1
|
Eatough DJ, Bhardwaj N, Cropper PM, Cary RA, Hansen JC. Formation of secondary organic material from gaseous precursors in wood smoke. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2022; 72:1231-1240. [PMID: 36318720 DOI: 10.1080/10962247.2022.2126554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The apportionment of the contribution of wood smoke emitted particles to the total concentration of particulate matter in a region has been greatly aided by the development of new analytical methods. These analytical methods quantitatively determine organic marker compounds unique to wood combustion such as levoglucosan and dehydroabietic acid. These markers have generally been determined in 24-hour averaged samples. We have developed an instrument based on the collection of particles on an inert filter, desorption of the organic material in an inert atmosphere with subsequent GC separation and MS detection of the desorbed compounds. The GC-MS Organic Aerosol Monitor (OAM) instrument has been used in three field studies. An unexpected finding from these studies was the quantification of the contribution of secondary organic aerosols from gases present in wood smoke in addition to primary wood smoke emitted particles. The identification of this secondary material was made possible by the collection of hourly averaged data that allowed for the time patterns of black carbon, organic material, and wood smoke marker compounds to be included and compared in a Positive Matrix Factorization (PMF) analysis. Most of the organic markers associated with wood smoke (levoglucosan, stearic acid and dehydroabietic acid) are associated with primary wood smoke emissions, but a fraction of the levoglucosan and stearic acid are also associated with secondary organic material formed from gaseous precursors in wood smoke. Additionally, this secondary material was shown to be present in each in of the three urban area where wood smoke burning occurs. There is a need for additional studies to better understand the contribution of secondary particulate formation from both urban and wildfires.Implications: This paper presents results from three field studies which show that in addition to the formation of primary particulate matter from the combustion of wood smoke and secondary particulate matter is also formed from the gaseous compounds emitted with the wood smoke. This material is identified in the studies of wood combustion reported here by the identification and quantification of specific organic marker compounds related to wood combustion and is shown to and represents a contributor nearly as large as the primary emitted material and better quantifying the impact of wood combustion on airborne fine particulate matter.
Collapse
|
2
|
Eatough DJ, Cropper P, Keeton W, Burrell E, Hansen JC, Farber R, Zack J, Cary RA, Hopke PK. Apportionment of PM 2.5 adjacent to the I-710 Harbor Freeway in Long Beach, CA. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2020; 70:260-282. [PMID: 31951805 DOI: 10.1080/10962247.2019.1705436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
During August and September 2012, a study was conducted to determine the sources of PM2.5 adjacent to the I-710 Long Beach Freeway. The site is directly affected by the emissions from heavy diesel traffic flowing from major container ports about 10 km south of the sampling site. Hourly average data were obtained for particulate species including PM2.5, black carbon and UV absorbing carbon, EC, fine particulate nonvolatile and semi-volatile organic material (NVOM and SVOM), sulfate, nitrate, chloride, ammonium ion, and Na ion, and for related factors including O3, CO, NOX, SO2, and total traffic flow on the I-710. A total of 520 hourly averaged data sets with 15 measured variables were analyzed by EPA-PMF v5.0. The data were best described by a 10-factor solution. Based on the composition and diurnal patterns of the factors, they were assigned to three diesel-related factors (two of which appeared to represent traffic from the ports and one general freeway diesel factor), a light-duty, spark-ignition vehicle-related factor, three secondary factors (one of which was associated with O3 formation processes), and three factors dominated by sulfate, SO2, and chloride, respectively. The diurnal patterns for these last three factors are strongly correlated. Meteorological and refinery upset data indicate that they are associated with emissions from a nearby refinery. The results of the PMF analysis were combined with nephelometer light scattering, corrected for coarse particle scattering and estimated aerosol water content in a multilinear regression analysis to identify visibility degradation sources. Major contributors were the aerosol water content, and the secondary PMF factors associated with either Nitrate and NVOM or NVOM and SVOM. The use of hourly average data made possible the identification of factors associated with gasoline vehicle emissions and both port and non-port diesel emissions.Implications: Hourly averaged data were obtained for PM2.5, its components and factors related to primary emissions and the formation of secondary material at a near freeway sampling location adjacent to the I-710 freeway just south of the Long Beach Boulevard entrance and 10 km north of the Ports of Long Beach and Los Angeles. The major objective of the study was to determine the impact of traffic from the ports at the monitoring site. This manuscript reports on the PMF analysis of the data set. Factors related to both diesel traffic originating from the ports and diesel traffic from non-port origins were identified. The diesel traffic originating from the ports was responsible for 9% of the total traffic and 95% of the BC measured at the sampling site. The non-port diesel traffic was responsible for 15% of the total traffic and 5% of the BC. While the Port 1 diesel traffic coming from the ports contributed a large fraction of the BC, this source contributed only 2% of the CO and 5% of the NOX at the sampling site. The impact of these traffic sources on light scattering was also small. Analysis of sources of sulfate and SO2 at the sampling site indicated that these species did not come from port activities of ships at or approaching the port, but rather from upset flare events at a nearby oil refinery.
