1
|
Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 1995; 184:39-51. [PMID: 7622868 DOI: 10.1016/0022-1759(95)00072-i] [Citation(s) in RCA: 3994] [Impact Index Per Article: 133.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the early stages of apoptosis changes occur at the cell surface, which until now have remained difficult to recognize. One of these plasma membrane alterations is the translocation of phosphatidylserine (PS) from the inner side of the plasma membrane to the outer layer, by which PS becomes exposed at the external surface of the cell. Annexin V is a Ca2+ dependent phospholipid-binding protein with high affinity for PS. Hence this protein can be used as a sensitive probe for PS exposure upon the cell membrane. Translocation of PS to the external cell surface is not unique to apoptosis, but occurs also during cell necrosis. The difference between these two forms of cell death is that during the initial stages of apoptosis the cell membrane remains intact, while at the very moment that necrosis occurs the cell membrane looses its integrity and becomes leaky. Therefore the measurement of Annexin V binding to the cell surface as indicative for apoptosis has to be performed in conjunction with a dye exclusion test to establish integrity of the cell membrane. This paper describes the results of such an assay, as obtained in cultured HSB-2 cells, rendered apoptotic by irradiation and in human lymphocytes, following dexamethasone treatment. Untreated and treated cells were evaluated for apoptosis by light microscopy, by measuring the amount of hypo-diploid cells using of DNA flow cytometry (FCM) and by DNA electrophoresis to establish whether or not DNA fragmentation had occurred. Annexin V binding was assessed using bivariate FCM, and cell staining was evaluated with fluorescein isothiocyanate (FITC)-labelled Annexin V (green fluorescence), simultaneously with dye exclusion of propidium iodide (PI) (negative for red fluorescence). The test described, discriminates intact cells (FITC-/PI-), apoptotic cells (FITC+/PI-) and necrotic cells (FITC+/PI+). In comparison with existing traditional tests the Annexin V assay is sensitive and easy to perform. The Annexin V assay offers the possibility of detecting early phases of apoptosis before the loss of cell membrane integrity and permits measurements of the kinetics of apoptotic death in relation to the cell cycle. More extensive FCM will allow discrimination between different cell subpopulations, that may or may not be involved in the apoptotic process.
Collapse
|
|
30 |
3994 |
2
|
Abstract
The term apoptosis or programmed cell death defines a genetically encoded cell death program, which is morphologically and biochemically distinct from necrosis or accidental cell death. The characteristic morphological signs of apoptosis (cellular shrinkage, membrane blebbing, nuclear condensation and fragmentation) are the final results of a complex biochemical cascade of events which is an integral part of physiological homeostasis. Techniques designed to identify, quantitate and characterize apoptosis are numerous, but flow cytometry (FCM) remains the methodology of choice to study the apoptotic cascade in relation to cell type, trigger and time. This review outlines the main stages of the apoptotic cascade together with current FCM methods. All FCM apoptosis assays described have a solid experimental basis and have been used successfully in basic research on molecular and biochemical mechanisms of apoptosis. In various clinical settings the ability to follow the apoptotic process in patient samples may offer the rationale for optimal treatment schedules.
Collapse
|
Review |
25 |
552 |
3
|
Leoni G, Neumann PA, Kamaly N, Quiros M, Nishio H, Jones HR, Sumagin R, Hilgarth RS, Alam A, Fredman G, Argyris I, Rijcken E, Kusters D, Reutelingsperger C, Perretti M, Parkos CA, Farokhzad OC, Neish AS, Nusrat A. Annexin A1-containing extracellular vesicles and polymeric nanoparticles promote epithelial wound repair. J Clin Invest 2015; 125:1215-27. [PMID: 25664854 DOI: 10.1172/jci76693] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 01/02/2015] [Indexed: 12/13/2022] Open
Abstract
Epithelial restitution is an essential process that is required to repair barrier function at mucosal surfaces following injury. Prolonged breaches in epithelial barrier function result in inflammation and further damage; therefore, a better understanding of the epithelial restitution process has potential for improving the development of therapeutics. In this work, we demonstrate that endogenous annexin A1 (ANXA1) is released as a component of extracellular vesicles (EVs) derived from intestinal epithelial cells, and these ANXA1-containing EVs activate wound repair circuits. Compared with healthy controls, patients with active inflammatory bowel disease had elevated levels of secreted ANXA1-containing EVs in sera, indicating that ANXA1-containing EVs are systemically distributed in response to the inflammatory process and could potentially serve as a biomarker of intestinal mucosal inflammation. Local intestinal delivery of an exogenous ANXA1 mimetic peptide (Ac2-26) encapsulated within targeted polymeric nanoparticles (Ac2-26 Col IV NPs) accelerated healing of murine colonic wounds after biopsy-induced injury. Moreover, one-time systemic administration of Ac2-26 Col IV NPs accelerated recovery following experimentally induced colitis. Together, our results suggest that local delivery of proresolving peptides encapsulated within nanoparticles may represent a potential therapeutic strategy for clinical situations characterized by chronic mucosal injury, such as is seen in patients with IBD.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
