26
|
Zhao L, Zhang T, Geng H, Liu ZQ, Liang ZF, Zhang ZQ, Min J, Yu DX, Zhong CY. MAPK/AP-1 pathway regulates benzidine-induced cell proliferation through the control of cell cycle in human normal bladder epithelial cells. Oncol Lett 2018; 16:4628-4634. [PMID: 30197677 PMCID: PMC6126341 DOI: 10.3892/ol.2018.9155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/27/2017] [Indexed: 12/13/2022] [Imported: 05/25/2025] Open
Abstract
Bladder cancer is the most common malignancy of the urinary tract. Long-term exposure to benzidine is one of the major causes of bladder cancer. However, the mechanism of benzidine-induced bladder cancer is not yet sufficiently characterized. Dysregulated cell proliferation serves a critical role in cancer initiation and development; whether benzidine promotes cell proliferation, and the role of MAPKs in this process, have not previously been investigated. The present study aimed to investigate the benzidine-induced modulation of intracellular mitogen-activated protein kinases (MAPKs) and activator protein-1 (AP-1) signaling cascades on cell proliferation in SV-40 immortalized human uroepithelial cells (SV-HUC-1). It was identified that benzidine exposure enhanced the proliferation of SV-HUC-1 cells, promoted the transition of cells from G1 to S phase and altered the expression level of cell cycle-associated genes at the mRNA and protein levels. Furthermore, exposure of the SV-HUC-1 cells to benzidine was associated with the activation of MAPKs, including extracellular regulated protein kinases 1 and 2, p38 and Jun N-terminal kinase. The downstream target of MAPKs, AP-1 monomers, was also activated. Benzidine-induced proliferation was reversed by MAPK-specific inhibitors. Thus, the present study demonstrated that benzidine enhances the proliferation of bladder cells via activating the MAPK/AP-1 pathway, which may provide novel insights into the molecular mechanisms of benzidine-initiated bladder tumorigenesis, as well as cancer prevention.
Collapse
|
research-article |
7 |
11 |
27
|
Lu L, Fang S, Zhang Y, Jin L, Xu W, Liang Z. Exosomes and Exosomal circRNAs: The Rising Stars in the Progression, Diagnosis and Prognosis of Gastric Cancer. Cancer Manag Res 2021; 13:8121-8129. [PMID: 34737640 PMCID: PMC8558314 DOI: 10.2147/cmar.s331221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/14/2021] [Indexed: 12/14/2022] [Imported: 05/23/2025] Open
Abstract
Gastric cancer (GC) is a common malignant tumor affecting human health, with occult onset and poor prognosis. Exosomes are extracellular vesicles secreted by almost all cells, which can reflect the state of source cells or tissues. It is reported that exosomes are involved in almost all processes of GC. Exosomes provided a window to understand changes in cell or tissue states by carrying active components such as circular RNAs (circRNAs). CircRNAs are a naturally occurring class of endogenous noncoding RNAs and abnormal expression during the occurrence and development of GC. Exosomal circRNAs are those circRNAs stably existing in exosomes and having high clinical values as novel potential diagnosis and prognosis biomarkers of GC, which have the characteristics of abnormal expression, tissue specificity and development stage specificity. Herein, we briefly summarize the functions and roles and the current research progress of exosomes and exosomal circRNAs in GC with a focus on the potential application for GC progression, diagnosis and prognosis. We also prospected the clinical application of exosomes and exosomal circRNAs in the future.
Collapse
|
Review |
4 |
10 |
28
|
Zhang B, Gong A, Shi H, Bie Q, Liang Z, Wu P, Mao F, Qian H, Xu W. Identification of a novel YAP-14-3-3ζ negative feedback loop in gastric cancer. Oncotarget 2017; 8:71894-71910. [PMID: 29069755 PMCID: PMC5641098 DOI: 10.18632/oncotarget.18011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/09/2017] [Indexed: 12/18/2022] [Imported: 05/25/2025] Open
Abstract
Growing evidence indicates that 14-3-3ζ and yes-associated protein (YAP) substantially promote tumorigenesis and tumor development. However, the regulatory mechanism underlying these two proteins remains unknown. Herein, we report a new regulatory role of 14-3-3ζ in the phosphorylation of YAP and the feedback inhibition of 14-3-3ζ by YAP. YAP and 14-3-3ζ expression exhibited a negative correlation in gastric cancer (GC) tissues. Moreover, patients with higher YAP and lower 14-3-3ζ expression had poor prognoses. Studies have revealed that 14-3-3ζ promotes cytoplasmic retention and suppresses the transcriptional activity of YAP by inducing its phosphorylation. Furthermore, we observed that the overexpression of YAP significantly reduced the expression of 14-3-3ζ by inducing its ubiquitination. YAP, 14-3-3ζ, and mouse double minute 2 homolog (MDM2) were colocalized, and the knockdown of MDM2 by siRNA attenuated the YAP-induced decrease of 14-3-3ζ. The binding of 14-3-3ζ and MDM2 was also restrained when the expression of YAP was interfered. Our results indicated the presence of a 14-3-3ζ-YAP negative regulatory feedback loop, which has a crucial role in cell proliferation and survival and is a potential target for the clinical treatment of GC.
