1
|
Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PLoS One 2008; 3:e2637. [PMID: 18612434 PMCID: PMC2440807 DOI: 10.1371/journal.pone.0002637] [Citation(s) in RCA: 381] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 06/08/2008] [Indexed: 02/06/2023] [Imported: 05/22/2025] Open
Abstract
CD133 (prominin-1), a 5-transmembrane glycoprotein, has recently been considered to be an important marker that represents the subset population of cancer stem-like cells. Herein we report the isolation of CD133-positive cells (LC-CD133+) and CD133-negative cells (LC-CD133−) from tissue samples of ten patients with non-small cell lung cancer (LC) and five LC cell lines. LC-CD133+ displayed higher Oct-4 expressions with the ability to self-renew and may represent a reservoir with proliferative potential for generating lung cancer cells. Furthermore, LC-CD133+, unlike LC-CD133−, highly co-expressed the multiple drug-resistant marker ABCG2 and showed significant resistance to chemotherapy agents (i.e., cisplatin, etoposide, doxorubicin, and paclitaxel) and radiotherapy. The treatment of Oct-4 siRNA with lentiviral vector can specifically block the capability of LC-CD133+ to form spheres and can further facilitate LC-CD133+ to differentiate into LC-CD133−. In addition, knock-down of Oct-4 expression in LC-CD133+ can significantly inhibit the abilities of tumor invasion and colony formation, and increase apoptotic activities of caspase 3 and poly (ADP-ribose) polymerase (PARP). Finally, in vitro and in vivo studies further confirm that the treatment effect of chemoradiotherapy for LC-CD133+ can be improved by the treatment of Oct-4 siRNA. In conclusion, we demonstrated that Oct-4 expression plays a crucial role in maintaining the self-renewing, cancer stem-like, and chemoradioresistant properties of LC-CD133+. Future research is warranted regarding the up-regulated expression of Oct-4 in LC-CD133+ and malignant lung cancer.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
381 |
2
|
Chien CS, Wang ML, Chu PY, Chang YL, Liu WH, Yu CC, Lan YT, Huang PI, Lee YY, Chen YW, Lo WL, Chiou SH. Lin28B/Let-7 Regulates Expression of Oct4 and Sox2 and Reprograms Oral Squamous Cell Carcinoma Cells to a Stem-like State. Cancer Res 2015; 75:2553-65. [PMID: 25858147 DOI: 10.1158/0008-5472.can-14-2215] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 03/07/2015] [Indexed: 12/16/2022] [Imported: 05/22/2025]
Abstract
Lin28, a key factor for cellular reprogramming and generation of induced pluripotent stem cell (iPSC), makes a critical contribution to tumorigenicity by suppressing Let-7. However, it is unclear whether Lin28 is involved in regulating cancer stem-like cells (CSC), including in oral squamous carcinoma cells (OSCC). In this study, we demonstrate a correlation between high levels of Lin28B, Oct4, and Sox2, and a high percentage of CD44(+)ALDH1(+) CSC in OSCC. Ectopic Lin28B expression in CD44(-)ALDH1(-)/OSCC cells was sufficient to enhance Oct4/Sox2 expression and CSC properties, whereas Let7 co-overexpression effectively reversed these phenomena. We identified ARID3B and HMGA2 as downstream effectors of Lin28B/Let7 signaling in regulating endogenous Oct4 and Sox2 expression. Let7 targeted the 3' untranslated region of ARID3B and HMGA2 and suppressed their expression, whereas ARID3B and HMGA2 increased the transcription of Oct4 and Sox2, respectively, through promoter binding. Chromatin immunoprecipitation assays revealed a direct association between ARID3B and a specific ARID3B-binding sequence in the Oct4 promoter. Notably, by modulating Oct4/Sox2 expression, the Lin28B-Let7 pathway not only regulated stemness properties in OSCC but also determined the efficiency by which normal human oral keratinocytes could be reprogrammed to iPSC. Clinically, a Lin28B(high)-Let7(low) expression pattern was highly correlated with high levels of ARID3B, HMGA2, OCT4, and SOX2 expression in OSCC specimens. Taken together, our results show how Lin28B/Let7 regulates key cancer stem-like properties in oral squamous cancers.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
106 |
3
|
Chang CJ, Hsu CC, Yung MC, Chen KY, Tzao C, Wu WF, Chou HY, Lee YY, Lu KH, Chiou SH, Ma HI. Enhanced radiosensitivity and radiation-induced apoptosis in glioma CD133-positive cells by knockdown of SirT1 expression. Biochem Biophys Res Commun 2009; 380:236-42. [PMID: 19166820 DOI: 10.1016/j.bbrc.2009.01.040] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 01/12/2009] [Indexed: 12/26/2022] [Imported: 05/22/2025]
Abstract
CD133-expressing glioma cells play a critical role in tumor recovery after treatment and are resistant to radiotherapy. Herein, we demonstrated that glioblastoma-derived CD133-positive cells (GBM-CD133(+)) are capable of self-renewal and express high levels of embryonic stem cell genes and SirT1 compared to GBM-CD133(-) cells. To evaluate the role of SirT1 in GBM-CD133(+), we used a lentiviral vector expressing shRNA to knock-down SirT1 expression (sh-SirT1) in GBM-CD133(+). Silencing of SirT1 significantly enhanced the sensitivity of GBM-CD133(+) to radiation and increased the level of radiation-mediated apoptosis. Importantly, knock-down of SirT1 increased the effectiveness of radiotherapy in the inhibition of tumor growth in nude mice transplanted with GBM-CD133(+). Kaplan-Meier survival analysis indicated that the mean survival rate of GBM-CD133(+) mice treated with radiotherapy was significantly improved by Sh-SirT1 as well. In sum, these results suggest that SirT1 is a potential target for increasing the sensitivity of GBM and glioblastoma-associated cancer stem cells to radiotherapy.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
100 |
4
|
