1
|
Zhang CC, Qin M, Wang HY, Guo XZ, Yan BB, Zhang Y, Zhou L, Li K, Wang S, Guo LP. [Research progress on biological characteristics and propagation technology of Atractylodes lancea]. ZHONGGUO ZHONG YAO ZA ZHI = ZHONGGUO ZHONGYAO ZAZHI = CHINA JOURNAL OF CHINESE MATERIA MEDICA 2024; 49:3144-3151. [PMID: 39041074 DOI: 10.19540/j.cnki.cjcmm.20240129.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Atractylodes lancea is a perennial herb of the Asteraceae family and is one of the well-known traditional Chinese medicine(TCM). Several studies have documented polyene alkyne and sesquiterpenoid compounds as the main bioactive compounds of A. lancea, especially atractylodin, atractylon, β-eudesmol, and hinesol in its rhizomes, which possess anti-virus, anti-inflammation, hypoglycemic, anti-hypoxia, liver protection, and diuresis activities. In parallel with the recent advancements in biotechnology, important achievements have been made in the study of biological characteristics and propagation technology of A. lancea. This study reviews the research progress on morphological features, cytogenetics, ecological planting, effective ingredients, and tissue culture techniques of A. lancea from the biology perspective, so as to provide a theoretical basis for reasonable development of A. lancea resources.
Collapse
|
2
|
Deng SY, Liu MX, Gao P, Zhang CC, Xing JD, Guo K, Xu K, Tan F, Zhang CH, Cui M, Su XQ. The safety and short-term effect of mixed approach in laparoscopic right hemicolectomy for right colon cancer compared with middle approach: a retrospective study. BMC Surg 2024; 24:150. [PMID: 38745222 PMCID: PMC11092007 DOI: 10.1186/s12893-024-02405-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
PURPOSE To investigate whether the mixed approach is a safe and advantageous way to operate laparoscopic right hemicolectomy. METHODS A retrospective study was performed on 316 patients who underwent laparoscopic right hemicolectomy in our center. They were assigned to the middle approach group (n = 158) and the mixed approach group (n = 158) according to the surgical approaches. The baseline data like gender、age and body mass index as well as the intraoperative and postoperative conditions including operation time, blood loss, postoperative hospital stay and complications were analyzed. RESULTS There were no significant differences in age, sex, BMI, ASA grade and tumor characteristics between the two groups. Compared with the middle approach group, the mixed approach group was significantly lower in terms of operation time (217.61 min vs 154.31 min, p < 0.001), intraoperative blood loss (73.8 ml vs 37.97 ml, p < 0.001) and postoperative drainage volume. There was no significant difference in the postoperative complications like postoperative anastomotic leakage, postoperative infection and postoperative intestinal obstruction. CONCLUSIONS Compared with the middle approach, the mixed approach is a safe and advantageous way that can significantly shorten the operation time, reduce intraoperative bleeding and postoperative drainage volume, and does not prolong the length of hospital stay or increase the morbidity postoperative complications.
Collapse
|
3
|
Xu Q, Hu YY, Wen Y, Liu GY, Yang ZP, Zhang CC, Ding MH, Bi HS. [Effect of corneal e-value on myopia control in children and adolescents with orthokeratology]. [ZHONGHUA YAN KE ZA ZHI] CHINESE JOURNAL OF OPHTHALMOLOGY 2024; 60:330-336. [PMID: 38583056 DOI: 10.3760/cma.j.cn112142-20231122-00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Objective: To investigate the influence of corneal e-value on the effectiveness of orthokeratology in controlling myopia in children and adolescents. Methods: A retrospective cohort study was conducted, involving the data from 1 563 myopic patients (1 563 eyes) who underwent orthokeratology at the Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine from June 2015 to August 2021 and adhered to lens wear for at least 2 years. The cohort consisted of 737 males and 826 females with an average age of (10.84±2.13) years. Based on corneal e-value parameters obtained from corneal topography, patients were categorized into a low e-value group (n=425) and a high e-value group (n=1 138). Data on gender, age, parental myopia history, and baseline measures such as spherical equivalent (SE), axial length, and corneal e-value were collected. Differences in axial length change and corneal fluorescein staining rates were compared between the two groups at 1 and 2 years after the start of lens wear. A generalized linear mixed model was established with axial length change as the dependent variable to analyze the correlation between axial length change and baseline corneal e-value. Results: The initial age of the 1 563 myopic patients was (10.84±2.13) years, with a baseline SE of (-3.05±1.30) D. After 1 year of lens wear, the axial length change was (0.20±0.19) mm in the low e-value group and (0.24±0.20) mm in the high e-value group. After 2 years, the changes were (0.38±0.25) mm and (0.43±0.27) mm, respectively, with statistically significant differences (all P<0.05). The incidence of corneal staining after 1 year of lens wear was 9.2% (39/425) in the low e-value group and 14.1% (160/1 138) in the high e-value group. After 2 years, the rates were 15.8% (67/425) and 21.8% (248/1 138), respectively, with statistically significant differences (all P<0.05). After adjusting for parental myopia history, age, SE, and baseline axial length, the baseline corneal e-value was positively correlated with axial length change at 1 and 2 years after lens wear (all P<0.05). Conclusions: Corneal e-value is an independent factor influencing the effectiveness of orthokeratology in controlling myopia. A smaller corneal e-value is associated with slower axial length growth after orthokeratology, indicating better control of myopia in treated eyes.