Collapse
|
research-article |
8 |
9 |
29
|
Lu L, Chen B, Xu Y, Zhang X, Jin L, Qian H, Wang Y, Liang ZF. Role of ferroptosis and ferroptosis-related non-coding RNAs in the occurrence and development of gastric cancer. Front Pharmacol 2022; 13:902302. [PMID: 36046827 PMCID: PMC9421149 DOI: 10.3389/fphar.2022.902302] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/28/2022] [Indexed: 01/17/2023] [Imported: 05/23/2025] Open
Abstract
Gastric cancer (GC) is a malignant cancer of the digestive tract and is a life-threatening disease worldwide. Ferroptosis is a newly discovered form of regulated cell death, which involves the accumulation of iron-dependent lipid peroxides. It has been found that ferroptosis plays an important regulatory role in the occurrence, development, drug resistance, and prognosis of GC. Non-coding RNAs (ncRNAs) play a critical role in the occurrence and progression of a variety of diseases including GC. In recent years, the role of ferroptosis and ferroptosis-related ncRNAs (miRNA, lncRNA, and circRNA) in the occurrence, development, drug resistance, and prognosis of GC has attracted more and more attention. Herein, we briefly summarize the roles and functions of ferroptosis and ferroptosis-related ncRNAs in GC tumorigenesis, development, and prognosis. We also prospected the future research direction and challenges of ferroptosis and ferroptosis-related ncRNAs in GC.
Collapse
|
Review |
3 |
9 |
30
|
Geng H, Zhou Q, Guo W, Lu L, Bi L, Wang Y, Min J, Yu D, Liang Z. Exosomes in bladder cancer: novel biomarkers and targets. J Zhejiang Univ Sci B 2021; 22:341-347. [PMID: 33973417 PMCID: PMC8110466 DOI: 10.1631/jzus.b2000711] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/30/2020] [Indexed: 01/19/2023] [Imported: 05/25/2025]
Abstract
Exosomes are nanometer-sized vesicles that contain various types of biologically active components, including proteins, nucleic acids, carbohydrates, and lipids, which vary with the type and physiological state of the cell. In recent years, several studies have showed that exosomes can provide new non-invasive diagnostic and prognostic biomarkers in patients affected by cancers, including bladder cancer (BC), and the lipid bilayer membrane structure makes exosomes as promising delivery vehicles for therapeutic applications. Exosomes have the characteristics of high abundance, high stability, tissue specificity, and wide distribution in body fluids, and are secreted as various types by cells in different states, thereby possessing great potential as biomarkers for BC. Herein, we briefly summarize the functions and roles of exosomes in the occurrence and development of BC and the current progress of research on exosomes in BC, while focusing on potential clinical applications of the diagnosis, treatment, and prognosis of BC.
Collapse
|
review-article |
4 |
9 |
31
|
Liang Z, Wu R, Xie W, Zhu M, Xie C, Li X, Zhu J, Zhu W, Wu J, Geng S, Xu W, Zhong C, Han H. Curcumin reverses tobacco smoke‑induced epithelial‑mesenchymal transition by suppressing the MAPK pathway in the lungs of mice. Mol Med Rep 2018; 17:2019-2025. [PMID: 29138815 DOI: 10.3892/mmr.2017.8028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 08/14/2017] [Indexed: 11/06/2022] [Imported: 05/25/2025] Open
Abstract
Tobacco smoke is a major risk factor for lung cancer. Epithelial‑mesenchymal transition (EMT) is decisive in cancer invasion and metastasis, and therefore promotes cancer progression. Mitogen‑activated protein kinase (MAPK) pathways are implicated in various aspects of cancer development and progression, including the EMT process. The chemopreventive effect of curcumin on carcinogenesis has been reported in vivo and in vitro. The present study investigated tobacco smoke‑induced alterations in the MAPK/activator protein‑1 (AP‑1) pathways, and pulmonary EMT changes in the lungs of mice, and further observed the chemopreventive effect of curcumin. The protein expression levels analyzed by western blot analysis demonstrated that 12 weeks of tobacco smoke exposure activated extracellular‑signal‑regulated kinase (ERK) 1/2, c‑Jun N‑terminal kinase (JNK) and p38 MAPK pathways, in addition to AP‑1, in the lungs of mice, while reducing the activation of ERK5/MAPK pathways. The results also indicated that the mRNA and protein levels of the epithelial markers E‑cadherin and zona occludens‑1 were reduced following tobacco smoke exposure. Conversely, the expression levels of mRNA and protein for the mesenchymal markers vimentin and N‑cadherin were increased. Curcumin treatment inhibited tobacco smoke‑induced MAPK/AP‑1 activation, including ERK1/2, JNK and p38 MAPK pathways, and AP‑1 proteins, and reversed EMT alterations in lung tissue. The results of the present study provide new insights into the molecular mechanisms of tobacco smoke‑associated lung cancer and may open up new avenues in the search for potential therapeutic targets in lung tumorigenesis.