Song WS, Yang YP, Huang CS, Lu KH, Liu WH, Wu WW, Lee YY, Lo WL, Lee SD, Chen YW, Huang PI, Chen MT. Sox2, a stemness gene, regulates tumor-initiating and drug-resistant properties in CD133-positive glioblastoma stem cells. J Chin Med Assoc 2016; 79:538-45. [PMID: 27530866 DOI: 10.1016/j.jcma.2016.03.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/24/2016] [Indexed: 01/03/2023] [Imported: 05/22/2025] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most lethal type of adult brain cancer and performs outrageous growth and resistance regardless of adjuvant chemotherapies, eventually contributing to tumor recurrence and poor outcomes. Considering the common heterogeneity of cancer cells, the imbalanced regulatory mechanism could be switched on/off and contribute to drug resistance. Moreover, the subpopulation of GBM cells was recently discovered to share similar phenotypes with neural stem cells. These cancer stem cells (CSCs) promote the potency of tumor initiation. As a result, targeting of glioma stem cells has become the dominant way of improving the therapeutic outcome against GBM and extending the life span of patients. Among the biomarkers of CSCs, CD-133 (prominin-1) has been known to effectively isolate CSCs from cancer population, including GBM; however, the underlying mechanism of how stemness genes manipulate CSC-associated phenotypes, such as tumor initiation and relapse, is still unclear. METHODS Tumorigenicity, drug resistance and embryonic stem cell markers were examined in primary CD133-positive (CD133(+)) GBM cells and CD133(+) subpopulation. Stemness signature of CD133(+) GBM cells was identified using microarray analysis. Stem cell potency, tumorigenicity and drug resistance were also tested in differential expression of SOX2 in GBM cells. RESULTS In this study, high tumorigenic and drug resistance was noticed in primary CD-133(+) GBM cells; meanwhile, plenty of embryonic stem cell markers were also elevated in the CD-133+ subpopulation. Using microarray analysis, we identified SOX2 as the most enriched gene among the stemness signature in CD133(+) GBM cells. Overexpression of SOX2 consistently enhanced the stem cell potency in the GBM cell lines, whereas knockdown of SOX2 dramatically withdrew CD133 expression in CD133(+) GBM cells. Additionally, we silenced SOX2 expression using RNAi system, which abrogated the ability of tumor initiation as well as drug resistance of CD133(+) GBM cells, suggesting that SOX2 plays a crucial role in regulating tumorigenicity in CD133(+) GBM cells. CONCLUSION SOX2 plays a crucial role in regulating tumorigenicity in CD133(+) GBM cells. Our results not only revealed the genetic plasticity contributing to drug resistance and stemness but also demonstrated the dominant role of SOX2 in maintenance of GBM CSCs, which may provide a novel therapeutic target to overcome the conundrum of poor survival of brain cancers.
Collapse
|
|
9 |
76 |
5
|
Fan HC, Lee HS, Chang KP, Lee YY, Lai HC, Hung PL, Lee HF, Chi CS. The Impact of Anti-Epileptic Drugs on Growth and Bone Metabolism. Int J Mol Sci 2016; 17:E1242. [PMID: 27490534 PMCID: PMC5000640 DOI: 10.3390/ijms17081242] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/20/2016] [Accepted: 07/28/2016] [Indexed: 12/13/2022] [Imported: 05/22/2025] Open
Abstract
Epilepsy is a common neurological disorder worldwide and anti-epileptic drugs (AEDs) are always the first choice for treatment. However, more than 50% of patients with epilepsy who take AEDs have reported bone abnormalities. Cytochrome P450 (CYP450) isoenzymes are induced by AEDs, especially the classical AEDs, such as benzodiazepines (BZDs), carbamazepine (CBZ), phenytoin (PT), phenobarbital (PB), and valproic acid (VPA). The induction of CYP450 isoenzymes may cause vitamin D deficiency, hypocalcemia, increased fracture risks, and altered bone turnover, leading to impaired bone mineral density (BMD). Newer AEDs, such as levetiracetam (LEV), oxcarbazepine (OXC), lamotrigine (LTG), topiramate (TPM), gabapentin (GP), and vigabatrin (VB) have broader spectra, and are safer and better tolerated than the classical AEDs. The effects of AEDs on bone health are controversial. This review focuses on the impact of AEDs on growth and bone metabolism and emphasizes the need for caution and timely withdrawal of these medications to avoid serious disabilities.
Collapse
|
Review |
9 |
65 |
6
|
Kao CL, Huang PI, Tsai PH, Tsai ML, Lo JF, Lee YY, Chen YJ, Chen YW, Chiou SH. Resveratrol-Induced Apoptosis and Increased Radiosensitivity in CD133-Positive Cells Derived From Atypical Teratoid/Rhabdoid Tumor. Int J Radiat Oncol Biol Phys 2009; 74:219-28. [PMID: 19362240 DOI: 10.1016/j.ijrobp.2008.12.035] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 12/08/2008] [Accepted: 12/08/2008] [Indexed: 01/11/2023] [Imported: 05/22/2025]
|
|
16 |
51 |
7
|
Liu WH, Chen MT, Wang ML, Lee YY, Chiou GY, Chien CS, Huang PI, Chen YW, Huang MC, Chiou SH, Shih YH, Ma HI. Cisplatin-selected resistance is associated with increased motility and stem-like properties via activation of STAT3/Snail axis in atypical teratoid/rhabdoid tumor cells. Oncotarget 2015; 6:1750-68. [PMID: 25638155 PMCID: PMC4359329 DOI: 10.18632/oncotarget.2737] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 11/11/2014] [Indexed: 01/05/2023] [Imported: 05/22/2025] Open
Abstract
Atypical teratoid/rhabdoid tumor (ATRT) is a malignant pediatric brain tumor with great recurrence after complete surgery and chemotherapy. Here, we demonstrate that cisplatin treatment selects not only for resistance but also for a more oncogenic phenotype characterized by high self-renewal and invasive capabilities. These phenomena are likely due to STAT3 upregulatoin which occurred simultaneously with higher expression of Snail, an activator of epithelial-mesenchymal transition (EMT), in ATRT-CisR cells. STAT3 knockdown effectively suppressed Snail expression and blocked motility and invasion in ATRT-CisR cells, while overexpressing Snail reversed these effects. Chromatin immunoprecipitation assay indicated that STAT3 directly bound to Snail promoter. Moreover, STAT3 knockdown effectively suppressed cancer stem-like properties, synergistically enhanced the chemotherapeutic effect, and significantly improved survival rate in ATRT-CisR-transplanted immunocompromised mice. Finally, immunohistochemistrical analysis showed that STAT3 and Snail were coexpressed at high levels in recurrent ATRT tissues. Thus, the STAT3/Snail pathway plays an important role in oncogenic resistance, rendering cells not only drug-resistant but also increasingly oncogenic (invasion, EMT and recurrence). Therefore, the STAT3/Snail could be a target for ATRT treatment.
