1
|
Li B, Tang J, Yang Q, Li S, Cui X, Li Y, Chen Y, Xue W, Li X, Zhu F. NOREVA: normalization and evaluation of MS-based metabolomics data. Nucleic Acids Res 2017; 45:W162-W170. [PMID: 28525573 PMCID: PMC5570188 DOI: 10.1093/nar/gkx449] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/22/2017] [Accepted: 05/09/2017] [Indexed: 01/15/2023] [Imported: 05/16/2025] Open
Abstract
Diverse forms of unwanted signal variations in mass spectrometry-based metabolomics data adversely affect the accuracies of metabolic profiling. A variety of normalization methods have been developed for addressing this problem. However, their performances vary greatly and depend heavily on the nature of the studied data. Moreover, given the complexity of the actual data, it is not feasible to assess the performance of methods by single criterion. We therefore developed NOREVA to enable performance evaluation of various normalization methods from multiple perspectives. NOREVA integrated five well-established criteria (each with a distinct underlying theory) to ensure more comprehensive evaluation than any single criterion. It provided the most complete set of the available normalization methods, with unique features of removing overall unwanted variations based on quality control metabolites and allowing quality control samples based correction sequentially followed by data normalization. The originality of NOREVA and the reliability of its algorithms were extensively validated by case studies on five benchmark datasets. In sum, NOREVA is distinguished for its capability of identifying the well performed normalization method by taking multiple criteria into consideration and can be an indispensable complement to other available tools. NOREVA can be freely accessed at http://server.idrb.cqu.edu.cn/noreva/.
Collapse
|
Evaluation Study |
8 |
287 |
2
|
Yang Q, Li B, Tang J, Cui X, Wang Y, Li X, Hu J, Chen Y, Xue W, Lou Y, Qiu Y, Zhu F. Consistent gene signature of schizophrenia identified by a novel feature selection strategy from comprehensive sets of transcriptomic data. Brief Bioinform 2020; 21:1058-1068. [PMID: 31157371 DOI: 10.1093/bib/bbz049] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/11/2019] [Accepted: 03/30/2019] [Indexed: 05/16/2025] [Imported: 05/16/2025] Open
Abstract
The etiology of schizophrenia (SCZ) is regarded as one of the most fundamental puzzles in current medical research, and its diagnosis is limited by the lack of objective molecular criteria. Although plenty of studies were conducted, SCZ gene signatures identified by these independent studies are found highly inconsistent. As one of the most important factors contributing to this inconsistency, the feature selection methods used currently do not fully consider the reproducibility among the signatures discovered from different datasets. Therefore, it is crucial to develop new bioinformatics tools of novel strategy for ensuring a stable discovery of gene signature for SCZ. In this study, a novel feature selection strategy (1) integrating repeated random sampling with consensus scoring and (2) evaluating the consistency of gene rank among different datasets was constructed. By systematically assessing the identified SCZ signature comprising 135 differentially expressed genes, this newly constructed strategy demonstrated significantly enhanced stability and better differentiating ability compared with the feature selection methods popular in current SCZ research. Based on a first-ever assessment on methods' reproducibility cross-validated by independent datasets from three representative studies, the new strategy stood out among the popular methods by showing superior stability and differentiating ability. Finally, 2 novel and 17 previously reported transcription factors were identified and showed great potential in revealing the etiology of SCZ. In sum, the SCZ signature identified in this study would provide valuable clues for discovering diagnostic molecules and potential targets for SCZ.
Collapse
|
|
5 |
190 |
3
|
Tang J, Fu J, Wang Y, Li B, Li Y, Yang Q, Cui X, Hong J, Li X, Chen Y, Xue W, Zhu F. ANPELA: analysis and performance assessment of the label-free quantification workflow for metaproteomic studies. Brief Bioinform 2020; 21:621-636. [PMID: 30649171 PMCID: PMC7299298 DOI: 10.1093/bib/bby127] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/19/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022] [Imported: 05/16/2025] Open
Abstract
Label-free quantification (LFQ) with a specific and sequentially integrated workflow of acquisition technique, quantification tool and processing method has emerged as the popular technique employed in metaproteomic research to provide a comprehensive landscape of the adaptive response of microbes to external stimuli and their interactions with other organisms or host cells. The performance of a specific LFQ workflow is highly dependent on the studied data. Hence, it is essential to discover the most appropriate one for a specific data set. However, it is challenging to perform such discovery due to the large number of possible workflows and the multifaceted nature of the evaluation criteria. Herein, a web server ANPELA (https://idrblab.org/anpela/) was developed and validated as the first tool enabling performance assessment of whole LFQ workflow (collective assessment by five well-established criteria with distinct underlying theories), and it enabled the identification of the optimal LFQ workflow(s) by a comprehensive performance ranking. ANPELA not only automatically detects the diverse formats of data generated by all quantification tools but also provides the most complete set of processing methods among the available web servers and stand-alone tools. Systematic validation using metaproteomic benchmarks revealed ANPELA's capabilities in 1 discovering well-performing workflow(s), (2) enabling assessment from multiple perspectives and (3) validating LFQ accuracy using spiked proteins. ANPELA has a unique ability to evaluate the performance of whole LFQ workflow and enables the discovery of the optimal LFQs by the comprehensive performance ranking of all 560 workflows. Therefore, it has great potential for applications in metaproteomic and other studies requiring LFQ techniques, as many features are shared among proteomic studies.