Collapse
|
4
|
Peng YJ, Chen Y, Zhou CZ, Miao W, Jiang YL, Zeng X, Zhang CC. Modular catalytic activity of nonribosomal peptide synthetases depends on the dynamic interaction between adenylation and condensation domains. Structure 2024; 32:440-452.e4. [PMID: 38340732 DOI: 10.1016/j.str.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 02/12/2024]
Abstract
Nonribosomal peptide synthetases (NRPSs) are large multidomain enzymes for the synthesis of a variety of bioactive peptides in a modular and pipelined fashion. Here, we investigated how the condensation (C) domain and the adenylation (A) domain cooperate with each other for the efficient catalytic activity in microcystin NRPS modules. We solved two crystal structures of the microcystin NRPS modules, representing two different conformations in the NRPS catalytic cycle. Our data reveal that the dynamic interaction between the C and the A domains in these modules is mediated by the conserved "RXGR" motif, and this interaction is important for the adenylation activity. Furthermore, the "RXGR" motif-mediated dynamic interaction and its functional regulation are prevalent in different NRPSs modules possessing both the A and the C domains. This study provides new insights into the catalytic mechanism of NRPSs and their engineering strategy for synthetic peptides with different structures and properties.
Collapse
|
5
|
Sun QX, Huang M, Zhang JY, Zeng X, Zhang CC. Erratum for Sun et al., "Control of Cell Size by c-di-GMP Requires a Two-Component Signaling System in the Cyanobacterium Anabaena sp. Strain PCC 7120". Microbiol Spectr 2024; 12:e0015524. [PMID: 38329362 PMCID: PMC10913725 DOI: 10.1128/spectrum.00155-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
|
6
|
Liu SJ, Lin GM, Yuan YQ, Chen W, Zhang JY, Zhang CC. A conserved protein inhibitor brings under check the activity of RNase E in cyanobacteria. Nucleic Acids Res 2024; 52:404-419. [PMID: 38000383 PMCID: PMC10783494 DOI: 10.1093/nar/gkad1094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/21/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
The bacterial ribonuclease RNase E plays a key role in RNA metabolism. Yet, with a large substrate spectrum and poor substrate specificity, its activity must be well controlled under different conditions. Only a few regulators of RNase E are known, limiting our understanding on posttranscriptional regulatory mechanisms in bacteria. Here we show that, RebA, a protein universally present in cyanobacteria, interacts with RNase E in the cyanobacterium Anabaena PCC 7120. Distinct from those known regulators of RNase E, RebA interacts with the catalytic region of RNase E, and suppresses the cleavage activities of RNase E for all tested substrates. Consistent with the inhibitory function of RebA on RNase E, depletion of RNase E and overproduction of RebA caused formation of elongated cells, whereas the absence of RebA and overproduction of RNase E resulted in a shorter-cell phenotype. We further showed that the morphological changes caused by altered levels of RNase E or RebA are dependent on their physical interaction. The action of RebA represents a new mechanism, potentially conserved in cyanobacteria, for RNase E regulation. Our findings provide insights into the regulation and the function of RNase E, and demonstrate the importance of balanced RNA metabolism in bacteria.
Collapse
|
7
|
Zhang CC, Li H, Cheng LQ, Wu HB. [Clinicopathological features of olfactory carcinoma]. ZHONGHUA BING LI XUE ZA ZHI = CHINESE JOURNAL OF PATHOLOGY 2023; 52:1138-1143. [PMID: 37899320 DOI: 10.3760/cma.j.cn112151-20230208-00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Objective: To investigate the clinicopathological features and differential diagnosis of olfactory carcinoma (OC). Methods: Twenty-one cases of sinonasal tumors, including those initially diagnosed as olfactory neuroblastoma (ONB) and those with uncertain diagnosis, were collected from the Department of Pathology, the First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital) from January 2016 to August 2022, among which 3 cases were reclassified as OC. The clinicopathological features were investigated, and the remaining 18 cases were used as control. Results: Of the three OC patients, 2 were male and 1 was female, with an average age of 57 years ranging from 35 to 74 years. Microscopically, the tumor cells were arranged in solid, nested or lobulated patterns with occasional palisading around the solid nests. The stroma was highly vascular with focal neurofibrillary areas. There were prominent rosettes or pseudorosettes formation. The tumor cells were mainly ovoid to spindly with scant to moderate amount of cytoplasm, one or several small nucleoli, and fine chromatin content. Brisk mitotic figures were seen. In all 3 cases of OC, there were scanty atypical glands and some were ciliated. Immunohistochemically, at least one epithelial marker and neuroendocrine marker were diffusely expressed in the tumor. Some of the tumor cells were positive for p40 and p63, and the sustentacular cells showed the expression of S-100 protein. All cases tested were negative for NUT, CD99 and desmin, with intact expression of SMARCA4 (BRG1) and SMARCB1 (INI-1). Ki-67 proliferation index varied from 20% to 80%. Follow-up after 16-18 months showed no mortality with tumor recurrence from 1 patient after 16 months. Conclusion: OC is a rare sinonasal tumor with neuroepithelial differentiation, its histomorphology is diverse, and the combination of immunohistochemical markers is essential for appropriate diagnosis.