Collapse
|
Journal Article |
10 |
50 |
8
|
Chen HY, Lin LT, Wang ML, Lee SH, Tsai ML, Tsai CC, Liu WH, Chen TC, Yang YP, Lee YY, Chang YL, Huang PI, Chen YW, Lo WL, Chiou SH, Chen MT. Musashi-1 regulates AKT-derived IL-6 autocrinal/paracrinal malignancy and chemoresistance in glioblastoma. Oncotarget 2018; 7:42485-42501. [PMID: 27285760 PMCID: PMC5173150 DOI: 10.18632/oncotarget.9890] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 05/11/2016] [Indexed: 01/05/2023] [Imported: 05/22/2025] Open
Abstract
Glioblastoma multiform (GBM) is one of the most lethal human malignant brain tumors with high risks of recurrence and poor treatment outcomes. The RNA-binding protein Musashi-1 (MSI1) is a marker of neural stem/progenitor cells. Recent study showed that high expression level of MSI1 positively correlates with advanced grade of GBM, where MSI1 increases the growth of GBM. Herein, we explore the roles of MSI1 as well as the underlying mechanisms in the regulation of drug resistance and tumorigenesis of GBM cells. Our results demonstrated that overexpression of MSI1 effectively protected GBM cells from drug-induced apoptosis through down-regulating pro-apoptotic genes; whereas inhibition of AKT withdrew the MSI1-induced anti-apoptosis and cell survival. We further showed that MSI1 robustly promoted the secretion of the pro-inflammatory cytokine IL-6, which was governed by AKT activity. Autonomously, the secreted IL-6 enhanced AKT activity in an autocrine/paracrine manner, forming a positive feedback regulatory loop with the MSI1-AKT pathway. Our results conclusively demonstrated a novel drug resistance mechanism in GBM cells that MSI1 inhibits drug-induced apoptosis through AKT/IL6 regulatory circuit. MSI1 regulates both cellular signaling and tumor-microenvironmental cytokine secretion to create an intra- and intercellular niche for GBM to survive from chemo-drug attack.
Collapse
|
Journal Article |
7 |
43 |
9
|
Chen YW, Lee YY, Lin CF, Pan PS, Chen JK, Wang CW, Hsu SM, Kuo YC, Lan TL, Hsu SPC, Liang ML, Chen RHH, Chang FC, Wu CC, Lin SC, Liang HK, Lee JC, Chen SK, Liu HM, Peir JJ, Lin KH, Huang WS, Chen KH, Kang YM, Liou SC, Wang CC, Pai PC, Li CW, Chiek DQS, Wong TT, Chiou SH, Chao Y, Tanaka H, Chou FI, Ono K. Salvage Boron Neutron Capture Therapy for Malignant Brain Tumor Patients in Compliance with Emergency and Compassionate Use: Evaluation of 34 Cases in Taiwan. BIOLOGY 2021; 10:334. [PMID: 33920984 PMCID: PMC8071294 DOI: 10.3390/biology10040334] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] [Imported: 05/22/2025]
Abstract
Although boron neutron capture therapy (BNCT) is a promising treatment option for malignant brain tumors, the optimal BNCT parameters for patients with immediately life-threatening, end-stage brain tumors remain unclear. We performed BNCT on 34 patients with life-threatening, end-stage brain tumors and analyzed the relationship between survival outcomes and BNCT parameters. Before BNCT, MRI and 18F-BPA-PET analyses were conducted to identify the tumor location/distribution and the tumor-to-normal tissue uptake ratio (T/N ratio) of 18F-BPA. No severe adverse events were observed (grade ≥ 3). The objective response rate and disease control rate were 50.0% and 85.3%, respectively. The mean overall survival (OS), cancer-specific survival (CSS), and relapse-free survival (RFS) times were 7.25, 7.80, and 4.18 months, respectively. Remarkably, the mean OS, CSS, and RFS of patients who achieved a complete response were 17.66, 22.5, and 7.50 months, respectively. Kaplan-Meier analysis identified the optimal BNCT parameters and tumor characteristics of these patients, including a T/N ratio ≥ 4, tumor volume < 20 mL, mean tumor dose ≥ 25 Gy-E, MIB-1 ≤ 40, and a lower recursive partitioning analysis (RPA) class. In conclusion, for malignant brain tumor patients who have exhausted all available treatment options and who are in an immediately life-threatening condition, BNCT may be considered as a therapeutic approach to prolong survival.
Collapse
|
research-article |
4 |
42 |
10
|
Lee YY, Yang YP, Huang PI, Li WC, Huang MC, Kao CL, Chen YJ, Chen MT. Exercise suppresses COX-2 pro-inflammatory pathway in vestibular migraine. Brain Res Bull 2015; 116:98-105. [PMID: 26151770 DOI: 10.1016/j.brainresbull.2015.06.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/19/2015] [Accepted: 06/26/2015] [Indexed: 01/18/2023] [Imported: 05/22/2025]
Abstract
Migraine and dizziness are relatively common disorders. Patients with dizziness have a higher incidence of migraines than the general population. The discomfort experienced by these patients is often poorly controlled by medication. However, the pathophysiology of vestibular migraine (VM) remains unclear. We hypothesized that patients with VM would experience remission from symptoms after exercise training and that this effect may be mediated through the suppression of cyclooxygenase-2 (COX-2)-mediated inflammation. Thus, the aim of the present study was to investigate the efficacy and possible anti-inflammatory benefits of exercise in patients with VM. We assessed the level of soluble inflammatory mediators in plasma from VM patients and control subjects. Our analysis of cytokine expression in the patients with VM undergoing exercise treatment revealed a significant reduction in pro-inflammatory cytokines and/or cytotoxic factors, such as tumor necrosis factor-α, interleukins, nitric oxide (NO), inducible NO synthase, and reactive oxygen species. In contrast, we found an increase in the level of anti-inflammatory cytokines after exercise. Moreover, the group undergoing exercise training showed significant symptomatic improvement and demonstrated suppressed antioxidant enzyme activity. To summarize, our data suggest that exercise significantly inhibits COX-2 activity, leading to the suppression of pro-inflammatory cytokines and changes in redox status. These results suggest that there is a molecular link between the central nervous system and the immune system. Furthermore, elucidation of the neurobiological mechanisms underlying VM could potentially lead to the development of novel therapeutic interventions for these patients.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
37 |
11
|
Investigating the role of Sirt1-modulated oxidative stress in relation to benign paroxysmal positional vertigo and Parkinson's disease. Neurobiol Aging 2015; 36:2607-16. [PMID: 26130063 DOI: 10.1016/j.neurobiolaging.2015.05.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/29/2015] [Accepted: 05/20/2015] [Indexed: 01/08/2023] [Imported: 05/22/2025]
Abstract