257 |
4
|
Leoni G, Alam A, Neumann PA, Lambeth JD, Cheng G, McCoy J, Hilgarth RS, Kundu K, Murthy N, Kusters D, Reutelingsperger C, Perretti M, Parkos CA, Neish AS, Nusrat A. Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair. J Clin Invest 2012; 123:443-54. [PMID: 23241962 DOI: 10.1172/jci65831] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/18/2012] [Indexed: 01/05/2023] Open
Abstract
N-formyl peptide receptors (FPRs) are critical regulators of host defense in phagocytes and are also expressed in epithelia. FPR signaling and function have been extensively studied in phagocytes, yet their functional biology in epithelia is poorly understood. We describe a novel intestinal epithelial FPR signaling pathway that is activated by an endogenous FPR ligand, annexin A1 (ANXA1), and its cleavage product Ac2-26, which mediate activation of ROS by an epithelial NADPH oxidase, NOX1. We show that epithelial cell migration was regulated by this signaling cascade through oxidative inactivation of the regulatory phosphatases PTEN and PTP-PEST, with consequent activation of focal adhesion kinase (FAK) and paxillin. In vivo studies using intestinal epithelial specific Nox1(-/-IEC) and AnxA1(-/-) mice demonstrated defects in intestinal mucosal wound repair, while systemic administration of ANXA1 promoted wound recovery in a NOX1-dependent fashion. Additionally, increased ANXA1 expression was observed in the intestinal epithelium and infiltrating leukocytes in the mucosa of ulcerative colitis patients compared with normal intestinal mucosa. Our findings delineate a novel epithelial FPR1/NOX1-dependent redox signaling pathway that promotes mucosal wound repair.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
238 |
5
|
Petsophonsakul P, Furmanik M, Forsythe R, Dweck M, Schurink GW, Natour E, Reutelingsperger C, Jacobs M, Mees B, Schurgers L. Role of Vascular Smooth Muscle Cell Phenotypic Switching and Calcification in Aortic Aneurysm Formation. Arterioscler Thromb Vasc Biol 2019; 39:1351-1368. [PMID: 31144989 DOI: 10.1161/atvbaha.119.312787] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Aortic aneurysm is a vascular disease whereby the ECM (extracellular matrix) of a blood vessel degenerates, leading to dilation and eventually vessel wall rupture. Recently, it was shown that calcification of the vessel wall is involved in both the initiation and progression of aneurysms. Changes in aortic wall structure that lead to aneurysm formation and vascular calcification are actively mediated by vascular smooth muscle cells. Vascular smooth muscle cells in a healthy vessel wall are termed contractile as they maintain vascular tone and remain quiescent. However, in pathological conditions they can dedifferentiate into a synthetic phenotype, whereby they secrete extracellular vesicles, proliferate, and migrate to repair injury. This process is called phenotypic switching and is often the first step in vascular pathology. Additionally, healthy vascular smooth muscle cells synthesize VKDPs (vitamin K-dependent proteins), which are involved in inhibition of vascular calcification. The metabolism of these proteins is known to be disrupted in vascular pathologies. In this review, we summarize the current literature on vascular smooth muscle cell phenotypic switching and vascular calcification in relation to aneurysm. Moreover, we address the role of vitamin K and VKDPs that are involved in vascular calcification and aneurysm. Visual Overview- An online visual overview is available for this article.
Collapse
|
Review |
6 |
228 |
6
|
Kietselaer BLJH, Reutelingsperger CPM, Heidendal GAK, Daemen MJAP, Mess WH, Hofstra L, Narula J. Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in patients with carotid-artery atherosclerosis. N Engl J Med 2004; 350:1472-3. [PMID: 15070807 DOI: 10.1056/nejm200404013501425] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
Clinical Trial |
21 |
188 |
7
|
Schlieper G, Schurgers L, Brandenburg V, Reutelingsperger C, Floege J. Vascular calcification in chronic kidney disease: an update. Nephrol Dial Transplant 2015; 31:31-9. [PMID: 25916871 DOI: 10.1093/ndt/gfv111] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/17/2015] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular calcification is both a risk factor and contributor to morbidity and mortality. Patients with chronic kidney disease (and/or diabetes) exhibit accelerated calcification of the intima, media, heart valves and likely the myocardium as well as the rare condition of calcific uraemic arteriolopathy (calciphylaxis). Pathomechanistically, an imbalance of promoters (e.g. calcium and phosphate) and inhibitors (e.g. fetuin-A and matrix Gla protein) is central in the development of calcification. Next to biochemical and proteinacous alterations, cellular processes are also involved in the pathogenesis. Vascular smooth muscle cells undergo osteochondrogenesis, excrete vesicles and show signs of senescence. Therapeutically, measures to prevent the initiation of calcification by correcting the imbalance of promoters and inhibitors appear to be essential. In contrast to prevention, therapeutic regression of cardiovascular calcification in humans has been rarely reported. Measures to enhance secondary prevention in patients with established cardiovascular calcifications are currently being tested in clinical trials.