Collapse
|
8
|
Zhang CC, Sun JH, Wang YH, Wang HY, Guo XZ, Yan BB, Sun Z, Wang S, Guo LP. [Research progress in microevolutionary process of excellent traits and quality of Dao-di herbs]. ZHONGGUO ZHONG YAO ZA ZHI = ZHONGGUO ZHONGYAO ZAZHI = CHINA JOURNAL OF CHINESE MATERIA MEDICA 2023; 48:6021-6029. [PMID: 38114208 DOI: 10.19540/j.cnki.cjcmm.20230709.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Dao-di herbs are the treasure of Chinese materia medica and one of the characteristic research objects of traditional Chinese medicine(TCM). Probing into the microevolution of Dao-di herbs can help to reveal their biological essence and quality formation mechanisms. The progress in molecular biology and omics provides the possibility to elucidate the phylogenetic and quality forming characteristics of Dao-di herbs at the molecular level. In particular, genomics serves as a powerful tool to decipher the genetic origins of Dao-di herbs, and molecular markers have been widely used in the research on the genetic diversity and population structure of Dao-di herbs. Focusing on the excellent traits and quality of Dao-di herbs, this paper reviews the studies about the microevolution process of quality formation mechanisms of Dao-di herbs with the application of molecular markers and omics, aiming to underpin the protection and utilization of TCM resources.
Collapse
|
9
|
Xing WY, Liu J, Zhang CC. HetF defines a transition point from commitment to morphogenesis during heterocyst differentiation in the cyanobacterium Anabaena sp. PCC 7120. Mol Microbiol 2023; 120:740-753. [PMID: 37804047 DOI: 10.1111/mmi.15177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023]
Abstract
The filamentous cyanobacterium Anabaena sp. PCC 7120 is able to form heterocysts for nitrogen fixation. Heterocyst differentiation is initiated by combined-nitrogen deprivation, followed by the commitment step during which the developmental process becomes irreversible. Mature heterocysts are terminally differentiated cells unable to divide, and cell division is required for heterocyst differentiation. Previously, we have shown that the HetF protease regulates cell division and heterocyst differentiation by cleaving PatU3, which is an inhibitor for both events. When hetF is required during the developmental program remains unknown. Here, by controlling the timing of hetF expression during heterocyst differentiation, we provide evidence that hetF is required just before the beginning of heterocyst morphogenesis. Consistent with this finding, transcriptome data show that most of the genes known to be involved in the early step (such as hetR and ntcA) or the commitment step (such as hetP and hetZ) of heterocyst development could be expressed in the ΔhetF mutant. In contrast, most of the genes involved in heterocyst morphogenesis and nitrogen fixation remain repressed in the mutant. These results indicated that in the absence of hetF, heterocyst differentiation is able to be initiated and proceeds to the stage just before heterocyst envelope formation.
Collapse
|
10
|
Zhang CC, Song C, Yang DK, Li ZZ, Wang D, Gao TY, Hu J, Zhang K. [Precise minimally invasive treatment of mandibular fracture in children assisted by digital surgery technology]. ZHONGHUA KOU QIANG YI XUE ZA ZHI = ZHONGHUA KOUQIANG YIXUE ZAZHI = CHINESE JOURNAL OF STOMATOLOGY 2023; 58:1173-1178. [PMID: 37885191 DOI: 10.3760/cma.j.cn112144-20230912-00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Objective: To explore the role of digital three-dimensional printing technology and multifunctional board in the treatment of mandibular fracture in children. Methods: From January 2006 to January 2022, 42 children with mandibular fracture were treated by Department of Stomatology, in The First Affiliated Hospital of Bengbu Medical College, including 25 males and 17 females. The patients, aged from 4 to 12 years, with the median age was 10 years old, were divided into observation group (22 cases) and routine group (20 cases) according to the treatment methods. In the observation group, the multifunctional board was made before operation, and the CT data of the children were imported into Mimics software in".dicom"format, and the displaced mandible was virtually reset. The jaw reduction model was made by three-dimensional printing, and the surgical operation was simulated on the reduction model to determine the model and position of the internal fixation device and shape it. During the operation, the fracture was reduced and fixed according to the preoperative design; The conventional group was treated with open reduction and internal fixation of mandibular fracture by traditional methods, and the clinical application value was compared and analyzed through the intraoperative situation, occlusal relationship, and follow-up of the two groups. Results: The total intraoperative bleeding volume [(30.25±4.02) ml] and surgical time [(64.3±9.2) min] in the observation group were significantly lower than those in the conventional group [(35.13±5.69) ml and (84.6±13.9) min, respectively] (F=6.18, P=0.003; F=1.32, P=0.001). The excellent and good rate of occlusal relationship in the observation group [96% (21/22)] was significantly higher than that in the conventional group [85% (17/20)] (F=4.27, P=0.039). The incidence of complications, the observation group, 1 case of poor occlusion, 1 case of postoperative infection; In the routine group, there were 3 cases with poor occlusion, 1 case with nerve injury, 1 case with root injury and 1 case with tooth germ injury. Conclusions: The application of digitization three-dimensional printing technology combined with multifunctional occlusal plate in children's mandibular fracture is minimally invasive, safe, efficient and accurate, and the clinical effect is good.