Benign paroxysmal positional vertigo (BPPV) is one of the most frequently encountered primary complaints in dizziness clinics. The incidence of BPPV has been proven to increase with age. The relationship between BPPV and another neurodegenerative disease, Parkinson's disease (PD), has not been previously discussed. This study aimed to investigate the relationship of BPPV and PD with oxidative stress. A total of 30,811 subjects participated in our cohort study. The study cohort comprised 5057 BPPV patients and a comparison cohort of 25,754 nonBPPV patients. SIRT1 axis gene expression was investigated in BPPV patient blood samples and a PD cell model of 6-hydroxydopamine (6-OHDA)-treated PC-12 cells to elucidate the potential in vitro and in vivo mechanisms of degeneration in PD and BPPV. Our data suggest that BPPV patients with histories of head injuries show a significantly higher hazard to develop subsequent PD (hazard ratio, 3.942; confidence interval, 1.523-10.205, p = 0.005). We also observed that oxidative status is increased in blood samples from patients with BPPV. Our in vitro study suggests that SIRT1 function is inhibited by oxidative stress, which thereby promotes 6-hydroxydopamine-induced cell death. We conclude that BPPV is independently associated with an increased risk of PD. This finding may be attributed to oxidative stress-mediated inhibition of SIRT1 expression levels.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
33 |
12
|
MRI features of pediatric intracranial germ cell tumor subtypes. J Neurooncol 2017; 134:221-230. [PMID: 28551848 DOI: 10.1007/s11060-017-2513-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 05/23/2017] [Indexed: 12/13/2022] [Imported: 05/22/2025]
Abstract
Intracranial germ cell tumors differ in histology and location, and require different clinical management strategies. We characterized the imaging features that may aid pre-operative differentiation of intracranial germinomas and non-germinomatous germ cell tumors (NGGCTs). This retrospective study analyzed 85 patients with intracranial germ cell tumors and adequate preoperative or pretreatment MRIs between 2000 and 2013 at our institution. Pretreatment MRI characteristics, apparent diffusion coefficient (ADC) values, tumor histopathology, and patient outcomes were compared. NGGCTs occurred in the pineal region and cerebral hemispheres more often than germinomas; all bifocal lesions were germinomas. NGGCTs (36.6 ± 17.0 mm) were significantly larger than germinomas (25.7 ± 11.6 mm; P = 0.002). The presence of pure solid tumor (45.5 vs. 20.0%, P = 0.033) and an infiltrative margin (20.0 vs. 3.3%, P = 0.035) were significantly more common in germinomas than NGGCTs. The presence of intratumoral T1 hyperintense foci (66.7 vs. 10.9%, P < 0.001) and moderate/marked enhancement (86.7 vs. 50.9%, P < 0.001) were significantly more common in NGGCTs than in germinomas. Mean ADCmean values (×10-3 mm2/s) were significantly lower in germinomas (1.113 ± 0.415) than in NGGCTs (2.011 ± 0.694, P = 0.001). Combined a lack of T1 hyperintense foci and an ADCmean threshold value (1.143 × 10-3 mm2/s) had the highest specificity (91.3%) and positive predictive value (92.3%), while the combination of lack of a T1 hyperintensense foci, no/mild enhancement, and an ADCmean threshold value had 100% sensitivity and 100% negative-predictive value for discriminating germinomas from NGGCTs. Pre-operative conventional MRI characteristics and diffusion-weighted MRI help clinicians to assess patients with intracranial germ cell tumors. Tumor size, location, T1 hyperintense foci, intratumoral cystic components, tumor margin and enhancing patterns demonstrate contrast between germinomas and NGGCTs. Serum tumor markers and adjunctive combination with T1 hyperintensity and/or enhancing pattern with ADC offer potential in preoperative differentiating intracranial germinomas and NGGCTs.
Collapse
|
Journal Article |
8 |
31 |
13
|
Hu YW, Huang PI, Wong TT, Ho DMT, Chang KP, Guo WY, Chang FC, Shiau CY, Liang ML, Lee YY, Chen HH, Yen SH, Chen YW. Salvage Treatment for Recurrent Intracranial Germinoma After Reduced-Volume Radiotherapy: A Single-Institution Experience and Review of the Literature. Int J Radiat Oncol Biol Phys 2012; 84:639-47. [PMID: 22361082 DOI: 10.1016/j.ijrobp.2011.12.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/06/2011] [Accepted: 12/13/2011] [Indexed: 11/30/2022] [Imported: 05/22/2025]
|
|
13 |
29 |
14
|
Yen SH, Chen YW, Huang PI, Wong TT, Ho DMT, Chang KP, Liang ML, Chiou SH, Lee YY, Chen HH. Optimal treatment for intracranial germinoma: can we lower radiation dose without chemotherapy? Int J Radiat Oncol Biol Phys 2009; 77:980-7. [PMID: 19864081 DOI: 10.1016/j.ijrobp.2009.06.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/07/2009] [Accepted: 06/11/2009] [Indexed: 01/10/2023] [Imported: 05/22/2025]
Abstract
PURPOSE To review the effectiveness of reduced-dose and restricted-volume radiation-only therapy in the treatment of intracranial germinoma and to assess the feasibility of reducing or eliminating the use of chemotherapy. METHODS AND MATERIALS Between January 1996 and March 2007, a retrospective analysis was performed that included 38 patients who received either reduced radiation alone (30 Gy for 26 patients) or reduced radiation with chemotherapy (n = 12 patients). All 38 patients received extended focal (including whole-ventricle) irradiation and were followed up until February 2008. Overall survival (OS) and relapse-free survival (RFS) rates were calculated. Variables associated with survival were evaluated by univariate Cox proportional hazards regression. RESULTS Median follow-up was 62.4 months (range, 10.1-142.5 months). The total 5-year OS rate was 93.7%. The 5-year OS and RFS rates for patients receiving radiation only were 100% and 96.2%, respectively. The rates for those receiving radiation plus chemotherapy were 83.3 % and 91.7%, respectively (not statistically significant). No predictive factor was significantly associated with the OS or RFS rate. Chemotherapy had no significant effect on survival but was associated with a higher incidence of treatment-related toxicity. CONCLUSIONS A further decrease in the radiation dose to 30 Gy with whole-ventricle irradiation is sufficient to treat selected patients with intracranial germinoma. Wide-field irradiation or chemotherapy should be avoided as these methods are unnecessary. Thus, reduction of the radiation dose to 30 Gy may be feasible, even without chemotherapy.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
29 |
15
|