Collapse
|
research-article |
5 |
145 |
4
|
Li B, Tang J, Yang Q, Cui X, Li S, Chen S, Cao Q, Xue W, Chen N, Zhu F. Performance Evaluation and Online Realization of Data-driven Normalization Methods Used in LC/MS based Untargeted Metabolomics Analysis. Sci Rep 2016; 6:38881. [PMID: 27958387 PMCID: PMC5153651 DOI: 10.1038/srep38881] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/15/2016] [Indexed: 02/06/2023] [Imported: 05/16/2025] Open
Abstract
In untargeted metabolomics analysis, several factors (e.g., unwanted experimental &biological variations and technical errors) may hamper the identification of differential metabolic features, which requires the data-driven normalization approaches before feature selection. So far, ≥16 normalization methods have been widely applied for processing the LC/MS based metabolomics data. However, the performance and the sample size dependence of those methods have not yet been exhaustively compared and no online tool for comparatively and comprehensively evaluating the performance of all 16 normalization methods has been provided. In this study, a comprehensive comparison on these methods was conducted. As a result, 16 methods were categorized into three groups based on their normalization performances across various sample sizes. The VSN, the Log Transformation and the PQN were identified as methods of the best normalization performance, while the Contrast consistently underperformed across all sub-datasets of different benchmark data. Moreover, an interactive web tool comprehensively evaluating the performance of 16 methods specifically for normalizing LC/MS based metabolomics data was constructed and hosted at http://server.idrb.cqu.edu.cn/MetaPre/. In summary, this study could serve as a useful guidance to the selection of suitable normalization methods in analyzing the LC/MS based metabolomics data.
Collapse
|
Evaluation Study |
9 |
102 |
5
|
Tang J, Fu J, Wang Y, Luo Y, Yang Q, Li B, Tu G, Hong J, Cui X, Chen Y, Yao L, Xue W, Zhu F. Simultaneous Improvement in the Precision, Accuracy, and Robustness of Label-free Proteome Quantification by Optimizing Data Manipulation Chains. Mol Cell Proteomics 2019; 18:1683-1699. [PMID: 31097671 PMCID: PMC6682996 DOI: 10.1074/mcp.ra118.001169] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/28/2019] [Indexed: 12/13/2022] [Imported: 05/16/2025] Open
Abstract
The label-free proteome quantification (LFQ) is multistep workflow collectively defined by quantification tools and subsequent data manipulation methods that has been extensively applied in current biomedical, agricultural, and environmental studies. Despite recent advances, in-depth and high-quality quantification remains extremely challenging and requires the optimization of LFQs by comparatively evaluating their performance. However, the evaluation results using different criteria (precision, accuracy, and robustness) vary greatly, and the huge number of potential LFQs becomes one of the bottlenecks in comprehensively optimizing proteome quantification. In this study, a novel strategy, enabling the discovery of the LFQs of simultaneously enhanced performance from thousands of workflows (integrating 18 quantification tools with 3,128 manipulation chains), was therefore proposed. First, the feasibility of achieving simultaneous improvement in the precision, accuracy, and robustness of LFQ was systematically assessed by collectively optimizing its multistep manipulation chains. Second, based on a variety of benchmark datasets acquired by various quantification measurements of different modes of acquisition, this novel strategy successfully identified a number of manipulation chains that simultaneously improved the performance across multiple criteria. Finally, to further enhance proteome quantification and discover the LFQs of optimal performance, an online tool (https://idrblab.org/anpela/) enabling collective performance assessment (from multiple perspectives) of the entire LFQ workflow was developed. This study confirmed the feasibility of achieving simultaneous improvement in precision, accuracy, and robustness. The novel strategy proposed and validated in this study together with the online tool might provide useful guidance for the research field requiring the mass-spectrometry-based LFQ technique.
Collapse
|
research-article |
6 |
94 |
6
|
Xue W, Wang P, Li B, Li Y, Xu X, Yang F, Yao X, Chen YZ, Xu F, Zhu F. Identification of the inhibitory mechanism of FDA approved selective serotonin reuptake inhibitors: an insight from molecular dynamics simulation study. Phys Chem Chem Phys 2016; 18:3260-3271. [PMID: 26745505 DOI: 10.1039/c5cp05771j] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025] [Imported: 05/16/2025]
Abstract
Antidepressants selectively inhibiting serotonin reuptake (SSRIs) represent a highly effective drug class, and novel therapeutic strategies were proposed to improve SSRIs' drug efficacy. The knowledge of the inhibitory mechanism of FDA approved SSRIs could provide great insights and act as important starting points to discover privileged drug scaffolds with improved efficacy. However, the structure of human serotonin transporter (hSERT) is yet to be determined and the inhibitory mechanism underlying SSRIs still needs to be further explored. In this study, the inhibitory mechanism of 4 approved SSRIs treating major depression (fluoxetine, sertraline, paroxetine and escitalopram) was identified by integrating multiple computational methods. Firstly, a recently published template with high sequence identity was adopted for the first time to generate hSERT's homology model. Then, docking poses of 4 SSRIs were used as the initial conformation for molecular dynamics (MD) simulation followed by MM/GBSA binding free energy calculation and per-residue free energy decomposition. Finally, the binding mode shared by the 4 studied SSRIs was identified by hierarchically clustering per-residue free energies. The identified binding mode was composed of collective interactions between 3 chemical groups in SSRIs and 11 hot spot residues in hSERT. 6 out of these 11 were validated by previous mutagenesis studies or pharmacophore models, and the remaining 5 (Ala169, Ala173, Thr439, Gly442 and Leu443) found in this work were not yet been identified as common determinants of all the 4 studied SSRIs in binding hSERT. Moreover, changes in SSRIs' binding induced by mutation on hot spot residues were further explored, and 3 mechanisms underlining their drug sensitivity were summarized. In summary, the identified binding mode provided important insights into the inhibitory mechanism of approved SSRIs treating major depression, which could be further utilized as a framework for assessing and discovering novel lead scaffolds.