Collapse
|
11
|
Li K, Wang HY, Guo XZ, Zhang CC, Wang YF, Guo LP. [Advances in research and application of Trichoderma for inducing resistance against root rot diseases in root and rhizome of Chinese medicinal materials]. ZHONGGUO ZHONG YAO ZA ZHI = ZHONGGUO ZHONGYAO ZAZHI = CHINA JOURNAL OF CHINESE MATERIA MEDICA 2023; 48:4942-4949. [PMID: 37802835 DOI: 10.19540/j.cnki.cjcmm.20230515.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Root rot is a microbial disease that is difficult to control and can result in serious losses in the planting of most Chinese medicinal materials. As high as 87.6% of roots or rhizomes of Chinese medicinal materials are susceptible to root rot, which seriously affects the cultivation development of Chinese medicinal materials. Trichoderma fungi, possessing biological control functions, can induce plants to improve their resistance to microbial diseases, promote plant growth, and effectively reduce the losses caused by various microbial diseases on cultivation. At present, Trichoderma is rarely used in the cultivation of Chinese medicinal materials, so it has great application potential for the prevention and control of root rot diseases in farmed Chinese medicinal materials. Based on the above situation, after comparison and discussion, it is believed that compared with chemical control and physical control, biological control of root rot diseases of Chinese medicinal materials is more efficient and meets the development needs of Chinese medicinal materials ecological planting in China. This paper reviewed the progress in the research and application of Trichoderma in the control of root rot diseases in the root and rhizome of farmed Chinese medicinal materials in the past 10 years and found that most of the current research on the biological control of root rot diseases in Chinese medicinal materials was mostly limited to the verification of the inhibitory effect of Trichoderma strains on the growth of the pathogenic microbes. Studies on the induction effect of Trichoderma on Chinese medicinal materials are not in depth. Studies on the responding mechanisms of most Chinese medicinal materials to Trichoderma are highly absent. Moreover, there are few reports on field experiments, which indicates that there is a long way to go before Trichoderma is widely applied in the farming practice of Chinese medicinal materials. To sum up, this paper aimed to link the present and the future and advocated further relevant research and more experiments on the application of Trichoderma in the farming of Chinese medicinal materials.
Collapse
|
12
|
Zhang CC, Ma L, Zhou X, Fan LW, Pan YC. [Prickle planar cell polarity protein 1 involved in the pathogenesis of skeletal class Ⅲ malocclusion]. ZHONGHUA KOU QIANG YI XUE ZA ZHI = ZHONGHUA KOUQIANG YIXUE ZAZHI = CHINESE JOURNAL OF STOMATOLOGY 2023; 58:799-808. [PMID: 37550040 DOI: 10.3760/cma.j.cn112144-20230404-00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Objective: To explore the mechanisms of prickle planar cell polarity protein 1 (PRICKLE1) involved in the occurrence of skeletal Class Ⅲ malocclusion. Methods: After extracting the genomic DNA of all family members of the skeletal Class Ⅲ malocclusion pedigree with maxillary hypoplasia collected in the Department of Orthodontics at the Affiliated Stomatological Hospital of Nanjing Medical University in October 2021, whole exome sequencing and Sanger sequencing were performed to screen pathogenic genes/mutation sites and validate the mutations. Jaw tissue was collected during the operation of orthognathic patients who were treated in the Department of Oral and Maxillofacial Surgery at the same hospital from October 2021 to December 2022. Following the extraction of human jaw bone marrow mesenchymal stem cells and transfection with overexpressing lentivirus (lentiviruses overexpressing the gene of interest served as the wild group, lentiviruses overexpressing mutation site served as the mutant group) and knockdown lentivirus (divided into knockdown group 1 and 2, with transfection interference negative lentiviruses as the control group). Various assays including real-time fluorescence quantitative PCR (RT-qPCR), Western blotting, proliferation and Transwell assays, alkaline phosphatase staining and alizarin red staining were performed. Construction of zebrafish animal model, morpholino oligonucleotide (MO) were injected to knock down the expression of prickle1a and prickle1b in zebrafish (co-knocking group), and the control group was injected with standardized MO as a reference. Transcriptome sequencing, enrichment analysis and co-expression analysis were performed on the zebrafish craniofacial tissues of the two groups. Results: Two patients of this family carried this mutation PRICKLE1 c.113C>T. The transfection experiments showed that compared with the wild group (relative expression of PRICKLE1 was 21.97±0.60), the