Collapse
|
|
7 |
8 |
32
|
Liang Z, Guo W, Fang S, Zhang Y, Lu L, Xu W, Qian H. CircRNAs: Emerging Bladder Cancer Biomarkers and Targets. Front Oncol 2021; 10:606485. [PMID: 33489913 PMCID: PMC7821354 DOI: 10.3389/fonc.2020.606485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] [Imported: 05/23/2025] Open
Abstract
Circular RNAs (circRNAs) are newly discovered intriguing RNAs due to the covalently closed loop structure, high stability, tissue specificity, and functional diversity. In recent years, a large number of circRNAs have been identified through high-throughput sequencing technology and bioinformatics methods, the abnormal expression of circRNAs are closely related to many diseases including bladder cancer (BC). CircRNAs have been proven to have several functions, such as acting as a regulator of parental gene transcription, miRNA sponge and interacting with proteins to regulate its expression. In addition, some circRNAs have been identified to encode proteins. CircRNAs have the characteristics of high abundance, high stability, wide distribution in body fluids, tissue specificity, and developmental stage specificity, which determine that circRNAs has great potential to be utilized as biomarkers for BC. Herein, we briefly summarize the biogenesis, functions and roles, and the current research progress of circRNAs in BC with a focus on the potential application for BC diagnosis, treatment, and prognosis.
Collapse
|
Review |
4 |
8 |
33
|
Lu L, Chen J, Li M, Tang L, Wu R, Jin L, Liang Z. β‑carotene reverses tobacco smoke‑induced gastric EMT via Notch pathway in vivo. Oncol Rep 2018; 39:1867-1873. [PMID: 29393400 DOI: 10.3892/or.2018.6246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/28/2017] [Indexed: 12/25/2022] [Imported: 05/25/2025] Open
Abstract
Tobacco smoke is one of the serious risk factors of gastric cancer. Epithelial‑mesenchymal transition (EMT) has been shown to be associated with the initiation and carcinogenesis of gastric cancer. The role of Notch pathway in regulating tobacco smoke-induced EMT has not been investigated. β‑carotene, a carotenoid present in fruits, vegetables and rice, suppresses cancer progression. In this investigation, we evaluated the regulatory role of Notch pathway in tobacco smoke‑mediated gastric EMT and the preventive effect of β‑carotene using a BALB/c mouse smoking model. Exposure of mice to tobacco smoke reduced levels of epithelial markers, while the expression of mesenchymal markers were increased. We further found that Notch pathway modulated tobacco smoke-triggered EMT in the stomach of mice, as evidenced by these findings that tobacco smoke activated Notch activities, and tobacco smoke induced EMT was reversed by blocking Notch activities with FLI‑06. Moreover, treatment of β‑carotene prevented tobacco smoke‑mediated activation of Notch and EMT changes. Our data suggested that Notch regulate tobacco smoke induced gastric EMT and the protective effects of β‑carotene in vivo. These findings may establish a new mechanism for tobacco smoke-associated gastric tumorigenesis and its chemoprevention.
Collapse
|
|
7 |
7 |
34
|
Geng H, Guo W, Feng L, Xie D, Bi L, Wang Y, Zhang T, Liang Z, Yu D. Diallyl trisulfide inhibited tobacco smoke-mediated bladder EMT and cancer stem cell marker expression via the NF-κB pathway in vivo. J Int Med Res 2021; 49:300060521992900. [PMID: 33730908 PMCID: PMC8166398 DOI: 10.1177/0300060521992900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022] [Imported: 05/23/2025] Open
Abstract
OBJECTIVE This study examined the effect of the NF-κB pathway on tobacco smoke-elicited bladder epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) marker expression in vivo. The effect of diallyl trisulfide (DATS) treatment was also examined. METHODS BALB/c mice were exposed to tobacco smoke and treated with an NF-κB inhibitor and DATS. Western blotting, quantitative real-time PCR, and immunohistochemical staining were used to detect the changes of relevant indices. RESULTS Phosphorylated inhibitor of kappa-B kinase alpha/beta expression and p65 and p50 nuclear transcription were increased by tobacco smoke exposure, whereas inhibitor of kappa-B expression was decreased. In addition, tobacco smoke reduced the expression of epithelial markers but increased that of mesenchymal and CSC markers. Our study further demonstrated that tobacco smoke-mediated EMT and CSC marker expression were attenuated by inhibition of the NF-κB pathway. Moreover, DATS reversed tobacco smoke-induced NF-κB pathway activation, EMT, and the acquisition of CSC properties in bladder tissues. CONCLUSIONS These data suggested that the NF-κB pathway regulated tobacco smoke-induced bladder EMT, CSC marker expression, and the protective effects of DATS.