Collapse
|
|
9 |
68 |
7
|
Yang Q, Li B, Chen S, Tang J, Li Y, Li Y, Zhang S, Shi C, Zhang Y, Mou M, Xue W, Zhu F. MMEASE: Online meta-analysis of metabolomic data by enhanced metabolite annotation, marker selection and enrichment analysis. J Proteomics 2021; 232:104023. [PMID: 33130111 DOI: 10.1016/j.jprot.2020.104023] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 10/12/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022] [Imported: 05/16/2025]
Abstract
Large-scale and long-term metabolomic studies have attracted widespread attention in the biomedical studies yet remain challenging despite recent technique progresses. In particular, the ineffective way of experiment integration and limited capacity in metabolite annotation are known issues. Herein, we constructed an online tool MMEASE enabling the integration of multiple analytical experiments with an enhanced metabolite annotation and enrichment analysis (https://idrblab.org/mmease/). MMEASE was unique in capable of (1) integrating multiple analytical blocks; (2) providing enriched annotation for >330 thousands of metabolites; (3) conducting enrichment analysis using various categories/sub-categories. All in all, MMEASE aimed at supplying a comprehensive service for large-scale and long-term metabolomics, which might provide valuable guidance to current biomedical studies. SIGNIFICANCE: To facilitate the studies of large-scale and long-term metabolomic analysis, MMEASE was developed to (1) achieve the online integration of multiple datasets from different analytical experiments, (2) provide the most diverse strategies for marker discovery, enabling performance assessment and (3) significantly amplify metabolite annotation and subsequent enrichment analysis. MMEASE aimed at supplying a comprehensive service for long-term and large-scale metabolomics, which might provide valuable guidance to current biomedical studies.
Collapse
|
Meta-Analysis |
4 |
60 |
8
|
Wang P, Zhang X, Fu T, Li S, Li B, Xue W, Yao X, Chen Y, Zhu F. Differentiating Physicochemical Properties between Addictive and Nonaddictive ADHD Drugs Revealed by Molecular Dynamics Simulation Studies. ACS Chem Neurosci 2017; 8:1416-1428. [PMID: 28557437 DOI: 10.1021/acschemneuro.7b00173] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] [Imported: 05/16/2025] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is the most commonly diagnosed mental disorder of children and adolescents. Although psychostimulants are currently the first-line drugs for ADHD, their highly addictive profile raises great abuse concerns. It is known that psychostimulants' addictiveness is largely attributed to their interaction with dopamine transporter (DAT) and their binding modes in DAT can thus facilitate the understanding of the mechanism underlining drugs' addictiveness. However, no DAT residue able to discriminate ADHD drugs' addictiveness is identified, and the way how different drug structures affect their abuse liability is still elusive. In this study, multiple computational methods were integrated to differentiate binding modes between approved psychostimulants and ADHD drugs of little addictiveness. As a result, variation in energy contribution of 8 residues between addictive and nonaddictive drugs was observed, and a reduction in hydrophobicity of drugs' 2 functional groups was identified as the indicator of drugs' addictiveness. This finding agreed well with the physicochemical properties of 8 officially reported controlled substances. The identified variations in binding mode can shed light on the mechanism underlining drugs' addictiveness, which may thus facilitate the discovery of improved ADHD therapeutics with reduced addictive profile.
Collapse
|
|
8 |
56 |
9
|
Zheng G, Xue W, Wang P, Yang F, Li B, Li X, Li Y, Yao X, Zhu F. Exploring the Inhibitory Mechanism of Approved Selective Norepinephrine Reuptake Inhibitors and Reboxetine Enantiomers by Molecular Dynamics Study. Sci Rep 2016; 6:26883. [PMID: 27230580 PMCID: PMC4882549 DOI: 10.1038/srep26883] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/09/2016] [Indexed: 12/28/2022] [Imported: 05/16/2025] Open
Abstract
Selective norepinephrine reuptake inhibitors (sNRIs) provide an effective class of approved antipsychotics, whose inhibitory mechanism could facilitate the discovery of privileged scaffolds with enhanced drug efficacy. However, the crystal structure of human norepinephrine transporter (hNET) has not been determined yet and the inhibitory mechanism of sNRIs remains elusive. In this work, multiple computational methods were integrated to explore the inhibitory mechanism of approved sNRIs (atomoxetine, maprotiline, reboxetine and viloxazine), and 3 lines of evidences were provided to verify the calculation results. Consequently, a binding mode defined by interactions between three chemical moieties in sNRIs and eleven residues in hNET was identified as shared by approved sNRIs. In the meantime, binding modes of reboxetine's enantiomers with hNET were compared. 6 key residues favoring the binding of (S, S)-reboxetine over that of (R, R)-reboxetine were discovered. This is the first study reporting that those 11 residues are the common determinants for the binding of approved sNRIs. The identified binding mode shed light on the inhibitory mechanism of approved sNRIs, which could help identify novel scaffolds with improved drug efficacy.