relative expression of mutant group (5.05±0.05) was significantly reduced (P<0.05), and cell proliferation and migration ability significantly enhanced (P<0.05), and osteogenic differentiation ability was significantly reduced (P<0.05). Compared with the control group, the proliferation and migration ability of cells in the two knockdown groups were significantly enhanced (P<0.05), and the osteogenic differentiation ability was significantly reduced (P<0.05). Zebrafish model experiments showed the width of the ethmoid plate was significantly reduced in the co-knocking group (282.50±61.77, t=5.29, P<0.001) compared with the control group (338.80±24.92). Transcriptome data and enrichment analysis showed that the differentially expressed genes were significantly enriched in the mitogen-activated protein kinase (MAPK) signaling pathway after the simultaneous knockdown of prickle1a and prickle1b in zebrafish. Conclusions: PRICKLE1 c.113C>T mutation might suppress the osteoblastic differentiation ability of jaw bone marrow mesenchymal stem cells by downregulating the MAPK signaling pathway, thereby involving the development of skeletal Class Ⅲ malocclusion.
Collapse
|
13
|
Wang ZQ, Yang Y, Zhang JY, Zeng X, Zhang CC. Global translational control by the transcriptional repressor TrcR in the filamentous cyanobacterium Anabaena sp. PCC 7120. Commun Biol 2023; 6:643. [PMID: 37322092 PMCID: PMC10272220 DOI: 10.1038/s42003-023-05012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023] Open
Abstract
Transcriptional and translational regulations are important mechanisms for cell adaptation to environmental conditions. In addition to house-keeping tRNAs, the genome of the filamentous cyanobacterium Anabaena sp. strain PCC 7120 (Anabaena) has a long tRNA operon (trn operon) consisting of 26 genes present on a megaplasmid. The trn operon is repressed under standard culture conditions, but is activated under translational stress in the presence of antibiotics targeting translation. Using the toxic amino acid analog β-N-methylamino-L-alanine (BMAA) as a tool, we isolated and characterized several BMAA-resistance mutants from Anabaena, and identified one gene of unknown function, all0854, named as trcR, encoding a transcription factor belonging to the ribbon-helix-helix (RHH) family. We provide evidence that TrcR represses the expression of the trn operon and is thus the missing link between the trn operon and translational stress response. TrcR represses the expression of several other genes involved in translational control, and is required for maintaining translational fidelity. TrcR, as well as its binding sites, are highly conserved in cyanobacteria, and its functions represent an important mechanism for the coupling of the transcriptional and translational regulations in cyanobacteria.
Collapse
|
14
|
Zhang CC, Fang C, Qin M, Wang HY, Guo XZ, Wang YF, Yan BB, Zhang ZH, Wang S, Guo LP. [DUS testing guidelines for new varieties of Chinese medicinal plants]. ZHONGGUO ZHONG YAO ZA ZHI = ZHONGGUO ZHONGYAO ZAZHI = CHINA JOURNAL OF CHINESE MATERIA MEDICA 2023; 48:2896-2903. [PMID: 37381971 DOI: 10.19540/j.cnki.cjcmm.20230214.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
A rich diversity of wild medicinal plant resources is distributed in China, but the breeding of new plant varieties of Chinese medicinal plants started late and the breeding level is relatively weak. Chinese medicinal plant resources are the foundation for new varieties breeding, and the plant variety rights(PVP) are of great significance for the protection and development of germplasm resources. However, most Chinese medicinal plants do not have a distinctness, uniformity, and stability(DUS) testing guideline. The Ministry of Agriculture and Rural Affairs has put 191 plant species(genera) on protection lists, of which only 30 are medicinal species(genera). At the same time, only 29 of 293 species(genera) plants in the Protection List of New Plant Varieties of the People's Republic of China(Forest and Grass) belong to Chinese medicinal plants. The number of PVP applications and authorization of Chinese medicinal plants is rare, and the composition of variety is unreasonable. Up to now, 29 species(genera) of DUS test guidelines for Chinese medicinal plants have been developed. Some basic problems in the breeding of new varieties of Chinese medicinal plants have appeared, such as the small number of new varieties and insufficient utilization of Chinese medicinal plant resources. This paper reviewed the current situation of breeding of new varieties of Chinese medicinal plants and the research progress of DUS test guidelines in China and discussed the application of biotechnology in the field of Chinese medicinal plant breeding and the existing problems in DUS testing. This paper guides the further application of DUS to protect and utilize the germplasm resources of Chinese medicinal plants.
