plasma cholesterol levels and impacting cardiovascular health. Elevated absorption of cholesterol in the intestines has a suppressive impact on the synthesis of cholesterol in the liver, serving to preserve cholesterol balance. Nonetheless, the precise mechanisms driving this phenomenon remain largely unclear. SUMMARY This review aimed to discuss the previously unrecognized role of cholesin and GPR146 in the regulation of cholesterol biosynthesis, providing a novel conceptual framework for understanding cholesterol homeostasis. KEY MESSAGES The discovery of cholesin, a novel protein implicated in the regulation of cholesterol homeostasis, represents a significant advancement in our understanding of cholesterol biosynthesis and its associated pathways. The cholesin-GPR146 axis could have profound implications across various therapeutic areas concerning abnormal cholesterol metabolism, offering new hope for patients and improving overall healthcare outcomes.
Collapse
|
Review |
1 |
|
46
|
Xu P, Xi Y, Kim JW, Zhu J, Zhang M, Xu M, Ren S, Yang D, Ma X, Xie W. Sulfation of chondroitin and bile acids converges to antagonize Wnt/ β-catenin signaling and inhibit APC deficiency-induced gut tumorigenesis. Acta Pharm Sin B 2024; 14:1241-1256. [PMID: 38487006 PMCID: PMC10935170 DOI: 10.1016/j.apsb.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 03/17/2024] [Imported: 05/12/2025] Open
Abstract
Sulfation is a crucial and prevalent conjugation reaction involved in cellular processes and mammalian physiology. 3'-Phosphoadenosine 5'-phosphosulfate (PAPS) synthase 2 (PAPSS2) is the primary enzyme to generate the universal sulfonate donor PAPS. The involvement of PAPSS2-mediated sulfation in adenomatous polyposis coli (APC) mutation-promoted colonic carcinogenesis has not been reported. Here, we showed that the expression of PAPSS2 was decreased in human colon tumors along with cancer stages, and the lower expression of PAPSS2 was correlated with poor prognosis in advanced colon cancer. Gut epithelial-specific heterozygous Apc deficient and Papss2-knockout (ApcΔgut-HetPapss2Δgut) mice were created, and the phenotypes were compared to the spontaneous intestinal tumorigenesis of ApcΔgut-Het mice. ApcΔgut-HetPapss2Δgut mice were more sensitive to gut tumorigenesis, which was mechanistically accounted for by the activation of Wnt/β-catenin signaling pathway due to the suppression of chondroitin sulfation and inhibition of the farnesoid X receptor (FXR)-transducin-like enhancer of split 3 (TLE3) gene regulatory axis. Chondroitin sulfate supplementation in ApcΔgut-HetPapss2Δgut mice alleviated intestinal tumorigenesis. In summary, we have uncovered the protective role of PAPSS2-mediated chondroitin sulfation and bile acids-FXR-TLE3 activation in the prevention of gut carcinogenesis via the antagonization of Wnt/β-catenin signaling. Chondroitin sulfate may be explored as a therapeutic agent for Papss2 deficiency-associated colonic carcinogenesis.