Collapse
|
3
|
Cropper PM, Eatough DJ, Overson DK, Hansen JC, Caka F, Cary RA. Use of a gas chromatography-mass spectrometry organic aerosol monitor for in-field detection of fine particulate organic compounds in source apportionment. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2018; 68:390-402. [PMID: 28837409 DOI: 10.1080/10962247.2017.1363095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
UNLABELLED A study was conducted on the Brigham Young University campus during January and February 2015 to identify winter-time sources of fine particulate material in Utah Valley, Utah. Fine particulate mass and components and related gas-phase species were all measured on an hourly averaged basis. Light scattering was also measured during the study. Included in the sampling was the first-time source apportionment application of a new monitoring instrument for the measurement of fine particulate organic marker compounds on an hourly averaged basis. Organic marker compounds measured included levoglucosan, dehydroabietic acid, stearic acid, pyrene, and anthracene. A total of 248 hourly averaged data sets were available for a positive matrix factorization (PMF) analysis of sources of both primary and secondary fine particulate material. A total of nine factors were identified. The presence of wood smoke emissions was associated with levoglucosan, dehydroabietic acid, and pyrene markers. Fine particulate secondary nitrate, secondary organic material, and wood smoke accounted for 90% of the fine particulate material. Fine particle light scattering was dominated by sources associated with wood smoke and secondary ammonium nitrate with associated modeled fine particulate water. IMPLICATIONS The identification of sources and secondary formation pathways leading to observed levels of PM2.5 (particulate matter with an aerodynmaic diameter <2.5 μm) is important in making regulatory decisions on pollution control. The use of organic marker compounds in this assessment has proven useful; however, data obtained on a daily, or longer, sampling schedule limit the value of the information because diurnal changes associated with emissions and secondary aerosol formation cannot be identified. A new instrument, the gas chromtography-mass spectrometry (GC-MS) organic aerosol monitor, allows for the determination on these compounds on an hourly averaged basis. The demonstrated potential value of hourly averaged data in a source apportionment analysis indicates that significant improvement in the data used for making regulatory decisions is possible.
Collapse
|
4
|
Hand JL, Eatough DJ. Introduction to a special grouping of papers from the 2016 A&WMA Specialty Conference on Atmospheric Optics: Aerosols, Visibility, and the Radiative Balance. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2018; 68:389. [PMID: 29723134 DOI: 10.1080/10962247.2018.1454821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
|
5
|
Kuprov R, Eatough DJ, Cruickshank T, Olson N, Cropper PM, Hansen JC. Composition and secondary formation of fine particulate matter in the Salt Lake Valley: winter 2009. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2014; 64:957-69. [PMID: 25185397 DOI: 10.1080/10962247.2014.903878] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Under the National Ambient Air Quality Standards (NAAQS), put in place as a result of the Clean Air Amendments of 1990, three regions in the state of Utah are in violation of the NAAQS for PM10 and PM2.5 (Salt Lake County, Ogden City, and Utah County). These regions are susceptible to strong inversions that can persist for days to weeks. This meteorology, coupled with the metropolitan nature of these regions, contributes to its violation of the NAAQS for PM during the winter. During January-February 2009, 1-hr averaged concentrations of PM10-2.5, PM2.5, NO(x), NO2, NO, O3, CO, and NH3 were measured. Particulate-phase nitrate, nitrite, and sulfate and gas-phase HONO, HNO3, and SO2 were also measured on a 1-hr average basis. The results indicate that ammonium nitrate averages 40% of the total PM2.5 mass in the absence of inversions and up to 69% during strong inversions. Also, the formation of ammonium nitrate is nitric acid limited. Overall, the lower boundary layer in the Salt Lake Valley appears to be oxidant and volatile organic carbon (VOC) limited with respect to ozone formation. The most effective way to reduce ammonium nitrate secondary particle formation during the inversions period is to reduce NO(x) emissions. However, a decrease in NO(x) will increase ozone concentrations. A better definition of the complete ozone isopleths would better inform this decision. Implications: Monitoring of air pollution constituents in Salt Lake City, UT, during periods in which PM2.5 concentrations exceeded the NAAQS, reveals that secondary aerosol formation for this region is NO(x) limited. Therefore, NO(x) emissions should be targeted in order to reduce secondary particle formation and PM2.5. Data also indicate that the highest concentrations of sulfur dioxide are associated with winds from the north-northwest, the location of several small refineries.
Collapse
|
6
|
Cropper PM, Hansen JC, Eatough DJ. Measurement of light scattering in an urban area with a nephelometer and PM2.5 FDMS TEOM monitor: accounting for the effect of water. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2013; 63:1004-1011. [PMID: 24151675 DOI: 10.1080/10962247.2013.770421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The US. Environmental Protection Agency (EPA) has proposed a new secondary standard based on visibility in urban areas. The proposed standard will be based on light extinction, calculated from 24-hr averaged measurements. It would be desirable to base the standard on a shorter averaging time to better represent human perception of visibility This could be accomplished by either an estimation of extinction from semicontinuous particulate matter (PM) data or direct measurement of scattering and absorption. To this end we have compared 1-hr measurements of fine plus coarse particulate scattering using a nephelometer along with an estimate of absorption from aethalometer measurements. The study took place in Lindon, UT, during February and March 2012. The nephelometer measurements were corrected for coarse particle scattering and compared to the Filter Dynamic Measurement System (FDMS) tapered element oscillating microbalance monitor (TEOM) PM2.5 measurements. The two measurements agreed with a mass scattering coefficient of 3.3 +/- 0.3 m2/g at relative humidity below 80%. However at higher humidity, the nephelometer gave higher scattering results due to water absorbed by ammonium nitrate and ammonium sulfate in the particles. This particle-associated water is not measured by the FDMS TEOM. The FDMS TEOM data could be corrected for this difference using appropriate IMPROVE protocols if the particle composition is known. However a better approach may be to use a particle measurement system that allows for semicontinuous measurements but also measures particle bound water Data are presented from a 2003 study in Rubidoux, CA, showing how this could be accomplished using a Grimm model 1100 aerosol spectrometer or comparable instrument.