Collapse
|
research-article |
4 |
7 |
35
|
Lu L, Chen J, Tang H, Bai L, Lu C, Wang K, Li M, Yan Y, Tang L, Wu R, Ye Y, Jin L, Liang Z. EGCG Suppresses ERK5 Activation to Reverse Tobacco Smoke-Triggered Gastric Epithelial-Mesenchymal Transition in BALB/c Mice. Nutrients 2016; 8:380. [PMID: 27447666 PMCID: PMC4963860 DOI: 10.3390/nu8070380] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/28/2016] [Accepted: 06/14/2016] [Indexed: 12/14/2022] [Imported: 05/25/2025] Open
Abstract
Tobacco smoke is an important risk factor of gastric cancer. Epithelial-mesenchymal transition is a crucial pathophysiological process in cancer development. ERK5 regulation of epithelial-mesenchymal transition may be sensitive to cell types and/or the cellular microenvironment and its role in the epithelial-mesenchymal transition process remain elusive. Epigallocatechin-3-gallate (EGCG) is a promising chemopreventive agent for several types of cancers. In the present study we investigated the regulatory role of ERK5 in tobacco smoke-induced epithelial-mesenchymal transition in the stomach of mice and the preventive effect of EGCG. Exposure of mice to tobacco smoke for 12 weeks reduced expression of epithelial markers E-cadherin, ZO-1, and CK5, while the expression of mesenchymal markers Snail-1, Vimentin, and N-cadherin were increased. Importantly, we demonstrated that ERK5 modulated tobacco smoke-mediated epithelial-mesenchymal transition in mice stomach, as evidenced by the findings that tobacco smoke elevated ERK5 activation, and that tobacco smoke-triggered epithelial-mesenchymal transition was reversed by ERK5 inhibition. Treatment of EGCG (100 mg/kg BW) effectively attenuated tobacco smoke-triggered activation of ERK5 and epithelial-mesenchymal transition alterations in mice stomach. Collectively, these data suggested that ERK5 was required for tobacco smoke-triggered gastric epithelial-mesenchymal transition and that EGCG suppressed ERK5 activation to reverse tobacco smoke-triggered gastric epithelial-mesenchymal transition in BALB/c mice. These findings provide new insights into the mechanism of tobacco smoke-associated gastric tumorigenesis and the chemoprevention of tobacco smoke-associated gastric cancer.
Collapse
|
research-article |
9 |
6 |
36
|
Zhang X, Xu X, Song J, Xu Y, Qian H, Jin J, Liang ZF. Non-coding RNAs' function in cancer development, diagnosis and therapy. Biomed Pharmacother 2023; 167:115527. [PMID: 37751642 DOI: 10.1016/j.biopha.2023.115527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] [Imported: 05/23/2025] Open
Abstract
While previous research on cancer biology has focused on genes that code for proteins, in recent years it has been discovered that non-coding RNAs (ncRNAs)play key regulatory roles in cell biological functions. NcRNAs account for more than 95% of human transcripts and are an important entry point for the study of the mechanism of cancer development. An increasing number of studies have demonstrated that ncRNAs can act as tumor suppressor genes or oncogenes to regulate tumor development at the epigenetic level, transcriptional level, as well as post-transcriptional level. Because of the importance of ncRNAs in cancer, most clinical trials have focused on ncRNAs to explore whether ncRNAs can be used as new biomarkers or therapies. In this review, we focus on recent studies of ncRNAs including microRNAs (miRNAs), long ncRNAs (lncRNAs), circle RNAs (circRNAs), PIWI interacting RNAs (piRNAs), and tRNA in different types of cancer and explore the application of these ncRNAs in the development of cancer and the identification of relevant therapeutic targets and tumor biomarkers. Graphical abstract drawn by Fidraw.
Collapse
|
Review |
2 |
6 |
37
|
Liang ZF, Zhang Y, Guo W, Chen B, Fang S, Qian H. Gastric cancer stem cell-derived exosomes promoted tobacco smoke-triggered development of gastric cancer by inducing the expression of circ670. Med Oncol 2022; 40:24. [PMID: 36454423 DOI: 10.1007/s12032-022-01906-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] [Imported: 05/23/2025]
Abstract
As one of the most common malignant cancers in the world, gastric cancer is caused by mang factors among which tobacco smoke is an important risk factor. Gastric cancer stem cells (GCSCs) and the derived exosomes play a key role in the occurrence and development of gastric cancer, and exosomal circRNA is considered as a new regulatory factor in the development of gastric cancer. However, it is unclear whether tobacco smoke can affect exosomes and their transport circRNAs to promote the development of gastric cancer. Herein, we provided a new insight into tobacco smoke promoting the progression of gastric cancer. In the present study, we demonstrated that tobacco smoke-induced exosomes promoted the spheroidizing ability, stemness genes expression, and epithelial-mesenchymal transition (EMT) process of GCSCs. We further found that hsa-circRNA-000670 (circ670) was up-regulated in tissues of gastric cancer patients with smoking history, tobacco smoke-induced GCSCs, and their exosomes. Functional assays have shown that circ670 knockdown inhibited the stemness and EMT process of GCSCs, whereas circ670 overexpression appeared to have an opposite effect. Our findings indicated that exosomal circ670 promotes the development of tobacco smoke-induced gastric cancer, which may provide insight into the mechanism of tobacco smoke promoting the progression of gastric cancer.