Collapse
|
research-article |
9 |
40 |
10
|
Yang Q, Li B, Wang P, Xie J, Feng Y, Liu Z, Zhu F. LargeMetabo: an out-of-the-box tool for processing and analyzing large-scale metabolomic data. Brief Bioinform 2022; 23:bbac455. [PMID: 36274234 DOI: 10.1093/bib/bbac455] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/06/2022] [Accepted: 09/24/2022] [Indexed: 12/14/2022] [Imported: 05/16/2025] Open
Abstract
Large-scale metabolomics is a powerful technique that has attracted widespread attention in biomedical studies focused on identifying biomarkers and interpreting the mechanisms of complex diseases. Despite a rapid increase in the number of large-scale metabolomic studies, the analysis of metabolomic data remains a key challenge. Specifically, diverse unwanted variations and batch effects in processing many samples have a substantial impact on identifying true biological markers, and it is a daunting challenge to annotate a plethora of peaks as metabolites in untargeted mass spectrometry-based metabolomics. Therefore, the development of an out-of-the-box tool is urgently needed to realize data integration and to accurately annotate metabolites with enhanced functions. In this study, the LargeMetabo package based on R code was developed for processing and analyzing large-scale metabolomic data. This package is unique because it is capable of (1) integrating multiple analytical experiments to effectively boost the power of statistical analysis; (2) selecting the appropriate biomarker identification method by intelligent assessment for large-scale metabolic data and (3) providing metabolite annotation and enrichment analysis based on an enhanced metabolite database. The LargeMetabo package can facilitate flexibility and reproducibility in large-scale metabolomics. The package is freely available from https://github.com/LargeMetabo/LargeMetabo.
Collapse
|
|
3 |
32 |
11
|
Tang J, Wang Y, Fu J, Zhou Y, Luo Y, Zhang Y, Li B, Yang Q, Xue W, Lou Y, Qiu Y, Zhu F. A critical assessment of the feature selection methods used for biomarker discovery in current metaproteomics studies. Brief Bioinform 2020; 21:1378-1390. [PMID: 31197323 DOI: 10.1093/bib/bbz061] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/14/2019] [Indexed: 05/16/2025] [Imported: 05/16/2025] Open
Abstract
Microbial community (MC) has great impact on mediating complex disease indications, biogeochemical cycling and agricultural productivities, which makes metaproteomics powerful technique for quantifying diverse and dynamic composition of proteins or peptides. The key role of biostatistical strategies in MC study is reported to be underestimated, especially the appropriate application of feature selection method (FSM) is largely ignored. Although extensive efforts have been devoted to assessing the performance of FSMs, previous studies focused only on their classification accuracy without considering their ability to correctly and comprehensively identify the spiked proteins. In this study, the performances of 14 FSMs were comprehensively assessed based on two key criteria (both sample classification and spiked protein discovery) using a variety of metaproteomics benchmarks. First, the classification accuracies of those 14 FSMs were evaluated. Then, their abilities in identifying the proteins of different spiked concentrations were assessed. Finally, seven FSMs (FC, LMEB, OPLS-DA, PLS-DA, SAM, SVM-RFE and T-Test) were identified as performing consistently superior or good under both criteria with the PLS-DA performing consistently superior. In summary, this study served as comprehensive analysis on the performances of current FSMs and could provide a valuable guideline for researchers in metaproteomics.
Collapse
|
|
5 |
31 |
12
|
Yang Q, Wang Y, Li F, Zhang S, Luo Y, Li Y, Tang J, Li B, Chen Y, Xue W, Zhu F. Identification of the gene signature reflecting schizophrenia's etiology by constructing artificial intelligence-based method of enhanced reproducibility. CNS Neurosci Ther 2019; 25:1054-1063. [PMID: 31350824 PMCID: PMC6698965 DOI: 10.1111/cns.13196] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] [Imported: 05/16/2025] Open
Abstract
AIMS As one of the most fundamental questions in modern science, "what causes schizophrenia (SZ)" remains a profound mystery due to the absence of objective gene markers. The reproducibility of the gene signatures identified by independent studies is found to be extremely low due to the incapability of available feature selection methods and the lack of measurement on validating signatures' robustness. These irreproducible results have significantly limited our understanding of the etiology of SZ. METHODS In this study, a new feature selection strategy was developed, and a comprehensive analysis was then conducted to ensure a reliable signature discovery. Particularly, the new strategy (a) combined multiple randomized sampling with consensus scoring and (b) assessed gene ranking consistency among different datasets, and a comprehensive analysis among nine independent studies was conducted. RESULTS Based on a first-ever evaluation of methods' reproducibility that was cross-validated by nine independent studies, the newly developed strategy was found to be superior to the traditional ones. As a result, 33 genes were consistently identified from multiple datasets by the new strategy as differentially expressed, which might facilitate our understanding of the mechanism underlying the etiology of SZ. CONCLUSION A new strategy capable of enhancing the reproducibility of feature selection in current SZ research was successfully constructed and validated. A group of candidate genes identified in this study should be considered as great potential for revealing the etiology of SZ.