Collapse
|
7
|
Hopke PK, Eatough DJ. Introduction to a special grouping of papers from the 2012 A&WMA International Specialty Conference, Aerosol and Atmospheric Optics: Visibility and Air Pollution. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2013; 63:1003. [PMID: 24151674 DOI: 10.1080/10962247.2013.814987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
8
|
Kuprov RY, Buck D, Pope CA, Eatough DJ, Hansen JC. Design and characterization of a two-stage human subject exposure chamber. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2011; 61:864-871. [PMID: 21874958 DOI: 10.3155/1047-3289.61.8.864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A human subject exposure chamber, designed to hold six to eight subjects, coupled to an approximately 30-m3 Teflon reaction bag was designed and built to provide exposures that mimic the production and photochemical oxidation of atmospheric pollutants resulting from the combustion of coal or wood from a stove. The combustion products are introduced into the Teflon bag under atmospheric conditions. Photochemical oxidation of this mixture is accomplished by exposure to tropospheric sun-like radiation from an array of ultraviolet and black lamps. The aerosol in the Teflon reaction bag is then transferred into the exposure room to maintain a constant, lower exposure level. Continuous and semicontinuous monitoring of the gas and particulate matter (PM) pollution in the exposure room and the reaction bag is accomplished using a suite of instruments. This suite of instruments allows for the measurement of the concentrations of total and nonvolatile PM, nitric oxide, nitrogen dioxide, carbon monoxide, carbon dioxide, and ozone. The concentration of the particles was monitored by an R&P tapered element oscillating microbalance monitor. The chemical composition of the PM and its morphological characterization is accomplished by collecting samples in filter packs and conducting ion chromatography, elemental X-ray fluorescence, and scanning electron microscopy analyses. The concentration and composition of emissions from combustion of wood and coal is described. The results of this study suggest that although the bulk compositions of particulate emissions from the combustion of coal or wood in a stove have many similarities, the wood smoke aerosol is photochemically reactive, whereas the coal smoke aerosol is not.
Collapse
|
9
|
Pope CA, Hansen JC, Kuprov R, Sanders MD, Anderson MN, Eatough DJ. Vascular function and short-term exposure to fine particulate air pollution. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2011; 61:858-63. [PMID: 21874957 DOI: 10.3155/1047-3289.61.8.858] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Exposure to fine particulate air pollution has been implicated as a risk factor for cardiopulmonary disease and mortality. Proposed biological pathways imply that particle-induced pulmonary and systemic inflammation play a role in activating the vascular endothelium and altering vascular function. Potential effects of fine particulate pollution on vascular function are explored using controlled chamber exposure and uncontrolled ambient exposure. Research subjects included four panels with a total of 26 healthy nonsmoking young adults. On two study visits, at least 7 days apart, subjects spent 3 hr in a controlled-exposure chamber exposed to 150-200 microg/m3 of fine particles generated from coal or wood combustion and 3 hr in a clean room, with exposure and nonexposure periods alternated between visits. Baseline, postexposure, and post-clean room reactive hyperemia-peripheral arterial tonometry (RH-PAT) was conducted. A microvascular responsiveness index, defined as the log of the RH-PAT ratio, was calculated. There was no contemporaneous vascular response to the few hours of controlled exposure. Declines in vascular response were associated with elevated ambient exposures for the previous 2 days, especially for female subjects. Cumulative exposure to real-life fine particulate pollution may affect vascular function. More research is needed to determine the roles of age and gender, the effect of pollution sources, the importance of cumulative exposure over a few days versus a few hours, and the lag time between exposure and response.
Collapse
|
10
|
Hansen JC, Woolwine WR, Bates BL, Clark JM, Kuprov RY, Mukherjee P, Murray JA, Simmons MA, Waite MF, Eatough NL, Eatough DJ, Long R, Grover BD. Semicontinuous PM2.5 and PM10 mass and composition measurements in Lindon, Utah, during winter 2007. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2010; 60:346-355. [PMID: 20397564 DOI: 10.3155/1047-3289.60.3.346] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The U.S. Environmental Protection Agency is promoting the development and application of sampling methods for the semicontinuous determination of fine particulate matter (PM2.5, particles with an aerodynamic diameter <2.5 microm) mass and chemical composition. Data obtained with these methods will significantly improve the understanding of the primary sources, chemical conversion processes, and meteorological atmospheric processes that lead to observed PM2.5 concentrations and will aid in the understanding of the etiology of PM2.5-related health effects. During January and February 2007, several semicontinuous particulate matter (PM) monitoring systems were compared at the Utah State Lindon Air Quality Sampling site. Semicontinuous monitors included instruments to measure total PM2.5 mass (filter dynamic measurement system [FDMS] tapered element oscillating microbalance [TEOM], GRIMM), nonvolatile PM2.5 mass (TEOM), sulfate and nitrate (two PM2.5 and one PM10 [PM with an aerodynamic diameter <10 microm] ion-chromatographic-based samplers), and black carbon (aethalometer). PM10 semicontinuous mass measurements were made with GRIMM and TEOM instruments. These measurements were all made on a 1-hr average basis. Source apportionment analysis indicated that sources impacting the site were mainly urban sources and included mobile sources (gasoline and diesel) and residential burning of wood, with some elevated concentrations because of the effect of winter inversions. The FDMS TEOM and GRIMM instruments were in good agreement, but TEOM monitor measurements were low because of the presence of significant semi-volatile material. Semi-volatile mass was present dominantly in the PM2.5 mass.