Collapse
|
Journal Article |
10 |
174 |
8
|
Kolodgie FD, Petrov A, Virmani R, Narula N, Verjans JW, Weber DK, Hartung D, Steinmetz N, Vanderheyden JL, Vannan MA, Gold HK, Reutelingsperger CPM, Hofstra L, Narula J. Targeting of apoptotic macrophages and experimental atheroma with radiolabeled annexin V: a technique with potential for noninvasive imaging of vulnerable plaque. Circulation 2003; 108:3134-9. [PMID: 14676140 DOI: 10.1161/01.cir.0000105761.00573.50] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Apoptosis is common in advanced human atheroma and contributes to plaque instability. Because annexin V has a high affinity for exposed phosphatidylserine on apoptotic cells, radiolabeled annexin V may be used for noninvasive detection of apoptosis in atherosclerotic lesions. METHODS AND RESULTS Atherosclerotic plaques were produced in 5 rabbits by deendothelialization of the infradiaphragmatic aorta followed by 12 weeks of cholesterol diet; 5 controls were studied without manipulation. Animals were injected with human recombinant annexin V labeled with technetium-99m before imaging. Aortas were explanted for ex vivo imaging, macroautoradiography, and histological characterization of plaque. Radiolabeled annexin V cleared rapidly from the circulation (T1/2, alpha 9 and beta 46 minutes). There was intense uptake of radiolabel within lesions by 2 hours; no uptake was seen in controls. The results were confirmed in the ex vivo imaging of the explanted aorta. Quantitative annexin uptake was 9.3-fold higher in lesion versus nonlesion areas; the lesion-to-blood ratio was 3.0+/-0.37. Annexin uptake paralleled lesion severity and macrophage burden; no correlation was observed with smooth muscle cells. DNA fragmentation staining of apoptotic nuclei was increased in advanced lesions with evolving necrotic cores, predominantly in macrophages; the uptake of radiolabel correlated with the apoptotic index. CONCLUSIONS Because annexin V clears rapidly from blood and targets apoptotic macrophage population, it should constitute an attractive imaging agent for the noninvasive detection of unstable atherosclerotic plaques.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
22 |
171 |
9
|
van Genderen HO, Kenis H, Hofstra L, Narula J, Reutelingsperger CPM. Extracellular annexin A5: functions of phosphatidylserine-binding and two-dimensional crystallization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:953-63. [PMID: 18334229 DOI: 10.1016/j.bbamcr.2008.01.030] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 01/22/2008] [Accepted: 01/23/2008] [Indexed: 02/06/2023]
Abstract
In normal healthy cells phosphatidylserine is located in the inner leaflet of the plasma membrane. However, on activated platelets, dying cells and under specific circumstances also on various types of viable leukocytes phosphatidylserine is actively externalized to the outer leaflet of the plasma membrane. Annexin A5 has the ability to bind in a calcium-dependent manner to phosphatidylserine and to form a membrane-bound two-dimensional crystal lattice. Based on these abilities various functions for extracellular annexin A5 on the phosphatidylserine-expressing plasma membrane have been proposed. In this review we describe possible mechanisms for externalization of annexin A5 and various processes in which extracellular annexin A5 may play a role such as blood coagulation, apoptosis, phagocytosis and formation of plasma membrane-derived microparticles. We further highlight the recent discovery of internalization of extracellular annexin A5 by phosphatidylserine-expressing cells.
Collapse
|
Review |
17 |
159 |
10
|
Ferraro B, Leoni G, Hinkel R, Ormanns S, Paulin N, Ortega-Gomez A, Viola JR, de Jong R, Bongiovanni D, Bozoglu T, Maas SL, D'Amico M, Kessler T, Zeller T, Hristov M, Reutelingsperger C, Sager HB, Döring Y, Nahrendorf M, Kupatt C, Soehnlein O. Pro-Angiogenic Macrophage Phenotype to Promote Myocardial Repair. J Am Coll Cardiol 2020; 73:2990-3002. [PMID: 31196457 DOI: 10.1016/j.jacc.2019.03.503] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Heart failure following myocardial infarction (MI) remains one of the major causes of death worldwide, and its treatment is a crucial challenge of cardiovascular medicine. An attractive therapeutic strategy is to stimulate endogenous mechanisms of myocardial regeneration. OBJECTIVES This study evaluates the potential therapeutic treatment with annexin A1 (AnxA1) to induce cardiac repair after MI. METHODS AnxA1 knockout (AnxA1-/-) and wild-type mice underwent MI induced by ligation of the left anterior descending coronary artery. Cardiac functionality was assessed by longitudinal echocardiographic measurements. Histological, fluorescence-activated cell sorting, dot blot analysis, and in vitro/ex vivo studies were used to assess the myocardial neovascularization, macrophage content, and activity in response to AnxA1. RESULTS AnxA1-/- mice showed a reduced cardiac functionality and an expansion of proinflammatory macrophages in the ischemic area. Cardiac macrophages from AnxA1-/- mice exhibited a dramatically reduced ability to release the proangiogenic mediator vascular endothelial growth factor (VEGF)-A. However, AnxA1 treatment enhanced VEGF-A release from cardiac macrophages, and its delivery in vivo markedly improved cardiac performance. The positive effect of AnxA1 treatment on cardiac performance was abolished in wild-type mice transplanted with bone marrow derived from Cx3cr1creERT2Vegfflox/flox or in mice depleted of macrophages. Similarly, cardioprotective effects of AnxA1 were obtained in pigs in which full-length AnxA1 was overexpressed by use of a cardiotropic adeno-associated virus. CONCLUSIONS AnxA1 has a direct action on cardiac macrophage polarization toward a pro-angiogenic, reparative phenotype. AnxA1 stimulated cardiac macrophages to release high amounts of VEGF-A, thus inducing neovascularization and cardiac repair.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