Collapse
|
research-article |
6 |
30 |
13
|
Wang X, Chai Z, Pan G, Hao Y, Li B, Ye T, Li Y, Long F, Xia L, Liu M. ExoBCD: a comprehensive database for exosomal biomarker discovery in breast cancer. Brief Bioinform 2021; 22:bbaa088. [PMID: 32591816 DOI: 10.1093/bib/bbaa088] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/08/2020] [Accepted: 04/26/2020] [Indexed: 12/24/2022] [Imported: 05/16/2025] Open
Abstract
Effective and safe implementation of precision oncology for breast cancer is a vital strategy to improve patient outcomes, which relies on the application of reliable biomarkers. As 'liquid biopsy' and novel resource for biomarkers, exosomes provide a promising avenue for the diagnosis and treatment of breast cancer. Although several exosome-related databases have been developed, there is still lacking of an integrated database for exosome-based biomarker discovery. To this end, a comprehensive database ExoBCD (https://exobcd.liumwei.org) was constructed with the combination of robust analysis of four high-throughput datasets, transcriptome validation of 1191 TCGA cases and manual mining of 950 studies. In ExoBCD, approximately 20 900 annotation entries were integrated from 25 external sources and 306 exosomal molecules (49 potential biomarkers and 257 biologically interesting molecules). The latter could be divided into 3 molecule types, including 121 mRNAs, 172 miRNAs and 13 lncRNAs. Thus, the well-linked information about molecular characters, experimental biology, gene expression patterns, overall survival, functional evidence, tumour stage and clinical use were fully integrated. As a data-driven and literature-based paradigm proposed of biomarker discovery, this study also demonstrated the corroborative analysis and identified 36 promising molecules, as well as the most promising prognostic biomarkers, IGF1R and FRS2. Taken together, ExoBCD is the first well-corroborated knowledge base for exosomal studies of breast cancer. It not only lays a foundation for subsequent studies but also strengthens the studies of probing molecular mechanisms, discovering biomarkers and developing meaningful clinical use.
Collapse
|
|
4 |
29 |
14
|
Yang Q, Wang Y, Zhang S, Tang J, Li F, Yin J, Li Y, Fu J, Li B, Luo Y, Xue W, Zhu F. Biomarker Discovery for Immunotherapy of Pituitary Adenomas: Enhanced Robustness and Prediction Ability by Modern Computational Tools. Int J Mol Sci 2019; 20:151. [PMID: 30609812 PMCID: PMC6337483 DOI: 10.3390/ijms20010151] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 12/25/2018] [Accepted: 12/26/2018] [Indexed: 12/15/2022] [Imported: 05/16/2025] Open
Abstract
Pituitary adenoma (PA) is prevalent in the general population. Due to its severe complications and aggressive infiltration into the surrounding brain structure, the effective management of PA is required. Till now, no drug has been approved for treating non-functional PA, and the removal of cancerous cells from the pituitary is still under experimental investigation. Due to its superior specificity and safety profile, immunotherapy stands as one of the most promising strategies for dealing with PA refractory to the standard treatment, and various studies have been carried out to discover immune-related gene markers as target candidates. However, the lists of gene markers identified among different studies are reported to be highly inconsistent because of the greatly limited number of samples analyzed in each study. It is thus essential to substantially enlarge the sample size and comprehensively assess the robustness of the identified immune-related gene markers. Herein, a novel strategy of direct data integration (DDI) was proposed to combine available PA microarray datasets, which significantly enlarged the sample size. First, the robustness of the gene markers identified by DDI strategy was found to be substantially enhanced compared with that of previous studies. Then, the DDI of all reported PA-related microarray datasets were conducted to achieve a comprehensive identification of PA gene markers, and 66 immune-related genes were discovered as target candidates for PA immunotherapy. Finally, based on the analysis of human protein⁻protein interaction network, some promising target candidates (GAL, LMO4, STAT3, PD-L1, TGFB and TGFBR3) were proposed for PA immunotherapy. The strategy proposed together with the immune-related markers identified in this study provided a useful guidance for the development of novel immunotherapy for PA.
Collapse
|
research-article |
6 |
22 |
15
|
Mei T, Fu WB, Li B, He ZB, Chen B. Comparative genomics of chemosensory protein genes (CSPs) in twenty-two mosquito species (Diptera: Culicidae): Identification, characterization, and evolution. PLoS One 2018; 13:e0190412. [PMID: 29304168 PMCID: PMC5755795 DOI: 10.1371/journal.pone.0190412] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 12/14/2017] [Indexed: 11/18/2022] [Imported: 05/16/2025] Open
Abstract
Chemosensory proteins (CSP) are soluble carrier proteins that may function in odorant reception in insects. CSPs have not been thoroughly studied at whole-genome level, despite the availability of insect genomes. Here, we identified/reidentified 283 CSP genes in the genomes of 22 mosquitoes. All 283 CSP genes possess a highly conserved OS-D domain. We comprehensively analyzed these CSP genes and determined their conserved domains, structure, genomic distribution, phylogeny, and evolutionary patterns. We found an average of seven CSP genes in each of 19 Anopheles genomes, 27 CSP genes in Cx. quinquefasciatus, 43 in Ae. aegypti, and 83 in Ae. albopictus. The Anopheles CSP genes had a simple genomic organization with a relatively consistent gene distribution, while most of the Culicinae CSP genes were distributed in clusters on the scaffolds. Our phylogenetic analysis clustered the CSPs into two major groups: CSP1-8 and CSE1-3. The CSP1-8 groups were all monophyletic with good bootstrap support. The CSE1-3 groups were an expansion of the CSP family of genes specific to the three Culicinae species. The Ka/Ks ratios indicated that the CSP genes had been subject to purifying selection with relatively slow evolution. Our results provide a comprehensive framework for the study of the CSP gene family in these 22 mosquito species, laying a foundation for future work on CSP function in the detection of chemical cues in the surrounding environment.