Collapse
|
11
|
Lin L, Lee ML, Eatough DJ. Review of recent advances in detection of organic markers in fine particulate matter and their use for source apportionment. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2010; 60:3-25. [PMID: 20102032 DOI: 10.3155/1047-3289.60.1.3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Fine particulate matter is believed to be more toxic than coarse particles and to exacerbate health problems such as respiratory and cardiopulmonary diseases. Specific organic compounds within atmospheric fine particulate material can be used to differentiate specific inputs from various emissions and thus is helpful in identifying the major urban air pollution sources that contribute to these health problems. Particular marker compounds that carry signature information about different emission sources (i.e., gasoline or diesel motor vehicles, wood smoke, meat cooking, vegetative detritus, and cigarette smoke) are reviewed. Aerosol organic types (e.g., from mass spectrometry data, which can also help in elucidation of carbonaceous material sources) are also discussed. Apportionment of the primary source contributions and atmospheric processes contributing to fine particulate matter and fine particulate organic material concentrations are outlined. This review provides an overview of the latest developments in chemical characterization approaches for identification and quantification of compounds in complex organic mixtures associated with fine atmospheric particles and their use in chemical mass balance (CMB) and positive matrix factorization (PMF) source apportionment models.
Collapse
|
12
|
Eatough DJ, Farber R. Apportioning visibility degradation to sources of PM2.5 using positive matrix factorization. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2009; 59:1092-1110. [PMID: 19785276 DOI: 10.3155/1047-3289.59.9.1092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Intensive monitoring studies of aerosol have been conducted in two regions of California with poor air quality. Winter monitoring in the Fresno area was conducted in December 2003. Two summer samplings were collected from the eastern Los Angeles Basin, from Rubidoux in 2003 and Riverside in 2005. All three of these studies featured a suite of semicontinuous aerosol monitors. The speciated aerosol data with continuous gaseous measurements from these studies were combined with continuous Automated Surface Observing System (ASOS) measurements of visibility and extinction from nearby airports and modeled aerosol water content to conduct source apportionment analyses. The data were analyzed using three different techniques. A conventional positive matrix factorization (PMF) method was used. Then a novel approach was used that coupled PMF with added extinction and modeled water data. Another technique involved integrating conventional PMF with linear regression to obtain the extinction associated with each source. The novel PMF with added extinction and modeled water data provided the most robust results. The Fresno winter study was meteorologically characterized by stagnant conditions, a shallow mixing height, and intermittent periods of fog and low clouds. Six factors were identified using PMF. The secondary nitrate and gasoline mobile combustion emission associated sources exhibited the highest extinction coefficients. PMF also identified six factors in the summer 2003 study at Rubidoux. The secondary nitrate and the ozone-related secondary semi-volatile organic material (SVOM) sources exhibited the highest extinction levels. Water associated with the aerosols plays an important role because of the marine influence and stratus clouds typically occurring in the basin during the summer months. The summer of 2005 study in Riverside lead to the identification of 11 sources. The highest contributors to extinction are associated with material transported across the basin, the relative humidity secondary source, followed by secondary nitrate.
Collapse
|
13
|
Grover BD, Eatough NL, Woolwine WR, Eatough DJ, Cary RA. Modifications to the sunset laboratory carbon aerosol monitor for the simultaneous measurement of PM2.5 nonvolatile and semi-volatile carbonaceous material. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2009; 59:1007-1017. [PMID: 19728495 DOI: 10.3155/1047-3289.59.8.1007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Semi-volatile organic carbonaceous material (SVOC) in fine particles is not reliably measured with conventional semicontinuous carbon monitors because semi-volatile carbonaceous material is lost from the collection media during sample collection. Two modifications of a Sunset Laboratory carbon aerosol monitor allowing for the determination of semi-volatile fine particulate organic material are described. Collocated conventional and modified instruments were operated simultaneously using a common inlet. Comparisons were made with integrated PC-BOSS data for quartz filter retained nonvolatile organic carbon (NVOC) and elemental carbon (EC), SVOC, and total carbon (TC = SVOC + NVOC + EC) and good agreement was observed between TC concentrations during studies conducted in Rubidoux, CA. Precision of the comparison was sigma = +/-1.5 microg-C/m3 (+/-8%). On the basis of experiments performed with the modified Sunset monitor, a dual-oven Sunset monitor was developed and extensively tested in Lindon, UT; Riverside, CA; and in environmental exposure chambers. The precision for the measurement of TC with the dual-oven instrument was sigma = +/-1.4 microg-C/m3 (+/-13%).