Shuen AY, Lanni S, Panigrahi GB, Edwards M, Yu L, Campbell BB, Mandel A, Zhang C, Zhukova N, Alharbi M, Bernstein M, Bowers DC, Carroll S, Cole KA, Constantini S, Crooks B, Dvir R, Farah R, Hijiya N, George B, Laetsch TW, Larouche V, Lindhorst S, Luiten RC, Magimairajan V, Mason G, Mason W, Mordechai O, Mushtaq N, Nicholas G, Oren M, Palma L, Pedroza LA, Ramdas J, Samuel D, Wolfe Schneider K, Seeley A, Semotiuk K, Shamvil A, Sumerauer D, Toledano H, Tomboc P, Wierman M, Van Damme A, Lee YY, Zapotocky M, Bouffet E, Durno C, Aronson M, Gallinger S, Foulkes WD, Malkin D, Tabori U, Pearson CE. Functional Repair Assay for the Diagnosis of Constitutional Mismatch Repair Deficiency From Non-Neoplastic Tissue. J Clin Oncol 2019; 37:461-470. [PMID: 30608896 DOI: 10.1200/jco.18.00474] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] [Imported: 05/22/2025] Open
Abstract
PURPOSE Constitutional mismatch repair deficiency (CMMRD) is a highly penetrant cancer predisposition syndrome caused by biallelic mutations in mismatch repair (MMR) genes. As several cancer syndromes are clinically similar, accurate diagnosis is critical to cancer screening and treatment. As genetic diagnosis is confounded by 15 or more pseudogenes and variants of uncertain significance, a robust diagnostic assay is urgently needed. We sought to determine whether an assay that directly measures MMR activity could accurately diagnose CMMRD. PATIENTS AND METHODS In vitro MMR activity was quantified using a 3'-nicked G-T mismatched DNA substrate, which requires MSH2-MSH6 and MLH1-PMS2 for repair. We quantified MMR activity from 20 Epstein-Barr virus-transformed lymphoblastoid cell lines from patients with confirmed CMMRD. We also tested 20 lymphoblastoid cell lines from patients who were suspected for CMMRD. We also characterized MMR activity from patients with neurofibromatosis type 1, Li-Fraumeni syndrome, polymerase proofreading-associated cancer syndrome, and Lynch syndrome. RESULTS All CMMRD cell lines had low MMR activity (n = 20; mean, 4.14 ± 1.56%) relative to controls (n = 6; mean, 44.00 ± 8.65%; P < .001). Repair was restored by complementation with the missing protein, which confirmed MMR deficiency. All cases of patients with suspected CMMRD were accurately diagnosed. Individuals with Lynch syndrome (n = 28), neurofibromatosis type 1 (n = 5), Li-Fraumeni syndrome (n = 5), and polymerase proofreading-associated cancer syndrome (n = 3) had MMR activity that was comparable to controls. To accelerate testing, we measured MMR activity directly from fresh lymphocytes, which yielded results in 8 days. CONCLUSION On the basis of the current data set, the in vitro G-T repair assay was able to diagnose CMMRD with 100% specificity and sensitivity. Rapid diagnosis before surgery in non-neoplastic tissues could speed proper therapeutic management.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
26 |
16
|
Chen HY, Lin LT, Wang ML, Tsai KL, Huang PI, Yang YP, Lee YY, Chen YW, Lo WL, Lan YT, Chiou SH, Lin CM, Ma HI, Chen MT. Musashi-1 promotes chemoresistant granule formation by PKR/eIF2α signalling cascade in refractory glioblastoma. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1850-1861. [PMID: 29486283 DOI: 10.1016/j.bbadis.2018.02.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/25/2018] [Accepted: 02/21/2018] [Indexed: 01/08/2023] [Imported: 05/22/2025]
Abstract
Musashi-1 (MSI1), one of the RNA-binding proteins, is abundantly found not only in neural stem cells but also in several cancer tissues and has been reported to act as a positive regulator of cancer progression. Growing evidence indicates that PKR and eIF2α play pivotal roles in the stimulation of stress granule formation as well as in the subsequent translation modulation in response to stressful conditions; however, little is known about whether MSI1 is involved in this PKR/eIF2α cancer stem cell-enhancing machinery. In this study, we demonstrated that MSI1 promotes human glioblastoma multiforme (GBM) stem cells and enhances chemoresistance when exposed to sublethal stress. The overexpression of MSI1 leads to a protective effect in mitigating drug-induced cell death, thus facilitating the formation of chemoresistant stress granules (SGs) in response to arsenic trioxide (ATO) treatment. SG components, such as PKR and eIF2α, were dominantly activated and assembled, while ATO was engaged. The activated PKR and eIF2α contribute to the downstream enhancement of stem cell genes, thereby promoting the progression of GBM. The silencing of MSI1 or PKR both obviously withdrew the phenomena. Taken together, our findings indicate that MSI1 plays a leading role in stress granule formation that grants cancer stem cell properties and chemoresistant stress granules in GBM, in response to stressful conditions via the PKR/eIF2α signalling cascade.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
25 |
17
|
Lee YY, Kao CL, Tsai PH, Tsai TH, Chiou SH, Wu WF, Ku HH, Wong TT. Caffeic acid phenethyl ester preferentially enhanced radiosensitizing and increased oxidative stress in medulloblastoma cell line. Childs Nerv Syst 2008; 24:987-94. [PMID: 18470517 DOI: 10.1007/s00381-008-0636-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Indexed: 11/30/2022] [Imported: 05/22/2025]
Abstract
OBJECTIVES Caffeic acid phenethyl ester (CAPE), an active component of propolis, was recently reported to have radiosensitizing effects on medulloblastoma (MB) cells. However, the mechanisms of radiosensitivity involved in medulloblastoma cells are still unclear. The specific aim of this study was to investigate the role of CAPE-induced oxidative stress to influence of radiosensitivity and anti-proliferative effects in medulloblastoma cells. MATERIALS AND METHODS Medulloblastoma (Daoy) cells were treated with CAPE in different concentrations and assessed for cell viability. The following were also evaluated: migratory ability, reduced glutathione (GSH) level, reactive oxygen species (ROS) level, nuclear factor-kappaB (NF-kappaB) activity, and apoptosis in CAPE alone, radiation alone, or radiation combined with CAPE in Daoy cells. RESULTS The results indicated that CAPE inhibited the growth of Daoy cells. CAPE treatment in Daoy cells could effectively decrease glutathione reductase and significantly increase glutathione peroxidase. Radiation-activated NF-kappaB was reversed by CAPE pretreatment. Finally, the result of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay showed that CAPE treatment can enhance radiation-induced apoptosis in Daoy cells. CONCLUSIONS Our study demonstrated the anti-proliferative and radiosensitizing effects of CAPE on MB cells, which may be achievable through depleting GSH, increased ROS activity, and inhibiting NF-kappaB activity.