Collapse
|
15
|
Zeng X, Huang M, Sun QX, Peng YJ, Xu X, Tang YB, Zhang JY, Yang Y, Zhang CC. A c-di-GMP binding effector controls cell size in a cyanobacterium. Proc Natl Acad Sci U S A 2023; 120:e2221874120. [PMID: 36947515 PMCID: PMC10068817 DOI: 10.1073/pnas.2221874120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/22/2023] [Indexed: 03/23/2023] Open
Abstract
Cyclic-di-GMP (c-di-GMP) is a ubiquitous bacterial signaling molecule. It is also a critical player in the regulation of cell size and cell behaviors such as cell aggregation and phototaxis in cyanobacteria, which constitute an important group of prokaryotes for their roles in the ecology and evolution of the Earth. However, c-di-GMP receptors have never been revealed in cyanobacteria. Here, we report the identification of a c-di-GMP receptor, CdgR, from the filamentous cyanobacterium Anabaena PCC 7120. Crystal structural analysis and genetic studies demonstrate that CdgR binds c-di-GMP at the dimer interface and this binding is required for the control of cell size in a c-di-GMP-dependent manner. Different functions of CdgR, in ligand binding and signal transmission, could be separated genetically, allowing us to dissect its molecular signaling functions. The presence of the apo-form of CdgR triggers cell size reduction, consistent with the similar effects observed with a decrease of c-di-GMP levels in cells. Furthermore, we found that CdgR exerts its function by interacting with a global transcription factor DevH, and this interaction was inhibited by c-di-GMP. The lethal effect triggered by conditional depletion of DevH or by the production of several point-mutant proteins of CdgR in cells indicates that this signaling pathway plays critical functions in Anabaena. Our studies revealed a mechanism of c-di-GMP signaling in the control of cell size, an important and complex trait for bacteria. CdgR is highly conserved in cyanobacteria, which will greatly expand our understanding of the roles of c-di-GMP signaling in these organisms.
Collapse
|
16
|
Zhang CC, Wang S, Wang YF, Wang HY, Qin M, Dai XY, Yan BB, Guo XZ, Zhou L, Lin HB, Guo LP. [Application of tissue culture technology of medicinal plants in sustainable development of Chinese medicinal resources]. ZHONGGUO ZHONG YAO ZA ZHI = ZHONGGUO ZHONGYAO ZAZHI = CHINA JOURNAL OF CHINESE MATERIA MEDICA 2023; 48:1186-1193. [PMID: 37005802 DOI: 10.19540/j.cnki.cjcmm.20221017.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Chinese medicinal resources are the cornerstone of the sustainable development of traditional Chinese medicine industry. However, due to the fecundity of species, over-exploitation, and limitations of artificial cultivation, some medicinal plants are depleted and even endangered. Tissue culture, a breakthrough technology in the breeding of traditional Chinese medicinal materials, is not limited by time and space, and can allow the production on an annual basis, which plays an important role in the protection of Chinese medicinal resources. The present study reviewed the applications of tissue culture of medicinal plants in the field of Chinese medicinal resources, including rapid propagation of medicinal plant seedlings, breeding of novel high-yield and high-quality cultivars, construction of a genetic transformation system, and production of secondary metabolites. Meanwhile, the current challenges and suggestions for the future development of this field were also proposed.
Collapse
|
17
|
Liu J, Xing WY, Liu B, Zhang CC. Three-dimensional coordination of cell-division site positioning in a filamentous cyanobacterium. PNAS NEXUS 2022; 2:pgac307. [PMID: 36743469 PMCID: PMC9896137 DOI: 10.1093/pnasnexus/pgac307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022]
Abstract
Bacterial cells mostly divide symmetrically. In the filamentous, multicellular cyanobacterium Anabaena, cell-division planes are aligned vertically relative to the long axis of every single cell. This observation suggests that both the placement and the angle of the division planes are controlled in every single cell so that the filament can grow in one single dimension along the long axis. In this study, we showed that inactivation of patU3 encoding a cell-division inhibitor led cells to divide asymmetrically in two dimensions leading to twisted filaments, indicating that PatU3 controls not only the position but also the angle of the division planes. Deletion of the conserved minC and minD genes affected cell division symmetry, but not the angle of the division planes. Remarkably, when both patU3 and minCD were inactivated, cells could divide asymmetrically over 360° angles in three dimensions across different cellular sections, producing not only cells with irregular sizes, but also branching filaments. This study demonstrated the existence of a system operating in a three-dimensional manner for the control of cell division in Anabaena. Such a regulation may have been evolved to accommodate multicellular behaviors, a hallmark in evolution.