Collapse
|
14
|
Grimm H, Eatough DJ. Aerosol measurement: the use of optical light scattering for the determination of particulate size distribution, and particulate mass, including the semi-volatile fraction. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2009; 59:101-107. [PMID: 19216193 DOI: 10.3155/1047-3289.59.1.101] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The GRIMM model 1.107 monitor is designed to measure particle size distribution and particulate mass based on a light scattering measurement of individual particles in the sampled air. The design and operation of the instrument are described. Protocols used to convert the measured size number distribution to a mass concentration consistent with U.S. Environmental Protection Agency protocols for measuring particulate matter (PM) less than 10 microm (PM10) and less than 2.5 microm (PM2.5) in aerodynamic diameter are described. The performance of the resulting continuous monitor has been evaluated by comparing GRIMM monitor PM2.5 measurements with results obtained by the Rupprecht and Patashnick Co. (R&P) filter dynamic measurement system (FDMS). Data were obtained during month-long studies in Rubidoux, CA, in July 2003 and in Fresno, CA, in December 2003. The results indicate that the GRIMM monitor does respond to total PM2.5 mass, including the semi-volatile components, giving results comparable to the FDMS. The data also indicate that the monitor can be used to estimate water content of the fine particles. However, if the inlet to the monitor is heated, then the instrument measures only the nonvolatile material, more comparable to results obtained with a conventional heated filter tapered element oscillating microbalance (TEOM) monitor. A recent modification of the model 180, with a Nafion dryer at the inlet, measures total PM2.5 including the nonvolatile and semi-volatile components, but excluding fine particulate water. Model 180 was in agreement with FDMS data obtained in Lindon, UT, during January through February 2007.
Collapse
|
15
|
Docherty KS, Stone EA, Ulbrich IM, DeCarlo PF, Snyder DC, Schauer JJ, Peltier RE, Weber RJ, Murphy SM, Seinfeld JH, Grover BD, Eatough DJ, Jimenez JL. Apportionment of primary and secondary organic aerosols in southern California during the 2005 study of organic aerosols in riverside (SOAR-1). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:7655-62. [PMID: 18983089 DOI: 10.1021/es8008166] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ambient sampling was conducted in Riverside, California during the 2005 Study of Organic Aerosols in Riverside to characterize the composition and sources of organic aerosol using a variety of state-of-the-art instrumentation and source apportionmenttechniques. The secondary organic aerosol (SOA) mass is estimated by elemental carbon and carbon monoxide tracer methods, water soluble organic carbon content, chemical mass balance of organic molecular markers, and positive matrix factorization of high-resolution aerosol mass spectrometer data. Estimates obtained from each ofthese methods indicate that the organic fraction in ambient aerosol is overwhelmingly secondary in nature during a period of several weeks with moderate ozone concentrations and that SOA is the single largest component of PM1 aerosol in Riverside. Average SOA/OA contributions of 70-90% were observed during midday periods, whereas minimum SOA contributions of approximately 45% were observed during peak morning traffic periods. These results are contraryto previous estimates of SOAthroughout the Los Angeles Basin which reported that, other than during severe photochemical smog episodes, SOA was lower than primary OA. Possible reasons for these differences are discussed.
Collapse
|
16
|
Martello DV, Pekney NJ, Anderson RR, Davidson CI, Hopke PK, Kim E, Christensen WF, Mangelson NF, Eatough DJ. Apportionment of ambient primary and secondary fine particulate matter at the Pittsburgh National Energy Laboratory particulate matter characterization site using positive matrix factorization and a potential source contributions function analysis. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2008; 58:357-368. [PMID: 18376639 DOI: 10.3155/1047-3289.58.3.357] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fine particulate matter (PM2.5) concentrations associated with 202 24-hr samples collected at the National Energy Technology Laboratory (NETL) particulate matter (PM) characterization site in south Pittsburgh from October 1999 through September 2001 were used to apportion PM2.5 into primary and secondary contributions using Positive Matrix Factorization (PMF2). Input included the concentrations of PM2.5 mass determined with a Federal Reference Method (FRM) sampler, semi-volatile PM2.5 organic material, elemental carbon (EC), and trace element components of PM2.5. A total of 11 factors were identified. The results of potential source contributions function (PSCF) analysis using PMF2 factors and HYSPLIT-calculated back-trajectories were used to identify those factors associated with specific meteorological transport conditions. The 11 factors were identified as being associated with emissions from various specific regions and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. Three sources associated with transport from coal-fired power plants to the southeast, a combination of point sources to the northwest, and a steel mill and associated sources to the west were identified. In addition, two secondary-material-dominated sources were identified, one was associated with secondary products of local emissions and one was dominated by secondary ammonium sulfate transported to the NETL site from the west and southwest. Of these 11 factors, the four largest contributors to PM2.5 were the secondary transported material (dominated by ammonium sulfate) (47%), local secondary material (19%), diesel combustion emissions (10%), and gasoline combustion emissions (8%). The other seven factors accounted for the remaining 16% of the PM2.5 mass. The findings are consistent with the major source of PM2.5 in the Pittsburgh area being dominated by ammonium sulfate from distant transport and so decoupled from local activity emitting organic pollutants in the metropolitan area. In contrast, the major local secondary sources are dominated by organic material.