128 |
11
|
Westenfeld R, Schäfer C, Krüger T, Haarmann C, Schurgers LJ, Reutelingsperger C, Ivanovski O, Drueke T, Massy ZA, Ketteler M, Floege J, Jahnen-Dechent W. Fetuin-A protects against atherosclerotic calcification in CKD. J Am Soc Nephrol 2009; 20:1264-74. [PMID: 19389852 DOI: 10.1681/asn.2008060572] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Reduced serum levels of the calcification inhibitor fetuin-A associate with increased cardiovascular mortality in dialysis patients. Fetuin-A-deficient mice display calcification of various tissues but notably not of the vasculature. This absence of vascular calcification may result from the protection of an intact endothelium, which becomes severely compromised in the setting of atherosclerosis. To test this hypothesis, we generated fetuin-A/apolipoprotein E (ApoE)-deficient mice and compared them with ApoE-deficient and wild-type mice with regard to atheroma formation and extraosseous calcification. We assigned mice to three treatment groups for 9 wk: (1) Standard diet, (2) high-phosphate diet, or (3) unilateral nephrectomy (causing chronic kidney disease [CKD]) plus high-phosphate diet. Serum urea, phosphate, and parathyroid hormone levels were similar in all genotypes after the interventions. Fetuin-A deficiency did not affect the extent of aortic lipid deposition, neointima formation, and coronary sclerosis observed with ApoE deficiency, but the combination of fetuin-A deficiency, hyperphosphatemia, and CKD led to a 15-fold increase in vascular calcification in this model of atherosclerosis. Fetuin-A deficiency almost exclusively promoted intimal rather than medial calcification of atheromatous lesions. High-phosphate diet and CKD also led to an increase in valvular calcification and aorta-associated apoptosis, with wild-type mice having the least, ApoE-deficient mice intermediate, and fetuin-A/ApoE-deficient mice the most. In addition, the combination of fetuin-A deficiency, high-phosphate diet, and CKD in ApoE-deficient mice greatly enhanced myocardial calcification, whereas the absence of fetuin-A did not affect the incidence of renal calcification. In conclusion, fetuin-A inhibits pathologic calcification in both the soft tissue and vasculature, even in the setting of atherosclerosis.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
127 |
12
|
Schutters K, Reutelingsperger C. Phosphatidylserine targeting for diagnosis and treatment of human diseases. Apoptosis 2010; 15:1072-82. [PMID: 20440562 PMCID: PMC2929432 DOI: 10.1007/s10495-010-0503-y] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cells are able to execute apoptosis by activating series of specific biochemical reactions. One of the most prominent characteristics of cell death is the externalization of phosphatidylserine (PS), which in healthy cells resides predominantly in the inner leaflet of the plasma membrane. These features have made PS-externalization a well-explored phenomenon to image cell death for diagnostic purposes. In addition, it was demonstrated that under certain conditions viable cells express PS at their surface such as endothelial cells of tumor blood vessels, stressed tumor cells and hypoxic cardiomyocytes. Hence, PS has become a potential target for therapeutic strategies aiming at Targeted Drug Delivery. In this review we highlight the biomarker PS and various PS-binding compounds that have been employed to target PS for diagnostic purposes. We emphasize the 35 kD human protein annexin A5, that has been developed as a Molecular Imaging agent to measure cell death in vitro, and non-invasively in vivo in animal models and in patients with cardiovascular diseases and cancer. Recently focus has shifted from diagnostic towards therapeutic applications employing annexin A5 in strategies to deliver drugs to cells that express PS at their surface.
Collapse
|
Review |
15 |
126 |
13
|
Furmanik M, Chatrou M, van Gorp R, Akbulut A, Willems B, Schmidt H, van Eys G, Bochaton-Piallat ML, Proudfoot D, Biessen E, Hedin U, Perisic L, Mees B, Shanahan C, Reutelingsperger C, Schurgers L. Reactive Oxygen-Forming Nox5 Links Vascular Smooth Muscle Cell Phenotypic Switching and Extracellular Vesicle-Mediated Vascular Calcification. Circ Res 2020; 127:911-927. [PMID: 32564697 DOI: 10.1161/circresaha.119.316159] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RATIONALE Vascular calcification, the formation of calcium phosphate crystals in the vessel wall, is mediated by vascular smooth muscle cells (VSMCs). However, the underlying molecular mechanisms remain elusive, precluding mechanism-based therapies. OBJECTIVE Phenotypic switching denotes a loss of contractile proteins and an increase in migration and proliferation, whereby VSMCs are termed synthetic. We examined how VSMC phenotypic switching influences vascular calcification and the possible role of the uniquely calcium-dependent reactive oxygen species (ROS)-forming Nox5 (NADPH oxidase 5). METHODS AND RESULTS In vitro cultures of synthetic VSMCs showed decreased expression of contractile markers CNN-1 (calponin 1), α-SMA (α-smooth muscle actin), and SM22-α (smooth muscle protein 22α) and an increase in synthetic marker S100A4 (S100 calcium binding protein A4) compared with contractile VSMCs. This was associated with increased calcification of synthetic cells in response to high extracellular Ca2+. Phenotypic switching was accompanied by increased levels of ROS and Ca2+-dependent