Collapse
|
18
|
Liu DG, Zhuang SX, Zhang CC, Wang LB. [Pulmonary alveolar microlithiasis caused by SLC34A2 gene compound heterozygous variations in a child]. ZHONGHUA ER KE ZA ZHI = CHINESE JOURNAL OF PEDIATRICS 2022; 60:715-716. [PMID: 35768363 DOI: 10.3760/cma.j.cn112140-20220320-00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
|
19
|
Abstract
Heterocyst differentiation that occurs in some filamentous cyanobacteria, such as Anabaena sp. PCC 7120, provides a unique model for prokaryotic developmental biology. Heterocyst cells are formed in response to combined-nitrogen deprivation and possess a microoxic environment suitable for nitrogen fixation following extensive morphological and physiological reorganization. A filament of Anabaena is a true multicellular organism, as nitrogen and carbon sources are exchanged among different cells and cell types through septal junctions to ensure filament growth. Because heterocysts are terminally differentiated cells and unable to divide, their activity is an altruistic behavior dedicated to providing fixed nitrogen for neighboring vegetative cells. Heterocyst development is also a process of one-dimensional pattern formation, as heterocysts are semiregularly intercalated among vegetative cells. Morphogens form gradients along the filament and interact with each other in a fashion that fits well into the Turing model, a mathematical framework to explain biological pattern formation. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
|
20
|
Wang ZQ, Zhang CC. A tRNA t 6A modification system contributes to the sensitivity towards the toxin β-N-methylamino-L-alanine (BMAA) in the cyanobacterium Anabaena sp. PCC 7120. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106121. [PMID: 35180454 DOI: 10.1016/j.aquatox.2022.106121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/24/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Cyanobacteria are oxygen-evolving photosynthetic autotrophs essential for nutrient cycling in the environment. They possess multiple control mechanisms for their cellular activities in order to adapt to the environment. While protein translation is essential for cell survival and adaptation, the regulation and the flexibility of this process are poorly understood in cyanobacteria. β-N-methylamino-L-alanine (BMAA), an amino acid analog proposed as an environmental neurotoxin, is highly toxic to the filamentous diazotrophic cyanobacterium Anabaena PCC 7120. In this study, through genetic analysis of BMAA-resistant mutants, we demonstrate that the system responsible for modification of ANN-decoding tRNAs with N(6)-threonylcarbamoyl adenosine (t6A) is involved in BMAA sensitivity through the control of translation. Both BMAA and inactivation of the t6A biosynthesis pathway affect translational fidelity and ribosome assembly. However, the two factors display either additive effects on translational elongation, or attenuate each other over translational fidelity or the resistance/sensitivity to antibiotics that inhibit different steps of the translational process. BMAA has a broad effect on translation and transcription, and once BMAA enters the cells, the presence of the t6A biosynthesis pathway increases the sensitivity of the cells towards this toxin. BMAA-resistant mutants screening is an effective method for getting insight into the toxic mechanisms of BMAA. In addition, BMAA is a useful tool for probing translational flexibility of cyanobacteria, and the characterization of the corresponding resistant mutants should help us to reveal translational mechanism allowing cyanobacteria to adapt to changing environments.
Collapse
|
21
|
Zhang JY, Niu TC, Lin GM, Zhang CC. A CRISPR-Based Method for Constructing Conditional Mutations of Essential Genes in Cyanobacteria. Methods Mol Biol 2022; 2377:143-157. [PMID: 34709615 DOI: 10.1007/978-1-0716-1720-5_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cyanobacteria, a group of diverse bacteria capable of oxygenic photosynthesis, are excellent models for investigating many important cellular processes, such as photosynthesis, nitrogen fixation, and prokaryotic cell differentiation. They also have great potential to become the next-generation cell factories for sustainable biosynthesis of valuable products. However, genetic manipulation in cyanobacteria is not as convenient as in other model bacteria. Particularly, handling essential genes in cyanobacteria has been difficult due to the lack of appropriate tools, limiting our understanding of many important cellular functions encoded by them. We recently develop a CRISPR-based method for constructing the conditional mutants of cyanobacterial essential genes by engineering the ribosome binding site to a theophylline-responsive riboswitch. Here, we provide the details of this method. The principle of this method could be used to construct conditional mutants in a wide range of bacterial species.
Collapse
|
22
|
Huang M, Zhang JY, Zeng X, Zhang CC. c-di-GMP Homeostasis Is Critical for Heterocyst Development in Anabaena sp. PCC 7120. Front Microbiol 2021; 12:793336. [PMID: 34925302 PMCID: PMC8682488 DOI: 10.3389/fmicb.2021.793336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/09/2021] [Indexed: 12/04/2022] Open
Abstract
c-di-GMP is a ubiquitous bacterial signal regulating various physiological process. Anabaena PCC 7120 (Anabaena) is a filamentous cyanobacterium able to form regularly-spaced heterocysts for nitrogen fixation, in response to combined-nitrogen deprivation in 24h. Anabaena possesses 16 genes encoding proteins for c-di-GMP metabolism, and their functions are poorly characterized, except all2874 (cdgS) whose deletion causes a decrease in heterocyst frequency 48h after nitrogen starvation. We demonstrated here that c-di-GMP levels increased significantly in Anabaena after combined-nitrogen starvation. By inactivating each of the 16 genes, we found that the deletion of all1175 (cdgSH) led to an increase of heterocyst frequency 24h after nitrogen stepdown. A double mutant ΔcdgSHΔcdgS had an additive effect over the single mutants in regulating heterocyst frequency, indicating that the two genes acted at different time points for heterocyst spacing. Biochemical and genetic data further showed that the functions of CdgSH and CdgS in the setup or maintenance of heterocyst frequency depended on their opposing effects on the intracellular levels of c-di-GMP. Finally, we demonstrated that heterocyst differentiation was completely inhibited when c-di-GMP levels became too high or too low. Together, these results indicate that the homeostasis of c-di-GMP level is important for heterocyst differentiation in Anabaena.