Collapse
|
Comparative Study |
7 |
22 |
16
|
Bo W, Chen L, Qin D, Geng S, Li J, Mei H, Li B, Liang G. Application of quantitative structure-activity relationship to food-derived peptides: Methods, situations, challenges and prospects. Trends Food Sci Technol 2021; 114:176-188. [DOI: 10.1016/j.tifs.2021.05.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] [Imported: 05/16/2025]
|
|
4 |
21 |
17
|
Qin D, Bo W, Zheng X, Hao Y, Li B, Zheng J, Liang G. DFBP: a comprehensive database of food-derived bioactive peptides for peptidomics research. Bioinformatics 2022; 38:3275-3280. [PMID: 35552640 DOI: 10.1093/bioinformatics/btac323] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/31/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] [Imported: 05/16/2025] Open
Abstract
MOTIVATION Food-derived bioactive peptides (FBPs) have demonstrated their significance in pharmaceuticals, diets and nutraceuticals, benefiting public health and global ecology. While significant efforts have been made to discover FBPs and to elucidate the underlying bioactivity mechanisms, there is lack of a systemic study of sequence-structure-activity relationship of FBPs in a large dataset. RESULTS Here, we construct a database of food-derived bioactive peptides (DFBP), containing a total of 6276 peptide entries in 31 types from different sources. Further, we develop a series of analysis tools for function discovery/repurposing, traceability, multifunctional bioactive exploration and physiochemical property assessment of peptides. Finally, we apply this database and data-mining techniques to discover new FBPs as potential drugs for cardiovascular diseases. The DFBP serves as a useful platform for not only the fundamental understanding of sequence-structure-activity of FBPs but also the design, discovery, and repurposing of peptide-based drugs, vaccines, materials and food ingredients. AVAILABILITY AND IMPLEMENTATION DFBP service can be accessed freely via http://www.cqudfbp.net/. All data are incorporated into the article and its online supplementary material. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
|
|
3 |
21 |
18
|
Nie X, Wei J, Hao Y, Tao J, Li Y, Liu M, Xu B, Li B. Consistent Biomarkers and Related Pathogenesis Underlying Asthma Revealed by Systems Biology Approach. Int J Mol Sci 2019; 20:4037. [PMID: 31430856 PMCID: PMC6720652 DOI: 10.3390/ijms20164037] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 12/13/2022] [Imported: 05/16/2025] Open
Abstract
Asthma is a common chronic airway disease worldwide. Due to its clinical and genetic heterogeneity, the cellular and molecular processes in asthma are highly complex and relatively unknown. To discover novel biomarkers and the molecular mechanisms underlying asthma, several studies have been conducted by focusing on gene expression patterns in epithelium through microarray analysis. However, few robust specific biomarkers were identified and some inconsistent results were observed. Therefore, it is imperative to conduct a robust analysis to solve these problems. Herein, an integrated gene expression analysis of ten independent, publicly available microarray data of bronchial epithelial cells from 348 asthmatic patients and 208 healthy controls was performed. As a result, 78 up- and 75 down-regulated genes were identified in bronchial epithelium of asthmatics. Comprehensive functional enrichment and pathway analysis revealed that response to chemical stimulus, extracellular region, pathways in cancer, and arachidonic acid metabolism were the four most significantly enriched terms. In the protein-protein interaction network, three main communities associated with cytoskeleton, response to lipid, and regulation of response to stimulus were established, and the most highly ranked 6 hub genes (up-regulated CD44, KRT6A, CEACAM5, SERPINB2, and down-regulated LTF and MUC5B) were identified and should be considered as new biomarkers. Pathway cross-talk analysis highlights that signaling pathways mediated by IL-4/13 and transcription factor HIF-1α and FOXA1 play crucial roles in the pathogenesis of asthma. Interestingly, three chemicals, polyphenol catechin, antibiotic lomefloxacin, and natural alkaloid boldine, were predicted and may be potential drugs for asthma treatment. Taken together, our findings shed new light on the common molecular pathogenesis mechanisms of asthma and provide theoretical support for further clinical therapeutic studies.
Collapse
|
research-article |
6 |
20 |
19
|
He H, Duo H, Hao Y, Zhang X, Zhou X, Zeng Y, Li Y, Li B. Computational drug repurposing by exploiting large-scale gene expression data: Strategy, methods and applications. Comput Biol Med 2023; 155:106671. [PMID: 36805225 DOI: 10.1016/j.compbiomed.2023.106671] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] [Imported: 05/16/2025]
Abstract
De novo drug development is an extremely complex, time-consuming and costly task. Urgent needs for therapies of various diseases have greatly accelerated searches for more effective drug development methods. Luckily, drug repurposing provides a new and effective perspective on disease treatment. Rapidly increased large-scale transcriptome data paints a detailed prospect of gene expression during disease onset and thus has received wide attention in the field of computational drug repurposing. However, how to efficiently mine transcriptome data and identify new indications for old drugs remains a critical challenge. This review discussed the irreplaceable role of transcriptome data in computational drug repurposing and summarized some representative databases, tools and strategies. More importantly, it proposed a practical guideline through establishing the correspondence between three gene expression data types and five strategies, which would facilitate researchers to adopt appropriate strategies to deeply mine large-scale transcriptome data and discover more effective therapies.