Collapse
|
|
3 |
5 |
38
|
Min J, Geng H, Liu Z, Liang Z, Zhang Z, Xie D, Wang Y, Zhang T, Yu D, Zhong C. ERK5 regulates tobacco smoke‑induced urocystic epithelial‑mesenchymal transition in BALB/c mice. Mol Med Rep 2017; 15:3893-3897. [PMID: 28440402 DOI: 10.3892/mmr.2017.6457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/07/2017] [Indexed: 11/05/2022] [Imported: 05/25/2025] Open
Abstract
Tobacco smoke (TS) is an important risk factor of bladder cancer. Epithelial‑mesenchymal transition (EMT) is involved in the initiation and development of cancer. The role of extracellular signal‑regulated kinase (ERK) 5 in regulating TS‑induced EMT remains to be elucidated. The aim of the present study was to investigate the regulatory role of ERK5 in TS‑triggered EMT in the bladder of mice. BALB/c mice were used for an in vivo TS exposure model. Mice were treated for 6 h a day for 12 weeks. The results demonstrated that mice exposed to TS had decreased mRNA and protein expression levels of the epithelial markers E‑cadherin and zonula occludens‑1, whereas expression levels of the mesenchymal markers Vimentin and N‑cadherin were increased. Treatment with XMD8‑92, a highly specific ERK5 inhibitor, effectively abrogated TS‑triggered activation of ERK5, activator protein‑1 and EMT alterations in the bladder of BALB/c mice. The data suggested that ERK5 regulates TS‑mediated urocystic EMT. These findings provide insight into the molecular mechanisms of TS‑associated bladder tumorigenesis.
Collapse
|
|
8 |
5 |
39
|
Jia H, Yan Y, Liang Z, Tandra N, Zhang B, Wang J, Xu W, Qian H. Autophagy: A new treatment strategy for MSC-based therapy in acute kidney injury (Review). Mol Med Rep 2018; 17:3439-3447. [PMID: 29257336 DOI: 10.3892/mmr.2017.8311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 11/09/2017] [Indexed: 11/09/2022] [Imported: 05/25/2025] Open
Abstract
Acute kidney injury (AKI) is a common and serious medical condition associated with poor health outcomes. Autophagy is a conserved multistep pathway that serves a major role in many biological processes and diseases. Recent studies have demonstrated that autophagy is induced in proximal tubular cells during AKI. Autophagy serves a pro‑survival or pro‑death role under certain conditions. Furthermore, mesenchymal stem cells (MSCs) have therapeutic potential in the repair of renal injury. This review summarizes the recent progress on the role of autophagy in AKI and MSCs‑based therapy for AKI. Further research is expected to prevent and treat acute kidney injury.
Collapse
|
|
7 |
5 |
40
|
Zhang Y, Zhang X, Xu Y, Fang S, Ji Y, Lu L, Xu W, Qian H, Liang ZF. Circular RNA and Its Roles in the Occurrence, Development, Diagnosis of Cancer. Front Oncol 2022; 12:845703. [PMID: 35463362 PMCID: PMC9021756 DOI: 10.3389/fonc.2022.845703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/14/2022] [Indexed: 12/19/2022] [Imported: 05/23/2025] Open
Abstract
Circular RNAs (circRNAs) are non-coding single-stranded covalently closed circular RNA, mainly produced by reverse splicing of exons of precursor mRNAs (pre-mRNAs). The characteristics of high abundance, strong specificity, and good stability of circRNAs have been discovered. A large number of studies have reported its various functions and mechanisms in biological events, such as the occurrence and development of cancer. In this review, we focus on the classification, characterization, biogenesis, functions of circRNAs, and the latest advances in cancer research. The development of circRNAs as biomarkers in cancer diagnosis and treatment also provides new ideas for studying circRNAs research.
Collapse
|
Review |
3 |
5 |
41
|
Lu L, Liang Q, Shen S, Feng L, Jin L, Liang ZF. Tobacco Smoke Plays an Important Role in Initiation and Development of Lung Cancer by Promoting the Characteristics of Cancer Stem Cells. Cancer Manag Res 2020; 12:9735-9739. [PMID: 33116833 PMCID: PMC7548220 DOI: 10.2147/cmar.s272277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] [Imported: 05/23/2025] Open
Abstract
Lung cancer is one of the most common causes of cancer-related deaths worldwide. Tobacco smoke is the single greatest risk factor of lung cancer. Although enormous progress in understanding the molecular mechanisms by which tobacco smoke leading to lung cancer has been made, the molecular pathogenesis remains largely unclear. Cancer stem cells have been implicated in cancer initiation, development, and drug resistance. In this review, we reviewed the relationship between tobacco smoke and lung cancer, the key role of cancer stem cells in lung cancer and other tumors. More importantly, we elucidate the mechanism of tobacco smoke promoting lung cancer from the perspective of the characteristics of cancer stem cells induced by tobacco smoke.