Collapse
|
23
|
Zhang CC, Chen ZM, Chen H. Skin abscesses, X-linked agammaglobulinaemia and spastic paraplegias in a male patient. Clin Exp Dermatol 2021; 47:617-619. [PMID: 34773274 DOI: 10.1111/ced.15013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/30/2022]
Abstract
We report a patient with X-linked agammaglobulinaemia and spastic paraplegias who developed skin abscesses. We highlight that dermatologists should consider the possibility of primary immunodeficiency when patients present with repeated skin infections, and should advise patients to be particularly careful about skin hygiene and avoid scratching.
Collapse
|
24
|
Liu J, Xing WY, Zhang JY, Zeng X, Yang Y, Zhang CC. Functions of the Essential Gene mraY in Cellular Morphogenesis and Development of the Filamentous Cyanobacterium Anabaena PCC 7120. Front Microbiol 2021; 12:765878. [PMID: 34745074 PMCID: PMC8566892 DOI: 10.3389/fmicb.2021.765878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022] Open
Abstract
Bacterial cell shape is determined by the peptidoglycan (PG) layer. The cyanobacterium Anabaena sp. PCC 7120 (Anabaena) is a filamentous strain with ovoid-shaped cells connected together with incomplete cell constriction. When deprived of combined nitrogen in the growth medium, about 5–10% of the cells differentiate into heterocysts, cells devoted to nitrogen fixation. It has been shown that PG synthesis is modulated during heterocyst development and some penicillin-binding proteins (PBPs) participating in PG synthesis are required for heterocyst morphogenesis or functioning. Anabaena has multiple PBPs with functional redundancy. In this study, in order to examine the function of PG synthesis and its relationship with heterocyst development, we created a conditional mutant of mraY, a gene necessary for the synthesis of the PG precursor, lipid I. We show that mraY is required for cell and filament integrity. Furthermore, when mraY expression was being limited, persistent septal PG synthetic activity was observed, resulting in increase in cell width. Under non-permissive conditions, filaments and cells were rapidly lysed, and no sign of heterocyst development within the time window allowed was detected after nitrogen starvation. When mraY expression was being limited, a high percentage of heterocyst doublets were found. These doublets are formed likely as a consequence of delayed cell division and persistent septal PG synthesis. MraY interacts with components of both the elongasome and the divisome, in particular those directly involved in PG synthesis, including HetF, which is required for both cell division and heterocyst formation.
Collapse
|
25
|
Wang L, Niu TC, Valladares A, Lin GM, Zhang JY, Herrero A, Chen WL, Zhang CC. The developmental regulator PatD modulates assembly of the cell-division protein FtsZ in the cyanobacterium Anabaena sp. PCC 7120. Environ Microbiol 2021; 23:4823-4837. [PMID: 34296514 DOI: 10.1111/1462-2920.15682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023]
Abstract
FtsZ is a tubulin-like GTPase that polymerizes to initiate the process of cell division in bacteria. Heterocysts are terminally differentiated cells of filamentous cyanobacteria that have lost the capacity for cell division and in which the ftsZ gene is downregulated. However, mechanisms of FtsZ regulation during heterocyst differentiation have been scarcely investigated. The patD gene is NtcA dependent and involved in the optimization of heterocyst frequency in Anabaena sp. PCC 7120. Here, we report that the inactivation of patD caused the formation of multiple FtsZ-rings in vegetative cells, cell enlargement, and the retention of peptidoglycan synthesis activity in heterocysts, whereas its ectopic expression resulted in aberrant FtsZ polymerization and cell division. PatD interacted with FtsZ, increased FtsZ precipitation in sedimentation assays, and promoted the formation of thick straight FtsZ bundles that differ from the toroidal aggregates formed by FtsZ alone. These results suggest that in the differentiating heterocysts, PatD interferes with the assembly of FtsZ. We propose that in Anabaena FtsZ is a bifunctional protein involved in both vegetative cell division and regulation of heterocyst differentiation. In the differentiating cells PatD-FtsZ interactions appear to set an FtsZ activity that is insufficient for cell division but optimal to foster differentiation.
Collapse
|