Nox5 in synthetic VSMCs. Nox5 itself regulated VSMC phenotype as siRNA knockdown of Nox5 increased contractile marker expression and decreased calcification, while overexpression of Nox5 decreased contractile marker expression. ROS production in synthetic VSMCs was cytosolic Ca2+-dependent, in line with it being mediated by Nox5. Treatment of VSMCs with Ca2+ loaded extracellular vesicles (EVs) lead to an increase in cytosolic Ca2+. Inhibiting EV endocytosis with dynasore blocked the increase in cytosolic Ca2+ and VSMC calcification. Increased ROS production resulted in increased EV release and decreased phagocytosis by VSMCs. CONCLUSIONS We show here that contractile VSMCs are resistant to calcification and identify Nox5 as a key regulator of VSMC phenotypic switching. Additionally, we describe a new mechanism of Ca2+ uptake via EVs and show that Ca2+ induces ROS production in VSMCs via Nox5. ROS production is required for release of EVs, which promote calcification. Identifying molecular pathways that control Nox5 and VSMC-derived EVs provides potential targets to modulate vascular remodeling and calcification in the context of mineral imbalance. Graphic Abstract: A graphic abstract is available for this article.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
123 |
14
|
Kenis H, van Genderen H, Bennaghmouch A, Rinia HA, Frederik P, Narula J, Hofstra L, Reutelingsperger CPM. Cell Surface-expressed Phosphatidylserine and Annexin A5 Open a Novel Portal of Cell Entry. J Biol Chem 2004; 279:52623-9. [PMID: 15381697 DOI: 10.1074/jbc.m409009200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of phosphatidylserine (PtdSer) at the cell surface is part of the membrane dynamics of apoptosis. Expressed phosphatidylserine functions as an "eat me" flag toward phagocytes. Here, we report that the expressed phosphatidylserine forms part of a hitherto undescribed pinocytic pathway. Annexin A5, a phosphatidylserine-binding protein, binds to and polymerizes through protein-protein interactions on membrane patches expressing phosphatidylserine. The two-dimensional protein network of annexin A5 at the surface prevents apoptotic body formation without interfering with the progression of apoptosis as demonstrated by activation of caspase-3, PtdSer exposure, and DNA fragmentation. The annexin A5 protein network bends the membrane patch nanomechanically into the cell and elicits budding, endocytic vesicle formation, and cytoskeleton-dependent trafficking of the endocytic vesicle. Annexin A1, which binds to PtdSer without forming a two-dimensional protein network, does not induce the formation of endocytic vesicles. This novel pinocytic pathway differs from macropinocytosis, which is preceded by membrane ruffling and actin polymerization. We clearly showed that actin polymerization is not involved in budding and endocytic vesicle formation but is required for intracellular trafficking. The phosphatidylserine-annexin A5-mediated pinocytic pathway is not restricted to cells in apoptosis. We demonstrated that living tumor cells can take up substances through this novel portal of cell entry. This opens new avenues for targeted drug delivery and cell entry.
Collapse
|
|
21 |
119 |
15
|
Liu X, Arfman T, Wichapong K, Reutelingsperger CPM, Voorberg J, Nicolaes GAF. PAD4 takes charge during neutrophil activation: Impact of PAD4 mediated NET formation on immune-mediated disease. J Thromb Haemost 2021; 19:1607-1617. [PMID: 33773016 PMCID: PMC8360066 DOI: 10.1111/jth.15313] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Peptidyl arginine deiminase 4 (PAD4) is an enzyme that converts arginine into citrulline. PAD4 is expressed in neutrophils that, when activated, can drive the formation of neutrophil extracellular traps (NETs). Uncontrolled activation of PAD4 and subsequent citrullination of proteins is increasingly recognized as a driver of (auto)immune diseases. Currently, our understanding of PAD4 structure-function relationships and activity control in vivo is incomplete. AIMS To provide the current state-of-the-art on PAD4 structure-activity relationships and involvement of PAD4 in autoimmune disorders as well as in thrombo-inflammatory disease. MATERIALS & METHODS Literature review and molecular modelling Results: In this review, we used molecular modelling to generate a three-dimensional structure of the complete PAD4 molecule. Using our model, we discuss the catalytic conversion of the arginine substrate to citrulline. Besides mechanistic insight into PAD4 function, we give an overview of biological functions of PAD4 and mechanisms that influence its activation. In addition, we discuss the crucial role of PAD4-mediated citrullination of histones during the formation of NETs. Subsequently, we focus on the role of PAD4-mediated NET formation and its role in pathogenesis of rheumatoid arthritis, sepsis and (immune-)thrombosis. Finally, we summarize current efforts to design different classes of PAD4 inhibitors that are being developed for improved treatment of autoimmune disorders as well as thrombo-inflammatory disease. DISCUSSION Advances in PAD4 structure-function are still necessary to gain a complete insight in mechanisms that control PAD4 activity in vivo. The involvement of PAD4 in several diseases signifies the need for a PAD4 inhibitor. Although progress has been made to produce an isotype specific and potent PAD4 inhibitor, currently no PAD4 inhibitor is ready for clinical use. CONCLUSION More research into PAD4 structure and function and into the regulation of its activity is required for the development of PAD4 specific inhibitors that may prove vital to combat and prevent autoimmune disorders and (thrombo)inflammatory disease.