Collapse
|
|
17 |
25 |
18
|
Huang PI, Chen YW, Wong TT, Lee YY, Chang KP, Guo WY, Chang FC, Liang ML, Chen HH, Chiou SH, Yen SH. Extended focal radiotherapy of 30 Gy alone for intracranial synchronous bifocal germinoma: a single institute experience. Childs Nerv Syst 2008; 24:1315-21. [PMID: 18581122 DOI: 10.1007/s00381-008-0648-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Indexed: 10/21/2022] [Imported: 05/22/2025]
Abstract
OBJECTS To evaluate the disease characteristics and treatment outcomes for patients with intracranial synchronous bifocal germinomas treated with extended focal irradiation alone. METHODS Between January 1996 and March 2007, seven patients (three males and four females) with intracranial synchronous bifocal germinomas treated at Taipei Veterans General Hospital were reviewed. The median age at diagnosis was 14 years (range, 11-28 years). Four patients had surgery before radiotherapy. All patients underwent extended focal irradiation encompassing the whole ventricle system with a total radiation dose of 30 Gy (2 Gy daily). No patient received scheduled systemic chemotherapy before or after radiotherapy. Disease characteristics, treatment outcomes, and the impact of lesion numbers (single vs. bifocal) on survivals were investigated. RESULTS With a median follow-up time of 49 months (range, 20-66 months), the 2- and 5-year survival rates were both 100%. After treatment, all patients had good performance without recurrence. No severe complication was observed. In comparison, the overall survival (OS, p = 0.475) and the disease-free survival (DFS, p = 0.537) rates were not significantly different between bifocal- and single-lesion groups. Lesion numbers did not affect both OS and DFS. In addition, the incidence of neuraxial seeding was not higher in patients with bifocal germinomas as compared to those with single lesion. CONCLUSIONS Intracranial germinomas are extremely radiosensitive. Young patients with synchronous bifocal germinomas could be successfully treated with extended focal 30-Gy radiotherapy alone. The therapeutic advantage using this regimen needs to be further evaluated with larger sample size and longer follow-up time.
Collapse
|
|
17 |
22 |
19
|
Tsai PH, Chien Y, Chuang JH, Chou SJ, Chien CH, Lai YH, Li HY, Ko YL, Chang YL, Wang CY, Liu YY, Lee HC, Yang CH, Tsai TF, Lee YY, Chiou SH. Dysregulation of Mitochondrial Functions and Osteogenic Differentiation in Cisd2-Deficient Murine Induced Pluripotent Stem Cells. Stem Cells Dev 2015; 24:2561-76. [PMID: 26230298 DOI: 10.1089/scd.2015.0066] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] [Imported: 05/22/2025] Open
Abstract
Wolfram syndrome 2 (WFS2) is a premature aging syndrome caused by an irreversible mitochondria-mediated disorder. Cisd2, which regulates mitochondrial electron transport, has been recently identified as the causative gene of WFS2. The mouse Cisd2 knockout (KO) (Cisd2(-/-)) recapitulates most of the clinical manifestations of WFS2, including growth retardation, osteopenia, and lordokyphosis. However, the precise mechanisms underlying osteopenia in WFS2 and Cisd2 KO mice remain unknown. In this study, we collected embryonic fibroblasts from Cisd2-deficient embryos and reprogrammed them into induced pluripotent stem cells (iPSCs) via retroviral transduction with Oct4/Sox2/Klf4/c-Myc. Cisd2-deficient mouse iPSCs (miPSCs) exhibited structural abnormalities in their mitochondria and an impaired proliferative capability. The global gene expression profiles of Cisd2(+/+), Cisd2(+/-), and Cisd2(-/-) miPSCs revealed that Cisd2 functions as a regulator of both mitochondrial electron transport and Wnt/β-catenin signaling, which is critical for cell proliferation and osteogenic differentiation. Notably, Cisd2(-/-) miPSCs exhibited impaired Wnt/β-catenin signaling, with the downregulation of downstream genes, such as Tcf1, Fosl1, and Jun and the osteogenic regulator Runx2. Several differentiation markers for tridermal lineages were globally impaired in Cisd2(-/-) miPSCs. Alizarin red S staining and flow cytometry analysis further revealed that Cisd2(-/-) miPSCs failed to undergo osteogenic differentiation. Taken together, our results, as determined using an miPSC-based platform, have demonstrated that Cisd2 regulates mitochondrial function, proliferation, intracellular Ca(2+) homeostasis, and Wnt pathway signaling. Cisd2 deficiency impairs the activation of Wnt/β-catenin signaling and thereby contributes to the pathogeneses of osteopenia and lordokyphosis in WFS2 patients.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
22 |
20
|
Tumor Mesenchymal Stromal Cells Regulate Cell Migration of Atypical Teratoid Rhabdoid Tumor through Exosome-Mediated miR155/SMARCA4 Pathway. Cancers (Basel) 2019; 11:cancers11050720. [PMID: 31137686 PMCID: PMC6563126 DOI: 10.3390/cancers11050720] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/19/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022] [Imported: 05/22/2025] Open
Abstract
Atypical teratoid/rhabdoid tumor (ATRT) is a rare pediatric brain tumor with extremely high aggressiveness and poor prognosis. The tumor microenvironment is regulated by a complex interaction among distinct cell types, yet the crosstalk between tumor-associated mesenchymal stem cells (tMSCs) and naïve ATRT cells are unclear. In this study, we sought to identify the secretory factor(s) that is responsible for the tMSC-mediated regulation of ATRT migration. Comparing with ATRT cell alone, co-culture of tMSCs or addition of its conditioned medium (tMSC-CM) promoted the migration of ATRT, and this effect could be abrogated by exosome release inhibitor GW4869. The exosomes in tMSC-CM were detected by transmission electron microscope and flow cytometry. ATRT naïve cell-derived conditioned media (ATRT-CM) also enhanced the exosome secretion from tMSCs, indicating the interplay between ATRT cells and tMSCs. Microarray analysis revealed that, compared with that in bone marrow-derived MSCs, microRNA155 is the most upregulated microRNA in the tMSC-CM. Tracing the PK67-labeled exosomes secreted from tMSCs confirmed their incorporation into naïve ATRT cells. After entering ATRT cells, miR155 promoted ATRT cell migration by directly targeting SMARCA4. Knockdown of SMARCA4 mimicked the miR155-driven ATRT cell migration, whereas SMARCA4 overexpression or the delivery of exosomes with miR155 knockdown suppressed the migration. Furthermore, abrogation of exosome release with GW4869 reduced the tumorigenesis of the xenograft containing naïve ATRT cells and tMSCs in immunocompromised recipients. In conclusion, our data have demonstrated that tMSCs secreted miR155-enriched exosomes, and the exosome incorporation and miR155 delivery further promoted migration in ATRT cells via a SMARCA4-dependent mechanism.