Collapse
|
research-article |
1 |
|
47
|
Leya M, Jeong H, Yang D, Ton Nu Bao TH, Pandeya PR, Oh SI, Roh YS, Kim JW, Kim B. Hepatocyte-Specific Casein Kinase 1 Epsilon Ablation Ameliorates Metabolic Dysfunction-Associated Steatohepatitis by Up-Regulating Tumor Necrosis Factor Receptor-Associated Factor 3 in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2106-2127. [PMID: 39179201 DOI: 10.1016/j.ajpath.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/09/2024] [Accepted: 08/02/2024] [Indexed: 08/26/2024] [Imported: 05/12/2025]
Abstract
Casein kinase 1 epsilon (CK1ε), a member of the serine/threonine protein kinase family, phosphorylates a broad range of substrates. However, its role in the development of chronic liver diseases remains elusive. This study aimed to investigate the role of CK1ε in the development and progression of metabolic dysfunction-associated steatohepatitis (MASH). Hepatocyte-specific CK1ε knockout (CK1εΔHEP) mice were generated by crossbreeding mice with floxed CK1ε alleles (CK1εfl/fl) and Cre-expressing albumin mice. Mice were fed either a Western diet (WD) or a methionine- and choline-deficient diet to induce MASH. CK1εΔHEP was associated with a decreased severity of WD- or methionine- and choline-deficient diet-induced MASH, as confirmed by reduced incidence of hepatic lesions and significantly lower levels of alanine aminotransferase, aspartate aminotransferase, and proinflammatory cytokine tumor necrosis factor (TNF)-α. CK1εΔHEP WD-fed mice exhibited significant amelioration of total cholesterol, triglycerides, and de novo lipogenic genes, indicating that CK1ε could influence lipid metabolism. CK1εΔHEP WD-fed mice showed significantly down-regulated TNF receptor-associated factor (TRAF) 3, phosphorylated (p) transforming growth factor-β-activated kinase 1, p-TRAF-associated NF-κB activator (TANK)-binding kinase 1 (TBK1), and p-AKT levels, thereby affecting downstream mitogen-activated protein kinase signaling, indicating a potential mechanism for the observed rescue. Finally, pharmacologic inhibition of CK1ε with PF670462 improved palmitic acid-induced steatohepatitis in vitro and attenuated WD-induced metabolic profile in vivo. In conclusion, CK1ε up-regulates TNF receptor-associated factor 3, which, in turn, causes transforming growth factor-β-activated kinase 1-dependent signaling, amplifies downstream mitogen-activated protein kinase signaling, modifies p-c-Jun levels, and exacerbates inflammation, all of which are factors in WD-induced metabolic dysfunction-associated steatotic liver disease.
Collapse
|
|
1 |
|
48
|
Park SC, Kim YJ, Kim JW. Targeting uridine diphosphate glucuronosyltransferase 1A1 in liver disease: Current research and future directions. World J Gastroenterol 2024; 30:4305-4307. [PMID: 39492821 PMCID: PMC11525851 DOI: 10.3748/wjg.v30.i39.4305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] [Imported: 05/12/2025] Open
Abstract
The current letter to the editor pertains to the manuscript entitled 'Uridine diphosphate glucuronosyltransferase 1A1 prevents the progression of liver injury'. Increased levels of uridine diphosphate glucuronosyltransferase 1A1 during liver injury could mitigate damage by reducing endoplasmic reticulum stress, oxidative stress, and dysregulated lipid metabolism, impeding hepatocyte apoptosis and necroptosis.
Collapse
|
Letter to the Editor |
1 |
|
49
|
Kim JW, Kim YJ. The evidence-based multifaceted roles of hepatic stellate cells in liver diseases: A concise review. Life Sci 2024; 344:122547. [PMID: 38460810 DOI: 10.1016/j.lfs.2024.122547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024] [Imported: 05/12/2025]
Abstract
Hepatic stellate cells (HSCs) play central roles in liver disease pathogenesis, spanning steatosis to cirrhosis and hepatocellular carcinoma. These cells, located in the liver's sinusoidal space of Disse, transition from a quiescent, vitamin A-rich state to an activated, myofibroblast-like phenotype in response to liver injury. This activation results from a complex interplay of cytokines, growth factors, and oxidative stress, leading to excessive collagen deposition and liver fibrosis, a hallmark of chronic liver diseases. Recently, HSCs have gained recognition for their dynamic, multifaceted roles in liver health and disease. Attention has shifted toward their involvement in various liver conditions, including acute liver injury, alcoholic and non-alcoholic fatty liver disease, and liver regeneration. This review aims to explore diverse functions of HSCs in these acute or chronic liver pathologies, with a focus on their roles beyond fibrogenesis. HSCs exhibit a wide range of actions, including lipid storage, immunomodulation, and interactions with other hepatic and extrahepatic cells, making them pivotal in the hepatic microenvironment. Understanding HSC involvement in the progression of liver diseases can offer novel insights into pathogenic mechanisms and guide targeted therapeutic strategies for various liver conditions.
Collapse
|
Review |
1 |
|