Collapse
|
Review |
5 |
4 |
42
|
Ma J, Jiang X, Wang J, Liang Z, Sun Z, Qian H, Gong A. The construction and application of a blended teaching model under the strategic background of healthy China. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 50:114-119. [PMID: 34854213 PMCID: PMC9300038 DOI: 10.1002/bmb.21591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/12/2021] [Accepted: 11/19/2021] [Indexed: 05/30/2023] [Imported: 05/23/2025]
Abstract
In order to cultivate the ability of independent learning and lifelong learning of medical students, improve the ability of students to analyze and solve problems, improve the competence of medical talents and cultivate high-level and innovative talents, we have constructed the blended teaching model of "Clinical Case Investigation-Online Open Course Learning-Classroom PBL Seminar-After-Class Health Education". At the same time, an ability-oriented performance evaluation system improved the teaching quality feedback system has also established. This article introduces the construction and application of the blended teaching model, as well as the problems it faces, provides a theoretical basis for the optimization and improvement of this model. It also provides a model theory and practical basis for creating a blended online and offline "golden course" for the professional courses of medical laboratory technology.
Collapse
|
research-article |
3 |
4 |
43
|
Hu X, Zhang Z, Liang Z, Xie D, Zhang T, Yu D, Zhong C. Downregulation of feline sarcoma-related protein inhibits cell migration, invasion and epithelial-mesenchymal transition via the ERK/AP-1 pathway in bladder urothelial cell carcinoma. Oncol Lett 2017; 13:686-694. [PMID: 28356947 PMCID: PMC5351348 DOI: 10.3892/ol.2016.5459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/13/2016] [Indexed: 11/17/2022] [Imported: 05/25/2025] Open
Abstract
Feline sarcoma-related protein (Fer) is a nuclear and cytoplasmic non-receptor protein tyrosine kinase and Fer overexpression is associated with various biological processes. However, the clinicopathological characteristics and molecular mechanisms of Fer expression in bladder urothelial cell carcinoma (UCC) have yet to be elucidated. The present study demonstrated that Fer was significantly upregulated in bladder UCC tissues and cell lines. A clinicopathological analysis suggested that Fer expression was significantly associated with tumor stage, histological grade and lymph node status, and Fer expression was a prognostic factor for overall survival in a multivariate analysis. Furthermore, small interfering RNA (siRNA) was used to silence the expression of the Fer gene in human bladder UCC T24 cells, and was shown to significantly reduce the migration and invasion of the cells. It was also observed that Fer-siRNA caused the T24 cells to acquire an epithelial cobblestone phenotype, and was able to reverse the epithelial-mesenchymal transition of the cells. Subsequently, Fer-knockdown was shown to deactivate the extracellular signal-regulated kinase/activator protein-1 signaling pathway in T24 cells. These results indicated, for the first time, that Fer has a critical role in bladder UCC progression and may be a potential therapeutic target for bladder UCC metastasis.
Collapse
|
research-article |
8 |
4 |
44
|
Liang Z, Zhang Y, Xu Y, Zhang X, Wang Y. Hesperidin inhibits tobacco smoke-induced pulmonary cell proliferation and EMT in mouse lung tissues via the p38 signaling pathway. Oncol Lett 2023; 25:30. [PMID: 36589667 PMCID: PMC9773313 DOI: 10.3892/ol.2022.13616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022] [Imported: 05/23/2025] Open
Abstract
Tobacco smoke (TS) is the major cause of lung cancer. The abnormal proliferation and epithelial-mesenchymal transition (EMT) of lung cells promote occurrence and development of lung cancer. The p38 pathway intervenes in this cancer development. Hesperidin also serves a role in human health and disease prevention. The roles of p38 in TS-mediated abnormal cell proliferation and EMT, and the hesperidin intervention thereof are not yet understood. In the present study, it was demonstrated that TS upregulated proliferating cell nuclear antigen, vimentin and N-cadherin expression, whereas it downregulated E-cadherin expression, as assessed using western blotting and reverse transcription-quantitative PCR. Furthermore, it was observed that inhibition of the p38 pathway inhibit TS-induced proliferation and EMT. Hesperidin treatment prevented the TS-induced activation of the p38 pathway, EMT and cell proliferation in mouse lungs. The findings of the present study may provide insights into the pathogenesis of TS-related lung cancer.