Collapse
|
Review |
4 |
112 |
16
|
Maggioli E, McArthur S, Mauro C, Kieswich J, Kusters DHM, Reutelingsperger CPM, Yaqoob M, Solito E. Estrogen protects the blood-brain barrier from inflammation-induced disruption and increased lymphocyte trafficking. Brain Behav Immun 2016; 51:212-222. [PMID: 26321046 DOI: 10.1016/j.bbi.2015.08.020] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/19/2015] [Accepted: 08/27/2015] [Indexed: 12/11/2022] Open
Abstract
Sex differences have been widely reported in neuroinflammatory disorders, focusing on the contributory role of estrogen. The microvascular endothelium of the brain is a critical component of the blood-brain barrier (BBB) and it is recognized as a major interface for communication between the periphery and the brain. As such, the cerebral capillary endothelium represents an important target for the peripheral estrogen neuroprotective functions, leading us to hypothesize that estrogen can limit BBB breakdown following the onset of peripheral inflammation. Comparison of male and female murine responses to peripheral LPS challenge revealed a short-term inflammation-induced deficit in BBB integrity in males that was not apparent in young females, but was notable in older, reproductively senescent females. Importantly, ovariectomy and hence estrogen loss recapitulated an aged phenotype in young females, which was reversible upon estradiol replacement. Using a well-established model of human cerebrovascular endothelial cells we investigated the effects of estradiol upon key barrier features, namely paracellular permeability, transendothelial electrical resistance, tight junction integrity and lymphocyte transmigration under basal and inflammatory conditions, modeled by treatment with TNFα and IFNγ. In all cases estradiol prevented inflammation-induced defects in barrier function, action mediated in large part through up-regulation of the central coordinator of tight junction integrity, annexin A1. The key role of this protein was then further confirmed in studies of human or murine annexin A1 genetic ablation models. Together, our data provide novel mechanisms for the protective effects of estrogen, and enhance our understanding of the beneficial role it plays in neurovascular/neuroimmune disease.
Collapse
|
|
9 |
111 |
17
|
van Heerde WL, de Groot PG, Reutelingsperger CPM. The Complexity of the Phospholipid Binding Protein Annexin V. Thromb Haemost 2018. [DOI: 10.1055/s-0038-1653747] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
|
7 |
107 |
18
|
van Tilborg GAF, Mulder WJM, Deckers N, Storm G, Reutelingsperger CPM, Strijkers GJ, Nicolay K. Annexin A5-Functionalized Bimodal Lipid-Based Contrast Agents for the Detection of Apoptosis. Bioconjug Chem 2006; 17:741-9. [PMID: 16704213 DOI: 10.1021/bc0600259] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Apoptosis, or programmed cell death, plays an important role in the etiology of a variety of diseases, including cancer and myocardial infarction. Visualization of apoptosis would allow both early detection of therapy efficiency and evaluation of disease progression. To that aim, we synthesized two types of lipid-based bimodal contrast agents that enable the detection of apoptotic cells with both MRI and optical techniques. MR contrast was provided either by entrapment of iron oxide particles within pegylated micelles or by incorporation of Gd-DTPA-bis(stearylamide) (Gd-DTPA-BSA) lipids within the lipid bilayer of pegylated liposomes. The resulting contrast agents were approximately 10 and 100 nm in diameter, respectively. Additional fluorescent lipids were incorporated in the lipid (bi)layer of the contrast agents to allow parallel detection with optical methods. Multiple human recombinant annexin A5 molecules were covalently coupled to introduce specificity for apoptotic cells. Both annexin A5-conjugated contrast agents were shown to significantly increase the relaxation rates of apoptotic cell pellets compared to untreated control cells and apoptotic cells that were treated with nonfunctionalized nanoparticles. Increased relaxation rates were confirmed to originate from association of the contrast agents to apoptotic cells by confocal microscopy. The targeted nanoparticles presented in this study, which differ both in size and in magnetic properties, may have applications for the in vivo detection of apoptosis.
Collapse
|
|
19 |
91 |
19
|
van Tilborg GAF, Vucic E, Strijkers GJ, Cormode DP, Mani V, Skajaa T, Reutelingsperger CPM, Fayad ZA, Mulder WJM, Nicolay K. Annexin A5-functionalized bimodal nanoparticles for MRI and fluorescence imaging of atherosclerotic plaques. Bioconjug Chem 2011; 21:1794-803. [PMID: 20804153 DOI: 10.1021/bc100091q] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Apoptosis and macrophage burden are believed to correlate with atherosclerotic plaque vulnerability and are therefore considered important diagnostic and therapeutic targets for atherosclerosis. These cell types are characterized by the exposure of phosphatidylserine (PS) at their surface. In the present study, we developed and applied a small micellar fluorescent annexin A5-functionalized nanoparticle for noninvasive magnetic resonance imaging (MRI) of PS exposing cells in atherosclerotic lesions. Annexin A5-mediated target-specificity was confirmed with ellipsometry and in vitro binding to apoptotic Jurkat cells. In vivo T(1)-weighted MRI of the abdominal aorta in atherosclerotic ApoE(-/-) mice revealed enhanced uptake of the annexin A5-micelles as compared to control-micelles, which was corroborated with ex vivo near-infrared fluorescence images of excised whole aortas. Confocal laser scanning microscopy (CLSM) demonstrated that the targeted agent was associated with macrophages and apoptotic cells, whereas the nonspecific control agent showed no clear uptake by such cells. In conclusion, the annexin A5-conjugated bimodal micelles displayed potential for noninvasive assessment of cell types that are considered to significantly contribute to plaque instability and therefore may be of great value in the assessment of atherosclerotic lesion phenotype.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
89 |
20
|
Willems BAG, Vermeer C, Reutelingsperger CPM, Schurgers LJ. The realm of vitamin K dependent proteins: shifting from coagulation toward calcification. Mol Nutr Food Res 2014; 58:1620-35. [PMID: 24668744 DOI: 10.1002/mnfr.201300743] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/27/2013] [Accepted: 01/01/2014] [Indexed: 12/20/2022]
Abstract
In the past few decades vitamin K has emerged from a single-function "haemostasis vitamin" to a "multi-function vitamin." The use of vitamin K antagonists (VKA) inevitably showed that the inhibition was not restricted to vitamin K dependent coagulation factors but also synthesis of functional extrahepatic vitamin K dependent proteins (VKDPs), thereby eliciting undesired side effects. Vascular calcification is one of the recently revealed detrimental effects of VKA. The discovery that VKDPs are involved in vascular calcification has propelled our mechanistic understanding of this process and has opened novel avenues for diagnosis and treatment. This review addresses mechanisms of VKDPs and their significance for physiological and pathological calcification.