Collapse
|
17
|
Carter C, Eatough NL, Eatough DJ, Olson N, Long RW. Comparison of speciation sampler and PC-BOSS fine particulate matter organic material results obtained in Lindon, Utah, during winter 2001-2002. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2008; 58:65-71. [PMID: 18236795 DOI: 10.3155/1047-3289.58.1.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS) has been previously verified as being capable of measuring total fine particulate matter (PM2.5), including semi-volatile species. The present study was conducted to determine if the simple modification of a commercial speciation sampler with a charcoal denuder followed by a filter pack containing a quartz filter and a charcoal-impregnated glass (CIG) fiber filter would allow for the measurement of total PM2.5, including semi-volatile organic material. Data were collected using an R&P (Rupprecht and Pastasnik Co., Inc.) Partisol Model 2300 speciation sampler; an R&P Partisol speciation sampler modified with a BOSS denuder, followed by a filter pack with a quartz and a CIG filter; a Met One spiral aerosol speciation sampler (SASS); and the PC-BOSS from November 2001 to March 2002 at a U.S. Environmental Protection Agency (EPA) Science to Achieve Results (STAR) sampling site in Lindon, UT. Total PM2.5 mass, ammonium nitrate (both nonvolatile and semi-volatile), ammonium sulfate, organic carbon (both non-volatile and semi-volatile), and elemental carbon were determined on a 24-hr basis. Results obtained with the individual samplers were compared to determine the capability of the modified R&P speciation sampler for measuring total PM2.5, including semi-volatile components. Data obtained with the modified speciation sampler agreed with the PC-BOSS results. Data obtained with the two unmodified speciation samplers were low by an average of 26% because of the loss of semi-volatile organic material from the quartz filter during sample collection.
Collapse
|
18
|
Grover BD, Kleinman M, Eatough NL, Eatough DJ, Cary RA, Hopke PK, Wilson WE. Measurement of fine particulate matter nonvolatile and semi-volatile organic material with the Sunset Laboratory Carbon Aerosol Monitor. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2008; 58:72-77. [PMID: 18236796 DOI: 10.3155/1047-3289.58.1.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Semi-volatile organic material (SVOM) in fine particles is not reliably measured with conventional semicontinuous carbon monitors because SVOM is lost from the collection media during sample collection. We have modified a Sunset Laboratory Carbon Aerosol Monitor to allow for the determination of SVOM. In a conventional Sunset monitor, gas-phase organic compounds are removed in the sampled airstream by a diffusion denuder employing charcoal-impregnated cellulose filter (CIF) surfaces. Subsequently, particles are collected on a quartz filter and the instrument then determines both the organic carbon and elemental carbon fractions of the aerosol using a thermal/optical method. However, some of the SVOM is lost from the filter during collection, and therefore is not determined. Because the interfering gas-phase organic compounds are removed before aerosol collection, the SVOM can be determined by filtering the particles at the instrument inlet and then replacing the quartz filter in the monitor with a charcoal-impregnated glass fiber filter (CIG), which retains the SVOM lost from particles collected on the inlet filter. The resulting collected SVOM is then determined in the analysis step by measurement of the carbonaceous material thermally evolved from the CIG filter. This concept was tested during field studies in February 2003 in Lindon, UT, and in July 2003 in Rubidoux, CA. The results obtained were validated by comparison with Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS) results. The sum of nonvolatile organic material determined with a conventional Sunset monitor and SVOM determined with the modified Sunset monitor agree with the PC-BOSS results. Linear regression analysis of total carbon concentrations determined by the PC-BOSS and the Sunset resulted in a zero-intercept slope of 0.99 +/- 0.02 (R2 = 0.92) and a precision of sigma = +/- 1.5 microg C/m3 (8%).
Collapse
|
19
|
Eatough DJ, Mangelson NF, Anderson RR, Martello DV, Pekney NJ, Davidson CI, Modey WK. Apportionment of ambient primary and secondary fine particulate matter during a 2001 summer intensive study at the CMU Supersite and NETL Pittsburgh site. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2007; 57:1251-1267. [PMID: 17972770 DOI: 10.3155/1047-3289.57.10.1251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Gaseous and particulate pollutant concentrations associated with five samples per day collected during a July 2001 summer intensive study at the Pittsburgh Carnegie Mellon University (CMU) Supersite were used to apportion fine particulate matter (PM2.5) into primary and secondary contributions using PMF2. Input to the PMF2 analysis included the concentrations of PM2.5 nonvolatile and semivolatile organic material, elemental carbon (EC), ammonium sulfate, trace element components, gas-phase organic material, and NO(x), NO2, and O3 concentrations. A total of 10 factors were identified. These factors are associated with emissions from various sources and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. In addition, four secondary sources were identified, three of which were associated with secondary products of local emissions and were dominated by organic material and one of which was dominated by secondary ammonium sulfate transported to the CMU site from the west and southwest. The three largest contributors to PM2.5 were secondary transported material (dominated by ammonium sulfate) from the west and southwest (49%), secondary material formed during midday photochemical processes (24%), and gasoline combustion emissions (11%). The other seven sources accounted for the remaining 16% of the PM2.5. Results obtained at the CMU site were comparable to results previously reported at the National Energy Technology Laboratory (NETL), located approximately 18 km south of downtown Pittsburgh. The major contributor at both sites was material transported from the west and southwest. Some difference in nearby sources could be attributed to meteorology as evaluated by HYSPLIT model back-trajectory calculations. These findings are consistent with the majority of the secondary ammonium sulfate in the Pittsburgh area being the result of contributions from distant transport, and thus decoupled from local activity involving organic pollutants in the metropolitan area. In contrast, the major local secondary sources were dominated by organic material.