Collapse
|
research-article |
2 |
4 |
45
|
Liang Z, Fang S, Zhang Y, Zhang X, Xu Y, Qian H, Geng H. Cigarette Smoke-Induced Gastric Cancer Cell Exosomes Affected the Fate of Surrounding Normal Cells via the Circ0000670/Wnt/β-Catenin Axis. TOXICS 2023; 11:465. [PMID: 37235279 PMCID: PMC10221554 DOI: 10.3390/toxics11050465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] [Imported: 05/25/2025]
Abstract
Cigarette smoke is a major risk factor for gastric cancer. Exosomes are an important part of intercellular and intra-organ communication systems and can carry circRNA and other components to play a regulatory role in the occurrence and development of gastric cancer. However, it is unclear whether cigarette smoke can affect exosomes and exosomal circRNA to promote the development of gastric cancer. Exosomes secreted by cancer cells promote cancer development by affecting surrounding normal cells. Herein, we aimed to clarify whether the exosomes secreted by cigarette smoke-induced gastric cancer cells can promote the development of gastric cancer by affecting the surrounding gastric mucosal epithelial cells (GES-1). In the present study, we treated gastric cancer cells with cigarette smoke extract for 4 days and demonstrated that cigarette smoke promotes the stemness and EMT of gastric cancer cells and cigarette smoke-induced exosomes promote stemness gene expression, EMT processes and the proliferation of GES-1 cells. We further found that circ0000670 was up-regulated in tissues of gastric cancer patients with smoking history, cigarette smoke-induced gastric cancer cells and their exosomes. Functional assays showed that circ0000670 knockdown inhibited the promoting effects of cigarette smoke-induced exosomes on the stemness and EMT characteristic of GES-1 cells, whereas its overexpression had the opposite effect. In addition, exosomal circ0000670 was found to promote the development of gastric cancer by regulating the Wnt/β-catenin pathway. Our findings indicated that exosomal circ0000670 promotes cigarette smoke-induced gastric cancer development, which might provide a new basis for the treatment of cigarette smoke-related gastric cancer.
Collapse
|
research-article |
2 |
3 |
46
|
Liang Z, Xu Y, Zhang Y, Zhang X, Song J, Qian H, Jin J. Anticancer applications of phytochemicals in gastric cancer: Effects and molecular mechanism. Front Pharmacol 2023; 13:1078090. [PMID: 36712679 PMCID: PMC9877357 DOI: 10.3389/fphar.2022.1078090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] [Imported: 05/25/2025] Open
Abstract
Gastric cancer (GC) is the fourth most common malignant cancer and is a life-threatening disease worldwide. Phytochemicals have been shown to be a rational, safe, non-toxic, and very promising approach to the prevention and treatment of cancer. It has been found that phytochemicals have protective effects against GC through inhibiting cell proliferation, inducing apoptosis and autophagy, suppressing cell invasion and migration, anti-angiogenesis, inhibit Helicobacter pylori infection, regulating the microenvironment. In recent years, the role of phytochemicals in the occurrence, development, drug resistance and prognosis of GC has attracted more and more attention. In order to better understand the relationship between phytochemicals and gastric cancer, we briefly summarize the roles and functions of phytochemicals in GC tumorigenesis, development and prognosis. This review will probably help guide the public to prevent the occurrence and development of GC through phytochemicals, and develop functional foods or drugs for the prevention and treatment of gastric cancer.
Collapse
|
Review |
2 |
3 |
47
|
Ding D, Liu Z, Zhao L, Geng H, Liang Z, Yu D. Role of PI3K/Akt pathway in Benzidine-induced proliferation in SV-40 immortalized human uroepithelial cell. Transl Cancer Res 2019; 8:1301-1310. [PMID: 35116872 PMCID: PMC8798037 DOI: 10.21037/tcr.2019.07.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 06/24/2019] [Indexed: 11/19/2022] [Imported: 05/25/2025]
Abstract
BACKGROUND Long term exposure to benzidine has been determined as a cause of urothelial carcinoma. But how it works in the process of cell proliferation that involves in tumor growth is not examined yet. In the current research, the effect of PI3K/Akt on cell proliferation mediated by benzidine was confirmed. METHODS The immortalized SV-40 human uroepithelial cells (SV-HUC-1) had been subjected to 6 days of benzidine treatment at various contents, then MTT assay, together with subsequent flow cytometry assay were used for observing effects on cell proliferation. Further Western blots were used to detect the expression of total-Akt, phospho-Akt and specific proteins of cell cycle. The Akt, Cyclin D1, PCNA and P21 mRNA levels were detected through RT-PCR. In addition, the blocker-LY294002 was used to cut down the PI3K/Akt signaling pathway. And then those parameters were detected using the same methods as above. RESULTS Results showed that benzidine acted to induce cell proliferation at low doses (P<0.05 vs. controls) via MTT and flow cytometry assay. The expression of phospho-Akt, Cyclin D1, and PCNA were significantly enhanced compared with that of control (P<0.05; P<0.01), but total-Akt and P21 levels were reduced. Whereas, inhibitor of PI3K/Akt suppressed the proliferating procedure when cells were treated with the blocker (LY294002) and also inhibited the expression of related cycle proteins. CONCLUSIONS Activated PI3K/Akt signal pathway promotes benzidine-triggered cell proliferation. It may shed light on the molecular mechanisms that the activated PI3K/Akt pathway promotes benzidine-triggered cell proliferation and intervention of its target.