Collapse
|
Review |
2 |
16 |
20
|
Tao J, Hao Y, Li X, Yin H, Nie X, Zhang J, Xu B, Chen Q, Li B. Systematic Identification of Housekeeping Genes Possibly Used as References in Caenorhabditis elegans by Large-Scale Data Integration. Cells 2020; 9:786. [PMID: 32213971 PMCID: PMC7140892 DOI: 10.3390/cells9030786] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/20/2022] [Imported: 05/16/2025] Open
Abstract
For accurate gene expression quantification, normalization of gene expression data against reliable reference genes is required. It is known that the expression levels of commonly used reference genes vary considerably under different experimental conditions, and therefore, their use for data normalization is limited. In this study, an unbiased identification of reference genes in Caenorhabditis elegans was performed based on 145 microarray datasets (2296 gene array samples) covering different developmental stages, different tissues, drug treatments, lifestyle, and various stresses. As a result, thirteen housekeeping genes (rps-23, rps-26, rps-27, rps-16, rps-2, rps-4, rps-17, rpl-24.1, rpl-27, rpl-33, rpl-36, rpl-35, and rpl-15) with enhanced stability were comprehensively identified by using six popular normalization algorithms and RankAggreg method. Functional enrichment analysis revealed that these genes were significantly overrepresented in GO terms or KEGG pathways related to ribosomes. Validation analysis using recently published datasets revealed that the expressions of newly identified candidate reference genes were more stable than the commonly used reference genes. Based on the results, we recommended using rpl-33 and rps-26 as the optimal reference genes for microarray and rps-2 and rps-4 for RNA-sequencing data validation. More importantly, the most stable rps-23 should be a promising reference gene for both data types. This study, for the first time, successfully displays a large-scale microarray data driven genome-wide identification of stable reference genes for normalizing gene expression data and provides a potential guideline on the selection of universal internal reference genes in C. elegans, for quantitative gene expression analysis.
Collapse
|
research-article |
5 |
14 |
21
|
Yang Q, Li Y, Li B, Gong Y. A novel multi-class classification model for schizophrenia, bipolar disorder and healthy controls using comprehensive transcriptomic data. Comput Biol Med 2022; 148:105956. [PMID: 35981456 DOI: 10.1016/j.compbiomed.2022.105956] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/30/2022] [Accepted: 08/06/2022] [Indexed: 01/01/2023] [Imported: 05/16/2025]
Abstract
Two common psychiatric disorders, schizophrenia (SCZ) and bipolar disorder (BP), confer lifelong disability and collectively affect 2% of the world population. Because the diagnosis of psychiatry is based only on symptoms, developing more effective methods for the diagnosis of psychiatric disorders is a major international public health priority. Furthermore, SCZ and BP overlap considerably in terms of symptoms and risk genes. Therefore, the clarity of the underlying etiology and pathology remains lacking for these two disorders. Although many studies have been conducted, a classification model with higher accuracy and consistency was found to still be necessary for accurate diagnoses of SCZ and BP. In this study, a comprehensive dataset was combined from five independent transcriptomic studies. This dataset comprised 120 patients with SCZ, 101 patients with BP, and 149 healthy subjects. The partial least squares discriminant analysis (PLS-DA) method was applied to identify the gene signature among multiple groups, and 341 differentially expressed genes (DEGs) were identified. Then, the disease relevance of these DEGs was systematically performed, including (α) the great disease relevance of the identified signature, (β) the hub genes of the protein-protein interaction network playing a key role in psychiatric disorders, and (γ) gene ontology terms and enriched pathways playing a key role in psychiatric disorders. Finally, a popular multi-class classifier, support vector machine (SVM), was applied to construct a novel multi-class classification model using the identified signature for SCZ and BP. Using the independent test sets, the classification capacity of this multi-class model was assessed, which showed this model had a strong classification ability.
Collapse
|
|
3 |
13 |
22
|
Cui X, Yang Q, Li B, Tang J, Zhang X, Li S, Li F, Hu J, Lou Y, Qiu Y, Xue W, Zhu F. Assessing the Effectiveness of Direct Data Merging Strategy in Long-Term and Large-Scale Pharmacometabonomics. Front Pharmacol 2019; 10:127. [PMID: 30842738 PMCID: PMC6391323 DOI: 10.3389/fphar.2019.00127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/04/2019] [Indexed: 12/18/2022] [Imported: 05/16/2025] Open
Abstract
Because of the extended period of clinic data collection and huge size of analyzed samples, the long-term and large-scale pharmacometabonomics profiling is frequently encountered in the discovery of drug/target and the guidance of personalized medicine. So far, integration of the results (ReIn) from multiple experiments in a large-scale metabolomic profiling has become a widely used strategy for enhancing the reliability and robustness of analytical results, and the strategy of direct data merging (DiMe) among experiments is also proposed to increase statistical power, reduce experimental bias, enhance reproducibility and improve overall biological understanding. However, compared with the ReIn, the DiMe has not yet been widely adopted in current metabolomics studies, due to the difficulty in removing unwanted variations and the inexistence of prior knowledges on the performance of the available merging methods. It is therefore urgently needed to clarify whether DiMe can enhance the performance of metabolic profiling or not. Herein, the performance of DiMe on 4 pairs of benchmark datasets was comprehensively assessed by multiple criteria (classification capacity, robustness and false discovery rate). As a result, integration/merging-based strategies (ReIn and DiMe) were found to perform better under all criteria than those strategies based on single experiment. Moreover, DiMe was discovered to outperform ReIn in classification capacity and robustness, while the ReIn showed superior capacity in controlling false discovery rate. In conclusion, these findings provided valuable guidance to the selection of suitable analytical strategy for current metabolomics.