Collapse
|
20
|
Tanner RL, Eatough DJ. Comment on “Aerosol organic carbon to black carbon ratios: Analysis of published data and implication for climate forcing” by T. Novakov et al. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Lin L, Lee ML, Eatough DJ. Gas chromatographic analysis of organic marker compounds in fine particulate matter using solid-phase microextraction. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2007; 57:53-8. [PMID: 17269230 DOI: 10.1080/10473289.2007.10465295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A gas chromatographic method that uses solid-phase microextraction for analysis of organic marker compounds in fine particulate matter (PM2.5) is reported. The target marker compounds were selected for specificity toward emission from wood smoke, diesel or gasoline combustion, or meat cooking. Temperature-programmed volatilization analysis was used to characterize the thermal stabilities and volatile properties of the compounds of interest. The compounds were thermally evaporated from a quartz filter, sorbed to a solid phase microextraction (SPME) fiber, and thermally desorbed at 280 degrees C in a gas chromatograph injection port connected via a DB 1701 capillary separating column. Various experimental parameters (fiber type, time, and temperature of sorption) were optimized. It was found that high extraction yield could be achieved using a polyacrylate fiber for polar substances, such as levoglucosan, and a 7-microm polydimethylsiloxane (PDMS)-coated fiber for nonpolar compounds, such as hopanes and polyaromatic hydrocarbon. A compromise was made by selecting a carboxen/PDMS fiber, which can simultaneously extract all of the analytes of interest with moderate-to-high efficiency at 180 degrees C within a 30-min accumulation period. The optimized method was applied to the determination of levoglucosan in pine wood combustion emissions. The simplicity, rapidity, and selectivity of sample collection with a polymer-coated SPME coupled to capillary gas chromatography (GC) made this method potentially useful for atmospheric chemistry studies.
Collapse
|
22
|
Eatough DJ, Cui W, Hull J, Farber RJ. Fine particulate chemical composition and light extinction at Meadview, AZ. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2006; 56:1694-706. [PMID: 17195488 DOI: 10.1080/10473289.2006.10464574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The concentration of fine particulate nitrate, sulfate, and carbonaceous material was measured for 12-hr day-night samples using diffusion denuder samplers during the Project Measurement of Haze and Visibility Effects (MOHAVE) July to August 1992 Summer Intensive study at Meadview, AZ, just west of Grand Canyon National Park. Organic material was measured by several techniques. Only the diffusion denuder method measured the semivolatile organic material. Fine particulate sulfate and nitrate (using denuder technology) determined by various groups agreed. Based on the various collocated measurements obtained during the Project MOHAVE study, the precision of the major fine particulate species was +/- 0.6 microg/m3 organic material, +/- 0.3 microg/m3 ammonium sulfate, and +/- 0.07 microg/m3 ammonium nitrate. Data were also available on fine particulate crustal material, fine and coarse particulate mass from the Interagency Monitoring of Protected Visual Environments sampling system, and relative humidity (RH), light absorption, particle scattering, and light extinction measurements from Project MOHAVE. An extinction budget was obtained using mass scattering coefficients estimated from particle size distribution data. Literature data were used to estimate the change in the mass scattering coefficients for the measured species as a function of RH and for the absorption of light by elemental carbon. Fine particulate organic material was the principal particulate contributor to light extinction during the study period, with fine particulate sulfate as the second most important contributor. During periods of highest light extinction, contributions from fine particulate organic material, sulfate, and light-absorbing carbon dominated the extinction of light by particles. Particle light extinction was dominated by sulfate and organic material during periods of lowest light extinction. Combination of the extinction data and chemical mass balance analysis of sulfur oxides sources in the region indicate that the major anthropogenic contributors to light extinction were from the Los Angeles, CA, and Las Vegas, NV, urban areas. Mohave Power Project associated secondary sulfate was a negligible contributor to light extinction.