Collapse
|
Review |
11 |
82 |
21
|
Locatelli I, Sutti S, Jindal A, Vacchiano M, Bozzola C, Reutelingsperger C, Kusters D, Bena S, Parola M, Paternostro C, Bugianesi E, McArthur S, Albano E, Perretti M. Endogenous annexin A1 is a novel protective determinant in nonalcoholic steatohepatitis in mice. Hepatology 2014; 60:531-544. [PMID: 24668763 PMCID: PMC4258084 DOI: 10.1002/hep.27141] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/03/2014] [Accepted: 03/19/2014] [Indexed: 12/22/2022]
Abstract
UNLABELLED Annexin A1 (AnxA1) is an effector of the resolution of inflammation and is highly effective in terminating acute inflammatory responses. However, its role in chronic settings is less investigated. Because changes in AnxA1 expression within adipose tissue characterize obesity in mice and humans, we queried a possible role for AnxA1 in the pathogenesis of nonalcoholic steatohepatitis (NASH), a disease commonly associated with obesity. NASH was induced in wild-type (WT) and AnxA1 knockout (AnxA1 KO) C57BL/6 mice by feeding a methionine-choline deficient (MCD) diet up to 8 weeks. In MCD-fed WT mice, hepatic AnxA1 increased in parallel with progression of liver injury. This mediator was also detected in liver biopsies from patients with NASH and its degree of expression inversely correlated with the extent of fibrosis. In both humans and rodents, AnxA1 production was selectively localized in liver macrophages. NASH in AnxA1 KO mice was characterized by enhanced lobular inflammation resulting from increased macrophage recruitment and exacerbation of the M1 phenotype. Consistently, in vitro addition of recombinant AnxA1 to macrophages isolated from NASH livers down-modulated M1 polarization through stimulation of interleukin-10 production. Furthermore, the degree of hepatic fibrosis was enhanced in MCD-fed AnxA1 KO mice, an effect associated with augmented liver production of the profibrotic lectin, galectin-3. Accordingly, AnxA1 addition to isolated hepatic macrophages reduced galectin-3 expression. CONCLUSIONS Macrophage-derived AnxA1 plays a functional role in modulating hepatic inflammation and fibrogenesis during NASH progression, suggesting the possible use of AnxA1 analogs for therapeutic control of this disease.
Collapse
|
research-article |
11 |
80 |
22
|
Overbeeke R, Steffens-Nakken H, Vermes I, Reutelingsperger C, Haanen C. Early features of apoptosis detected by four different flow cytometry assays. Apoptosis 2003; 3:115-21. [PMID: 14646509 DOI: 10.1023/a:1009649025439] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The objective of this study was to investigate the sensitivity, specificity and reproducibility of some frequently used apoptosis assays. The degree of apoptosis was tested in two T-lymphoblastoid cell lines, HSB and Jurkat, in which apoptosis was induced by ionizing radiation. HSB and Jurkat samples were taken before, and 0, 2, 4, 6, 8 and 24 h after irradiation with 6 and 10 Gray, or with 10 and 14 Gray, respectively. Four frequently used flow cytometric techniques were evaluated: (i) Annexin V/Propidium Iodide assay, detecting the translocation of phosphatidylserine to the outer leaflet of the plasma membrane, simultaneously with preservation of the membrane integrity; (ii) Terminal deoxynucleotidyl Transferase (TdT) Uridine triphosphate (UTP) nick end labelling (TUNEL), revealing the presence of DNA strand breaks; (iii) DNA-flow cytometry, measuring DNA-stainability (DNA-fragmentation assay) and (iv) Phycoerythrin-labelled (PE) Apo2.7-assay, a monoclonal antibody against 7A6 antigen, a protein, which becomes exposed upon the mitochondrial membrane during apoptosis. As a general standard for identifying that apoptosis had occurred, the cells were assessed for the presence of DNA-laddering on agar gel electrophoresis and by demonstration of characteristic cell morphology. Results were as follows: Fluorescein Isothiocyanate (FITC)-labelled Annexin V/Propidium iodide flow cytometry appeared to be the most sensitive, the most specific and the most user-friendly test for measurement of apoptosis of cells in culture conditions in suspension. The expression of 7A6 antigen on the mitochondrial membrane appeared to be not specific for apoptotic cell death.