Collapse
|
research-article |
6 |
13 |
23
|
Li X, Li X, Li Y, Yu C, Xue W, Hu J, Li B, Wang P, Zhu F. What Makes Species Productive of Anti-Cancer Drugs? Clues from Drugs' Species Origin, Druglikeness, Target and Pathway. Anticancer Agents Med Chem 2019; 19:194-203. [PMID: 30370862 DOI: 10.2174/1871520618666181029132017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/22/2017] [Accepted: 03/21/2018] [Indexed: 12/18/2022] [Imported: 05/16/2025]
Abstract
BACKGROUND Despite the substantial contribution of natural products to the FDA drug approval list, the discovery of anti-cancer drugs from the huge amount of species on the planet remains looking for a needle in a haystack. OBJECTIVE Drug-productive clusters in the phylogenetic tree are thus proposed to narrow the searching scope by focusing on much smaller amount of species within each cluster, which enable prioritized and rational bioprospecting for novel drug-like scaffolds. However, the way anti-cancer nature-derived drugs distribute in phylogenetic tree has not been reported, and it is oversimplified to just focus anti-cancer drug discovery on the drug-productive clusters, since the number of species in each cluster remains too large to be managed. METHODS In this study, 260 anti-cancer drugs approved in the past 70 years were comprehensively analyzed by hierarchical clustering of phylogenetic distribution. RESULTS 207 out of these 260 drugs were derived from or inspired by the natural products isolated from 58 species. Phylogenetic distribution of those drugs further revealed that nature-derived anti-cancer drugs originated mostly from drug-productive families that tend to be clustered rather than scattered on the phylogenetic tree. Moreover, based on their productivity, drug-producing species were categorized into productive (CPS), newly emerging (CNS) and lessproductive (CLS). Statistical significances in druglikeness between drugs from CPS and CLS were observed, and drugs from CNS were found to share similar drug-like properties to those from CPS. CONCLUSION This finding indicated a great raise in drug approval standard, which suggested us to focus bioprospecting on the species yielding multiple drugs and keeping productive for long period of time.
Collapse
|
|
6 |
12 |
24
|
Tian L, Long F, Hao Y, Li B, Li Y, Tang Y, Li J, Zhao Q, Chen J, Liu M. A Cancer Associated Fibroblasts-Related Six-Gene Panel for Anti-PD-1 Therapy in Melanoma Driven by Weighted Correlation Network Analysis and Supervised Machine Learning. Front Med (Lausanne) 2022; 9:880326. [PMID: 35479936 PMCID: PMC9035939 DOI: 10.3389/fmed.2022.880326] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/22/2022] [Indexed: 11/24/2022] [Imported: 05/16/2025] Open
Abstract
BACKGROUND Melanoma is a highly aggressive skin cancer with a poor prognosis and mortality. Immune checkpoint blockade (ICB) therapy (e.g., anti-PD-1 therapy) has opened a new horizon in melanoma treatment, but some patients present a non-responsive state. Cancer-associated fibroblasts (CAFs) make up the majority of stromal cells in the tumor microenvironment (TME) and have an important impact on the response to immunotherapy. There is still a lack of identification of CAFs-related predictors for anti-PD-1 therapy, although the establishment of immunotherapy biomarkers is well underway. This study aims to explore the potential CAFs-related gene panel for predicting the response to anti-PD-1 therapy in melanoma patients and elucidating their potential effect on TME. METHODS Three gene expression datasets from melanoma patients without anti-PD-1 treatment, in a total of 87 samples, were downloaded from Gene Expression Omnibus (GEO) as the discovery sets (GSE91061) and validation sets (GSE78220 and GSE122220). The CAFs-related module genes were identified from the discovery sets by weighted gene co-expression network analysis (WGCNA). Concurrently, we utilized differential gene analysis on the discovery set to obtain differentially expressed genes (DEGs). Then, CAFs-related key genes were screened with the intersection of CAFs-related module genes and DEGs, succeeded by supervised machine learning-based identification. As a consequence of expression analysis, gene set enrichment analysis, survival analysis, staging analysis, TME analysis, and correlation analysis, the multidimensional systematic characterizations of the key genes were uncovered. The diagnostic performance of the CAFs-related gene panel was assessed by receiver operating characteristic (ROC) curves in the validation sets. Eventually, the CAFs-related gene panel was verified by the expression from the single-cell analysis. RESULTS The six-gene panel associated with CAFs were finally identified for predicting the response to anti-PD-1 therapy, including CDK14, SYNPO2, TCF4, GJA1, CPXM1, and TFPI. The multigene panel demonstrated excellent combined diagnostic performance with the area under the curve of ROC reaching 90.5 and 75.4% ~100% in the discovery and validation sets, respectively. CONCLUSION Confirmed by clinical treatment outcomes, the identified CAFs-related genes can be used as a promising biomarker panel for prediction to anti-PD-1 therapy response, which may serve as new immunotherapeutic targets to improve survival outcomes of melanoma patients.
Collapse
|
research-article |
3 |
12 |
25
|
Yang F, Fu T, Zhang X, Hu J, Xue W, Zheng G, Li B, Li Y, Yao X, Zhu F. Comparison of computational model and X-ray crystal structure of human serotonin transporter: potential application for the pharmacology of human monoamine transporters. MOLECULAR SIMULATION 2017; 43:1089-1098. [DOI: 10.1080/08927022.2017.1309653] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/16/2017] [Indexed: 12/15/2022] [Imported: 05/16/2025]
|
|
8 |
11 |