Collapse
|
research-article |
6 |
2 |
48
|
Huang XJ, Wang Y, Wang HT, Liang ZF, Ji C, Li XX, Zhang LL, Ji RB, Xu WR, Jin JH, Qian H. Exosomal hsa_circ_000200 as a potential biomarker and metastasis enhancer of gastric cancer via miR-4659a/b-3p/HBEGF axis. Cancer Cell Int 2023; 23:151. [PMID: 37525152 PMCID: PMC10391853 DOI: 10.1186/s12935-023-02976-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/26/2023] [Indexed: 08/02/2023] [Imported: 05/25/2025] Open
Abstract
BACKGROUND Exosome, a component of liquid biopsy, loaded protein, DNA, RNA and lipid gradually emerges as biomarker in tumors. However, exosomal circRNAs as biomarker and function mechanism in gastric cancer (GC) are not well understood. METHODS Differentially expressed circRNAs in GC and healthy people were screened by database. The identification of hsa_circ_000200 was verified by RNase R and sequencing, and the expression of hsa_circ_000200 was evaluated using qRT-PCR. The biological function of hsa_circ_000200 in GC was verified in vitro. Western blot, RIP, RNA fluorescence in situ hybridization, and double luciferase assay were utilized to explore the potential mechanism of hsa_circ_000200. RESULTS Hsa_circ_000200 up-regulated in GC tissue, serum and serum exosomes. Hsa_circ_000200 in serum exosomes showed better diagnostic ability than that of tissues and serum. Combined with clinicopathological parameters, its level was related to invasion depth, TNM staging, and distal metastasis. Functionally, knockdown of hsa_circ_000200 inhibited GC cells proliferation, migration and invasion in vitro, while its overexpression played the opposite role. Importantly, exosomes with up-regulated hsa_circ_000200 promoted the proliferation and migration of co-cultured GC cells. Mechanistically, hsa_circ_000200 acted as a "ceRNA" for miR-4659a/b-3p to increase HBEGF and TGF-β/Smad expression, then promoted the development of GC. CONCLUSIONS Our findings suggest that hsa_circ_000200 promotes the progression of GC through hsa_circ_000200/miR-4659a/b-3p/HBEGF axis and affecting the expression of TGF-β/Smad. Serum exosomal hsa_circ_000200 may serve as a potential biomarker for GC.
Collapse
|
research-article |
2 |
1 |
49
|
Lu L, Gao Z, Song J, Jin L, Liang Z. The potential of diallyl trisulfide for cancer prevention and treatment, with mechanism insights. Front Cell Dev Biol 2024; 12:1450836. [PMID: 39403128 PMCID: PMC11471646 DOI: 10.3389/fcell.2024.1450836] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/17/2024] [Indexed: 02/13/2025] [Imported: 05/25/2025] Open
Abstract
Cancer has become an important public health problem worldwide, and there is currently a lack of effective treatment and prevention strategies. Natural plant active ingredients have been proven to be a safe and highly promising method for preventing and treating cancer. It has been found that diallyl trisulfide have anticancer effects in multiple types of cancer via inhibiting cancer proliferation, enhancing chemotherapy sensitivity, inducing apoptosis/autophagy, suppressing invasion/migration, regulating microenvironment. With the deepening of research on new strategies for cancer prevention and treatment, the role of diallyl trisulfides in cancers occurrence, prognosis, and drug resistance is also receiving increasing attention. In order to better understand the relationship between diallyl trisulfides and various cancer, as well as the role and mechanism of diallyl trisulfides in cancer prevention and treatment, we briefly summarized the role and function of diallyl trisulfide in cancers.
Collapse
|
Review |
1 |
1 |
50
|
Xu Y, Han J, Zhang X, Zhang X, Song J, Gao Z, Qian H, Jin J, Liang Z. Exosomal circRNAs in gastrointestinal cancer: Role in occurrence, development, diagnosis and clinical application (Review). Oncol Rep 2024; 51:19. [PMID: 38099408 PMCID: PMC10777447 DOI: 10.3892/or.2023.8678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] [Imported: 05/23/2025] Open
Abstract
Gastrointestinal cancer is frequently detected at an advanced stage and has an undesirable prognosis due to the absence of efficient and precise biomarkers and therapeutic targets. Exosomes are small, living‑cell‑derived vesicles that serve a critical role in facilitating intercellular communication by transporting molecules from donor cells to receiver cells. circular RNAs (circRNAs) are mis‑expressed in a variety of diseases, including gastrointestinal cancer, and are promising as diagnostic biomarkers and tumor therapeutic targets for gastrointestinal cancer. The main features of exosomes and circRNAs are discussed in the present review, along with research on the biological function of exosomal circRNAs in the development and progression of gastrointestinal cancer. It also assesses the advantages and disadvantages of implementing these findings in clinical applications.
Collapse
|
Review |
1 |
|