Collapse
|
23
|
Anderson RR, Martello DV, Lucas LJ, Davidson CI, Modey WK, Eatough DJ. Apportionment of ambient primary and secondary pollutants during a 2001 summer study in Pittsburgh using U.S. Environmental Protection Agency UNMIX. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2006; 56:1301-19. [PMID: 17004685 DOI: 10.1080/10473289.2006.10464581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Apportionment of primary and secondary pollutants during the summer 2001 Pittsburgh Air Quality Study (PAQS) is reported. Several sites were included in PAQS, with the main site (the supersite) adjacent to the Carnegie Mellon University campus in Schenley Park. One of the additional sampling sites was located at the National Energy Technology Laboratory, located approximately 18 km southeast of downtown Pittsburgh. Fine particulate matter (PM2.5) mass, gas-phase volatile organic material (VOM), particulate semivolatile and nonvolatile organic material (NVOM), and ammonium sulfate were apportioned at the two sites into their primary and secondary contributions using the U.S. Environmental Protection Agency UNMIX 2.3 multivariate receptor modeling and analysis software. A portion of each of these species was identified as originating from gasoline and diesel primary mobile sources. Some of the organic material was formed from local secondary transformation processes, whereas the great majority of the secondary sulfate was associated with regional transformation contributions. The results indicated that the diurnal patterns of secondary gas-phase VOM and particulate semivolatile and NVOM were not correlated with secondary ammonium sulfate contributions but were associated with separate formation pathways. These findings are consistent with the bulk of the secondary ammonium sulfate in the Pittsburgh area being the result of contributions from distant transport and, thus, decoupled from local activity involving organic pollutants in the metropolitan area.
Collapse
|
24
|
Ito K, Christensen WF, Eatough DJ, Henry RC, Kim E, Laden F, Lall R, Larson TV, Neas L, Hopke PK, Thurston GD. PM source apportionment and health effects: 2. An investigation of intermethod variability in associations between source-apportioned fine particle mass and daily mortality in Washington, DC. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2006; 16:300-10. [PMID: 16304602 DOI: 10.1038/sj.jea.7500464] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Source apportionment may be useful in epidemiological investigation of PM health effects, but variations and options in these methods leave uncertainties. An EPA-sponsored workshop investigated source apportionment and health effects analyses by examining the associations between daily mortality and the investigators' estimated source-apportioned PM(2.5) for Washington, DC for 1988-1997. A Poisson Generalized Linear Model (GLM) was used to estimate source-specific relative risks at lags 0-4 days for total non-accidental, cardiovascular, and cardiorespiratory mortality adjusting for weather, seasonal/temporal trends, and day-of-week. Source-related effect estimates and their lagged association patterns were similar across investigators/methods. The varying lag structure of associations across source types, combined with the Wednesday/Saturday sampling frequency made it difficult to compare the source-specific effect sizes in a simple manner. The largest (and most significant) percent excess deaths per 5-95(th) percentile increment of apportioned PM(2.5) for total mortality was for secondary sulfate (variance-weighted mean percent excess mortality=6.7% (95% CI: 1.7, 11.7)), but with a peculiar lag structure (lag 3 day). Primary coal-related PM(2.5) (only three teams) was similarly significantly associated with total mortality with the same 3-day lag as sulfate. Risk estimates for traffic-related PM(2.5), while significant in some cases, were more variable. Soil-related PM showed smaller effect size estimates, but they were more consistently positive at multiple lags. The cardiovascular and cardiorespiratory mortality associations were generally similar to those for total mortality. Alternative weather models generally gave similar patterns, but sometimes affected the lag structure (e.g., for sulfate). Overall, the variations in relative risks across investigators/methods were found to be much smaller than those across estimated source types or across lag days for these data. This consistency suggests the robustness of the source apportionment in health effects analyses, but remaining issues, including accuracy of source apportionment and source-specific sensitivity to weather models, need to be investigated.
Collapse
|
25
|
Mar TF, Ito K, Koenig JQ, Larson TV, Eatough DJ, Henry RC, Kim E, Laden F, Lall R, Neas L, Stölzel M, Paatero P, Hopke PK, Thurston GD. PM source apportionment and health effects. 3. Investigation of inter-method variations in associations between estimated source contributions of PM2.5 and daily mortality in Phoenix, AZ. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2006; 16:311-20. [PMID: 16288316 DOI: 10.1038/sj.jea.7500465] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
As part of an EPA-sponsored workshop to investigate the use of source apportionment in health effects analyses, the associations between the participant's estimated source contributions of PM(2.5) for Phoenix, AZ for the period from 1995-1997 and cardiovascular and total nonaccidental mortality were analyzed using Poisson generalized linear models (GLM). The base model controlled for extreme temperatures, relative humidity, day of week, and time trends using natural spline smoothers. The same mortality model was applied to all of the apportionment results to provide a consistent comparison across source components and investigators/methods. Of the apportioned anthropogenic PM(2.5) source categories, secondary sulfate, traffic, and copper smelter-derived particles were most consistently associated with cardiovascular mortality. The sources with the largest cardiovascular mortality effect size were secondary sulfate (median estimate=16.0% per 5th-to-95th percentile increment at lag 0 day among eight investigators/methods) and traffic (median estimate=13.2% per 5th-to-95th percentile increment at lag 1 day among nine investigators/methods). For total mortality, the associations were weaker. Sea salt was also found to be associated with both total and cardiovascular mortality, but at 5 days lag. Fine particle soil and biomass burning factors were not associated with increased risks. Variations in the maximum effect lag varied by source category suggesting that past analyses considering only single lags of PM(2.5) may have underestimated health impact contributions at different lags. Further research is needed on the possibility that different PM(2.5) source components may have different effect lag structure. There was considerable consistency in the health effects results across source apportionments in their effect estimates and their lag structures. Variations in results across investigators/methods were small compared to the variations across source categories. These results indicate reproducibility of source apportionment results across investigative groups and support applicability of these methods to effects studies. However, future research will also need to investigate a number of other important issues including accuracy of results.
Collapse
|