Collapse
|
Journal Article |
6 |
21 |
21
|
Yu CC, Chiou GY, Lee YY, Chang YL, Huang PI, Cheng YW, Tai LK, Ku HH, Chiou SH, Wong TT. Medulloblastoma-derived tumor stem-like cells acquired resistance to TRAIL-induced apoptosis and radiosensitivity. Childs Nerv Syst 2010; 26:897-904. [PMID: 20179950 DOI: 10.1007/s00381-010-1087-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 01/21/2010] [Indexed: 01/06/2023] [Imported: 05/22/2025]
Abstract
OBJECTS Medulloblastoma (MB) is the most malignant primary brain tumor in early childhood that contains cellular and functional heterogeneity. Recent evidence has demonstrated that the tumor stem cells (TSC) may explain the radiochemoresistance of brain tumors, including MB. The aim of the present study is to investigate the possible role of TNF-related apoptosis-inducing ligand (TRAIL) in viability and tumorigenicity of MB cells and MB-derived TSC. METHODS MB-associated TSC were isolated and cultured by serum-free medium with bFGF and EGF. The parental MB cells and MB-TSC cells were treated with TRAIL in different concentrations and assessed for cell viability, invasion ability, colony forming ability, and radiotherapy effect. RESULTS We enrich a subpopulation of MB-TSC cells using tumor spheroid formation approach. MB-TSC display enhanced self-renewal and highly expressed "stemness" genes (CD133, Sox-2, Bmi1, Nestin). Additionally, MB-TSC showed significant resistance to TRAIL-induced apoptosis and radiosensitivity compared to the parental MB cells due antiapoptotic gene (c-FLIP, Caspase 8, Bcl-2, and Bax) upregulation. CONCLUSIONS Our data suggest that MB-TSC are resistant to TRAIL-induced apoptosis and tumorigenic properties. Understanding the molecular mechanisms by which to operate the physiological characteristics in MB-TSC cells offers attractive approach for MB treatment.
Collapse
|
|
15 |
21 |
22
|
Chiang KL, Chang KP, Lee YY, Huang PI, Hsu TR, Chen YW, Chang FC, Wong TT. Role of temozolomide in the treatment of newly diagnosed diffuse brainstem glioma in children: experience at a single institution. Childs Nerv Syst 2010; 26:1035-41. [PMID: 20217098 DOI: 10.1007/s00381-010-1106-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 01/29/2010] [Indexed: 11/29/2022] [Imported: 05/22/2025]
Abstract
PURPOSE The purpose of this study was to assess the efficacy of TMZ on diffuse brainstem glioma, either concomitant with radiotherapy or as an adjuvant treatment after radiotherapy in children. METHODS AND MATERIALS Eighteen children (median age at diagnosis was 8.3 years) meet the following criteria: (1) newly diagnosed diffuse brainstem glioma; (2) aged less than 18 years old, which were treated with TMZ at Taipei Veterans General Hospital from January 2004 to December 2008. They were divided into two groups according to treatment modalities: a radiotherapy alone followed by adjuvant TMZ (RT+TMZ) group received conventional radiation after initial diagnosis, and a concomitant chemoradiotherapy followed by adjuvant TMZ (CCRT+TMZ) group received concurrent chemotherapy during radiation with TMZ (75 mg/M(2)/day). After completion of the radiotherapy, TMZ (150 mg/M(2)) was administered once per day for five consecutive days for all enrolled patients in each 28-day cycle. We evaluated the progression-free survival in both groups of patients. RESULTS There were 10 patients in RT+TMZ group and eight in CCRT+TMZ group. All patients experienced progression of disease. Twelve patients (75%) died, and all deaths were attributed to the disease progression. The median progression-free survival (PFS) was 7.4 months for the RT+TMZ group and 6.4 months for the CCRT+TMZ group. The 6-month and 1-year PFS in the RT+TMZ group were 70% (SD 14%) and 30% (SD 14%), respectively, and in the CCRT+TMZ group, they were 50% (SD 17%) and 0%, respectively. The log-rank test in PFS between the two groups was not statistically significant. CONCLUSIONS In this study, CCRT with TMZ followed by adjuvant TMZ did not result in a better outcome when compared with RT alone followed by adjuvant TMZ. In addition, TMZ either as adjuvant therapy or as CCRT did not improve the prognosis of the patients with newly diagnosed diffuse brainstem glioma.