Collapse
|
Journal Article |
22 |
72 |
23
|
van Genderen H, Kenis H, Lux P, Ungeth L, Maassen C, Deckers N, Narula J, Hofstra L, Reutelingsperger C. In vitro measurement of cell death with the annexin A5 affinity assay. Nat Protoc 2007; 1:363-7. [PMID: 17406257 DOI: 10.1038/nprot.2006.55] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One of the hallmarks of cell death is the cell surface-expression of phosphatidylserine. Expression of phosphatidylserine at the cell surface can be measured in vitro with the phosphatidylserine-binding protein annexin A5 conjugated to fluorochromes. This measurement can be made by flow cytometry or by confocal scanning-laser microscopy. The annexin A5 affinity assay comprises the incubation of cells stimulated to execute cell death with fluorescence-labeled annexin A5 and propidium iodide. Living cells are annexin A5-negative and propidium iodide negative, cells in the early phases of cell death are annexin A5 positive-and propidium iodide-negative, and secondary necrotic cells are annexin A5-positive and propidium iodide-positive. The entire procedure takes about 30 minutes for flow cytometry and 45 minutes for confocal scanning-laser microscopy. Various precautions and considerations are discussed further in the protocol described here.
Collapse
|
Journal Article |
18 |
72 |
24
|
Prinzen L, Miserus RJJHM, Dirksen A, Hackeng TM, Deckers N, Bitsch NJ, Megens RTA, Douma K, Heemskerk JW, Kooi ME, Frederik PM, Slaaf DW, van Zandvoort MAMJ, Reutelingsperger CPM. Optical and magnetic resonance imaging of cell death and platelet activation using annexin a5-functionalized quantum dots. NANO LETTERS 2007; 7:93-100. [PMID: 17212446 DOI: 10.1021/nl062226r] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A quantum-dot-based nanoparticle is presented, allowing visualization of cell death and activated platelets with fluorescence imaging and MRI. The particle exhibits intense fluorescence and a large MR relaxivity (r1) of 3000-4500 mM-1 s-1 per nanoparticle due to a newly designed construct increasing the gadolinium-DTPA load. The nanoparticle is suitable for both anatomic and subcellular imaging of structures in the vessel wall and is a promising bimodal contrast agent for future in vivo imaging studies.
Collapse
|
|
18 |
71 |
25
|
Kenis H, Zandbergen HR, Hofstra L, Petrov AD, Dumont EA, Blankenberg FD, Haider N, Bitsch N, Gijbels M, Verjans JWH, Narula N, Narula J, Reutelingsperger CPM. Annexin A5 uptake in ischemic myocardium: demonstration of reversible phosphatidylserine externalization and feasibility of radionuclide imaging. J Nucl Med 2010; 51:259-67. [PMID: 20124049 DOI: 10.2967/jnumed.109.068429] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Ischemic insult to the myocardium is associated with cardiomyocyte apoptosis. Because apoptotic cell death is characterized by phosphatidylserine externalization on cell membrane and annexin-A5 (AA5) avidly binds to phosphatidylserine, we hypothesized that radiolabeled AA5 should be able to identify the regions of myocardial ischemia. METHODS Models of brief myocardial ischemia by the occlusion of the coronary artery for 10 min (I-10) and reperfusion for 180 min (R-180) for the detection of phosphatidylserine exteriorization using (99m)Tc-labeled AA5 and gamma-imaging were produced in rabbits. (99m)Tc-AA5 uptake after brief ischemia was compared with an I-40/R-180 infarct model. Histologic characterization of both myocardial necrosis and apoptosis was performed in ischemia and infarct models. Phosphatidylserine exteriorization was also studied in a mouse model, and the dynamics and kinetics of phosphatidylserine exposure were assessed using unlabeled recombinant AA5 and AA5 labeled with biotin, Oregon Green, or Alexa 568. Appropriate controls were established. RESULTS Phosphatidylserine exposure after ischemia in the rabbit heart could be detected by radionuclide imaging with (99m)Tc-AA5. Pathologic characterization of the explanted rabbit hearts did not show apoptosis or necrosis. Homogenization and ultracentrifugation of the ischemic myocardial tissue from rabbit hearts recovered two thirds of the radiolabeled AA5 from the cytoplasmic compartment. Murine experiments demonstrated that the cardiomyocytes expressed phosphatidylserine on their cell surface after an ischemic insult of 5 min. Phosphatidylserine exposure occurred continuously for at least 6 h after solitary ischemic insult. AA5 targeted the exposed phosphatidylserine on cardiomyocytes; AA5 was internalized into cytoplasmic vesicles within 10-30 min. Twenty-four hours after ischemia, cardiomyocytes with internalized AA5 had restored phosphatidylserine asymmetry of the sarcolemma, and no detectable phosphatidylserine remained on the cell surface. The preadministration of a pan-caspase inhibitor, zVAD-fmk, prevented phosphatidylserine exposure after ischemia. CONCLUSIONS After a single episode of ischemia, cardiomyocytes express phosphatidylserine, which is amenable to targeting by AA5, for at least 6 h. Phosphatidylserine exposure is transient and internalized in cytoplasmic vesicles after AA5 binding, indicating the reversibility of the apoptotic process.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
69 |