Collapse
|
|
15 |
20 |
23
|
Das A, Fernandez NR, Levine A, Bianchi V, Stengs LK, Chung J, Negm L, Dimayacyac JR, Chang Y, Nobre L, Ercan AB, Sanchez-Ramirez S, Sudhaman S, Edwards M, Larouche V, Samuel D, Van Damme A, Gass D, Ziegler DS, Bielack SS, Koschmann C, Zelcer S, Yalon-Oren M, Campino GA, Sarosiek T, Nichols KE, Loret De Mola R, Bielamowicz K, Sabel M, Frojd CA, Wood MD, Glover JM, Lee YY, Vanan M, Adamski JK, Perreault S, Chamdine O, Hjort MA, Zapotocky M, Carceller F, Wright E, Fedorakova I, Lossos A, Tanaka R, Osborn M, Blumenthal DT, Aronson M, Bartels U, Huang A, Ramaswamy V, Malkin D, Shlien A, Villani A, Dirks PB, Pugh TJ, Getz G, Maruvka YE, Tsang DS, Ertl-Wagner B, Hawkins C, Bouffet E, Morgenstern DA, Tabori U. Combined Immunotherapy Improves Outcome for Replication-Repair-Deficient (RRD) High-Grade Glioma Failing Anti-PD-1 Monotherapy: A Report from the International RRD Consortium. Cancer Discov 2024; 14:258-273. [PMID: 37823831 PMCID: PMC10850948 DOI: 10.1158/2159-8290.cd-23-0559] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/28/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023] [Imported: 05/22/2025]
Abstract
Immune checkpoint inhibition (ICI) is effective for replication-repair-deficient, high-grade gliomas (RRD-HGG). The clinical/biological impact of immune-directed approaches after failing ICI monotherapy is unknown. We performed an international study on 75 patients treated with anti-PD-1; 20 are progression free (median follow-up, 3.7 years). After second progression/recurrence (n = 55), continuing ICI-based salvage prolonged survival to 11.6 months (n = 38; P < 0.001), particularly for those with extreme mutation burden (P = 0.03). Delayed, sustained responses were observed, associated with changes in mutational spectra and the immune microenvironment. Response to reirradiation was explained by an absence of deleterious postradiation indel signatures (ID8). CTLA4 expression increased over time, and subsequent CTLA4 inhibition resulted in response/stable disease in 75%. RAS-MAPK-pathway inhibition led to the reinvigoration of peripheral immune and radiologic responses. Local (flare) and systemic immune adverse events were frequent (biallelic mismatch-repair deficiency > Lynch syndrome). We provide a mechanistic rationale for the sustained benefit in RRD-HGG from immune-directed/synergistic salvage therapies. Future approaches need to be tailored to patient and tumor biology. SIGNIFICANCE Hypermutant RRD-HGG are susceptible to checkpoint inhibitors beyond initial progression, leading to improved survival when reirradiation and synergistic immune/targeted agents are added. This is driven by their unique biological and immune properties, which evolve over time. Future research should focus on combinatorial regimens that increase patient survival while limiting immune toxicity. This article is featured in Selected Articles from This Issue, p. 201.
Collapse
|
research-article |
1 |
19 |
24
|
Lee YY, Wong TT, Fang YT, Chang KP, Chen YW, Niu DM. Comparison of hypothalamopituitary axis dysfunction of intrasellar and third ventricular craniopharyngiomas in children. Brain Dev 2008; 30:189-94. [PMID: 17870266 DOI: 10.1016/j.braindev.2007.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 06/22/2007] [Accepted: 07/25/2007] [Indexed: 10/22/2022] [Imported: 05/22/2025]
Abstract
In this study, we attempted to determine if different locations of a tumor influence the hypothalamopituitary axis function and outcomes with childhood craniopharyngiomas. The preoperative, postoperative, and long-term follow-up endocrinological disturbances of 66 children with a craniopharyngioma were retrospectively studied. The patients were divided into two subgroups according to the location of the tumor (intrasellar and third ventricle floor). The mean age at onset was 8.02 (range, 1.42-17.58)years. These patients were followed-up for a median duration of 7.2 (range, 2-22)years. Vision problems as the first symptom were more common in Group One (with intrasellar tumors) compared to Group Two (55.6% vs 15.4%; p=0.001; Fisher's exact test). Increased intracranial pressure was the most common initial symptom in patients in Group Two (51.3%) and the second most common symptom in Group One (37%). The majority of patients in both Group One and Group Two required some forms of pituitary hormone supplements (96% vs 84%). At the last follow-up, more patients with intrasellar craniopharyngiomas needed cortisone supplements (79.2% in Group One vs 45.9% in Group Two; p=0.016; Fisher's exact test); however, children with third ventricle floor tumors had more prevalent weight gain (4.2% in Group One vs 27.0% in Group Two; p=0.038; Fisher's exact test). There were different initial presentations and endocrinological outcomes between children with intrasellar and third ventricle floor craniopharyngiomas. The intrasellar tumors had greater pituitary hormone disturbance. However, at the long-term follow-up, children with third ventricle floor tumors had a greater prevalence of being overweight and obese, which was associated with hypothalamic dysfunction.
Collapse
|
Clinical Trial |
17 |
18 |
25
|
Lee YY, Yarmishyn AA, Wang ML, Chen HY, Chiou SH, Yang YP, Lin CF, Huang PI, Chen YW, Ma HI, Chen MT. MicroRNA-142-3p is involved in regulation of MGMT expression in glioblastoma cells. Cancer Manag Res 2018; 10:775-785. [PMID: 29695934 PMCID: PMC5903834 DOI: 10.2147/cmar.s157261] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] [Imported: 05/22/2025] Open
Abstract
Background Glioblastoma multiforme (GBM) is the most malignant brain tumor, and there is no effective treatment strategy. Patients with GBM have a median overall survival of only 14.6 months. Current treatment consists of safe and maximal surgical excision, followed by concurrent chemoradiotherapy and maintenance chemotherapy. There are several obstacles that hinder the effectiveness of this aggressive treatment. Temozolomide (TMZ) is an oral alkylating drug that acts through alkylating the O6 position of guanine in DNA that leads to cell death. However, the expression and enzymatic activity of the DNA repair protein MGMT limits the therapeutic benefit from treatment with TMZ. MGMT reduces the efficacy of alkylating drugs by removing the methyl or alkyl group from damaged O6-methylguanine. Expression levels of MGMT play an important role in the outcome of GBM patients. miRNAs are a group of small regulatory RNAs that control target gene expression by binding to mRNAs. miR-142-3p has been found to be an important factor in the development and maintenance of the oncogenic state. Results In this study, we sought to investigate whether miR-142-3p can regulate MGMT gene expression in GBM cells. Here, we show that miR-142-3p downregulates MGMT expression through binding to the 3′-UTR of MGMT mRNA, thus affecting protein translation. Responsiveness to TMZ was significantly enhanced after transfection with miR-142-3p. Overexpression of miR-142-3p also sensitized GBM cells to alkylating drugs. Conclusion Above all, our findings demonstrate that miR-142-3p plays a critical role in regulating MGMT expression, has great potential for future clinical applications, and acts as a new diagnostic marker for this intractable disease.
Collapse
|
Journal Article |
7 |
18 |